Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½ ÀçȰ¿ë ½ÃÀåÀº 2025³â 129¾ï ´Þ·¯·Î ÃßÁ¤µÇ°í, ¿¹Ãø ±â°£ µ¿¾È CAGR 14.42%·Î ¼ºÀåÇÒ Àü¸ÁÀ̸ç, 2032³â¿¡´Â 331¾ï 3,000¸¸ ´Þ·¯¿¡ À̸¦ Àü¸ÁÀÔ´Ï´Ù.
¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½ÀÇ ÀçȰ¿ëÀº Æó±â¹°À» ÁÙÀ̰í ÀÚ¿øÀ» Àý¾àÇϸç ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÃÖ¼ÒÈÇϱâ À§ÇØ »ýºÐÇØ¼º ÇÃ¶ó½ºÆ½°ú ¹ÙÀÌ¿À ÇÃ¶ó½ºÆ½À» ȸ¼öÇϰí Àç°¡°øÇÏ´Â °úÁ¤À» ¸»ÇÕ´Ï´Ù. ÀüÅëÀûÀÎ ÇÃ¶ó½ºÆ½°ú´Â ´Þ¸®, ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½Àº ¿Á¼ö¼ö ÀüºÐ°ú »çÅÁ¼ö¼ö¿Í °°Àº Àç»ý °¡´ÉÇÑ ÀÚ¿ø¿¡¼ ÆÄ»ýµÇ¸ç ±â°èÀû, ÈÇÐÀû, À¯±âÀû ¹æ½ÄÀ¸·Î ÀçȰ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ Áö¼Ó°¡´ÉÇÑ Á¢±Ù¹ýÀº »ç¿ëµÈ ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½À» »õ·Î¿î Á¦Ç°À¸·Î ÀüȯÇÏ¿© ȼ®¿¬·á¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀÌ°í ¿Â½Ç°¡½º ¹èÃâÀ» ÁÙÀÓÀ¸·Î½á ¼øÈ¯Çü °æÁ¦ÀÇ ¸ñÇ¥¸¦ Áö¿øÇÕ´Ï´Ù.
¼øÈ¯Çü °æÁ¦ ä¿ë Áõ°¡
¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½ÀÇ ÀçȰ¿ë ºÐ¾ß¿¡¼ ¼øÈ¯Çü °æÁ¦ ¿øÄ¢ÀÇ Ã¤¿ëÀÌ Áõ°¡Çϰí ÀÖ´Â ¹è°æ¿¡´Â ȯ°æ ÀÇ½Ä °íÁ¶, ±ÔÁ¦ÀÇ ÁøÈ, ÀçȰ¿ë ±â¼úÀÇ Áøº¸°¡ ÀÖ½À´Ï´Ù. Á¤ºÎ ¹× ±¹Á¦±â±¸´Â ±âÁ¸ÀÇ ÇÃ¶ó½ºÆ½À» ´ëüÇÒ ¼ö ÀÖ´Â Áö¼Ó°¡´ÉÇÑ ÇÃ¶ó½ºÆ½À» Á¦¾ÈÇϰí, ¼øÈ¯ ½Ã½ºÅÛÀ» Áö¿øÇÏ´Â ¹ÙÀÌ¿À ¹× »ýºÐÇØ¼º ¼ÒÀçÀÇ »ç¿ëÀ» Àå·ÁÇϰí ÀÖ½À´Ï´Ù. ÀçȰ¿ë ´É·Â ¹× ¶óÀÌÇÁ»çÀÌŬ ºÐ¼® ÅøÀÇ Çâ»óÀ¸·Î Àç·áÀÇ È¸¼ö¿Í ÀçÀÌ¿ëÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ ³ì»ö Á¦Ç°¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ¼±È£µµ°¡ ³ô¾ÆÁö°í ±â¾÷ÀÇ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ Çå½ÅÀÌ ÀÌ ±â¿îÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.
ÀûÀýÇÑ ÀçȰ¿ë ÀÎÇÁ¶ó ºÎÁ·
´ëºÎºÐÀÇ ÀçȰ¿ë ½Ã½ºÅÛÀº ±âÁ¸ÀÇ ÇÃ¶ó½ºÆ½¿ëÀ¸·Î ¼³°èµÇ¾úÀ¸¸ç, Ư¼öÇÑ ¼±º° ¹× ó¸® ±â¼úÀÌ ÇÊ¿äÇÑ °æ¿ì°¡ ¸¹Àº ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½¿¡ ´ëÀÀÇÏ´Â ¼³ºñ´Â °®Ãß¾îÁöÁö ¾Ê¾Ò½À´Ï´Ù. ±× °á°ú ÀçȰ¿ë ´É·ÂÀÌ Á¦ÇÑµÇ°í ¸¹Àº ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½ÀÌ ¸Å¸³Áö¿Í ¼Ò°¢ ½Ã¼³·Î À̼۵˴ϴÙ. °Ô´Ù°¡, ¸íÈ®ÇÑ ¶óº§¸µÀÌ ¾ø°í ¼ÒºñÀÚÀÇ Àνĵµ ºÒÃæºÐÇϱ⠶§¹®¿¡ ȸ¼ö¿Í ºÐº° ÇÁ·Î¼¼½º°¡ ´õ¿í º¹ÀâÇØÁö°í ÀÖ½À´Ï´Ù. ƯÈ÷ ½ÅÈï ±¹°¡µéÀº Æó±â¹° °ü¸® ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ°¡ ºÒÃæºÐÇϱ⠶§¹®¿¡ Å« °úÁ¦¿¡ Á÷¸éÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀÎÇÁ¶ó °ÝÂ÷´Â ¼¼°è ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½ ÀçȰ¿ëÀÇ ¼ºÀå°ú È¿°ú¸¦ ¹æÇØÇϰí ÀÖ½À´Ï´Ù.
»ýºÐÇØ¼º Àç·áÀÇ Çõ½Å
Á¶·ù, ¹ö¼¸ »Ñ¸®, ³ó¾÷ Á¦Ç°º°°ú °°Àº »õ·Î¿î ¿ø·á´Â »çÅÁ¼ö¼ö¿Í ¿Á¼ö¼ö ÀüºÐ°ú °°Àº ±âÁ¸ÀÇ ÅõÀÔ ÀÚÀçÀÇ ¹üÀ§¸¦ ³ÐÈ÷°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº »ýºÐÇØ¼ºÀ» Çâ»ó½Ãų »Ó¸¸ ¾Æ´Ï¶ó °µµ ¹× ±â´É¼ºÀ» Çâ»ó½ÃŰ°í ¼øÈ¯Çü °æÁ¦ÀÇ Æ²¿¡¼ ÀçȰ¿ë°ú ÅðºñÈ¿¡ ÀûÇÕÇÕ´Ï´Ù. ģȯ°æ Á¦Ç°¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ °ü½É ¹× Àü·«Àû »ê¾÷ Á¦ÈÞ°¡ ´õ¿í ¿¬±¸°³¹ß¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ±â¾÷ÀÌ È®À强ÀÌ ¶Ù¾î³ª°í Àú·ÅÇÑ ¿É¼Ç¿¡ ÁÖ¸ñÇÏ´Â µ¿¾È »ýºÐÇØ¼º ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½Àº ´Ù¾çÇÑ ºÐ¾ß¿¡¼ ÁöÁö¸¦ ¹Þ°í ÀÖ½À´Ï´Ù.
±âÁ¸ ÇÃ¶ó½ºÆ½°úÀÇ °æÀï
±âÁ¸ ÇÃ¶ó½ºÆ½Àº ¼º¼÷ÇÑ °ø±Þ¸Á, ³·Àº Á¦Á¶ ºñ¿ë ¹× ±¤¹üÀ§ÇÑ ÀÎÇÁ¶ó·Î ½ÃÀå °æÀï¿¡¼ ¿ìÀ§¸¦ Â÷ÁöÇÏ¸ç »ý»êÀÚ¿Í ¼ÒºñÀÚ¿¡°Ô º¸´Ù °æÁ¦ÀûÀ¸·Î ½ÇÇà °¡´ÉÇÑ ¿É¼ÇÀÌ µÇ¾ú½À´Ï´Ù. À̿ʹ ´ëÁ¶ÀûÀ¸·Î, ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½Àº »ç¾÷ ±Ô¸ð°¡ ÀÛ°í Àç»ý°¡´ÉÇÑ ¿ø·á¿¡ ÀÇÁ¸Çϱ⠶§¹®¿¡ ÀϹÝÀûÀ¸·Î Á¦Á¶ ºñ¿ëÀÌ ³ô½À´Ï´Ù. ÀÌ ºñ¿ë °ÝÂ÷´Â ƯÈ÷ ÇÕ¸®ÀûÀÎ °¡°ÝÀÌ Áß¿äÇÑ »ê¾÷¿¡¼ÀÇ Ã¤¿ëÀ» Á¦ÇÑÇÕ´Ï´Ù. °Ô´Ù°¡ ¼®À¯°è ÇÃ¶ó½ºÆ½ÀÇ ¼º´ÉÀº ÀÔÁõµÇ¾úÀ¸¸ç ³Î¸® Ä£¼÷ÇØÁö±â ¶§¹®¿¡ ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½ÀÌ ½ÃÀå Á¡À¯À²À» ¾ò±â À§ÇÑ °úÁ¦°¡ µÇ°í ÀÖ½À´Ï´Ù.
COVID-19ÀÇ ´ëÀ¯ÇàÀº ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½ ÀçȰ¿ë ½ÃÀå¿¡ ´Ù°¢ÀûÀÎ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. óÀ½¿¡´Â ¼¼°è ºÀ¼â, °ø±Þ¸Á È¥¶õ, ±â¾÷ÀÌ ´çºÐ°£ °øÁߺ¸°Ç°ú °æÁ¦ ¿ì·Á¸¦ ¿ì¼±½ÃÇ߱⠶§¹®¿¡ ³ì»öÅõÀÚ °¨¼Ò·Î ½ÃÀåÀº ħü¿¡ Á÷¸éÇß½À´Ï´Ù. ±×·¯³ª ÆÒµ¥¹Í¿¡ µû¶ó ÀÇ·á¿ë °³Àκ¸È£±¸(PPE)¿Í ½Äǰ Æ÷ÀåÀ» Æ÷ÇÔÇÑ ÀÏȸ¿ë ÇÃ¶ó½ºÆ½ÀÇ »ç¿ë·®µµ Å©°Ô ±ÞÁõÇÏ¿© ÇÃ¶ó½ºÆ½ ¿À¿°¿¡ ´ëÇÑ »çȸÀû ÀǽÄÀÌ ³ô¾ÆÁ³½À´Ï´Ù. Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ÀçÁÖ¸ñ°ú ȯ°æ ÀÇ½Ä Áõ°¡´Â ÇöÀç ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½ ¼ö¿ä ¹× ÀçȰ¿ëÀÇ Àå±âÀûÀÎ Áõ°¡¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
Æú¸®À¯»ê(PLA) ºÐ¾ß°¡ ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë°¡ µÉ Àü¸Á
Æú¸®À¯»ê(PLA) ºÐ¾ß´Â ȯ°æÁ¤Ã¥ °È, ¼ÒºñÀÚ ¼ö¿ä º¯È, Àç·á°úÇÐÀÇ Áøº¸¿¡ °ßÀÎµÇ¾î ¿¹Ãø ±â°£ Áß ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¿Á¼ö¼ö¿Í »çÅÁ¼ö¼ö¿Í °°Àº Àç»ý °¡´ÉÇÑ ÀÚ¿ø¿¡¼ ÆÄ»ýµÈ PLA´Â ±âÁ¸ ÇÃ¶ó½ºÆ½À» ´ëüÇÏ´Â º¸´Ù ģȯ°æÀûÀÎ ´ë¾ÈÀ» Á¦°øÇÕ´Ï´Ù. º¸´Ù ¿ì¼öÇÑ ¿ ¾ÈÁ¤¼º°ú º¸´Ù Àú·ÅÇÑ °¡°ø°ú °°Àº Á¦Á¶ ±â¼úÀÇ Çâ»óÀ¸·Î PLA´Â ÆÐŰ¡, ³ó¾÷, ÇコÄɾ¼ÀÇ ÀÌ¿ëÀÌ È®´ëµÇ°í, ÀçȰ¿ë °¡´É¼ºÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È Æ÷Àå »ê¾÷ ºÐ¾ßÀÇ CAGRÀÌ °¡Àå ³ô¾ÆÁú Àü¸Á
¿¹Ãø ±â°£ µ¿¾È Áö¼Ó °¡´ÉÇϰí ȯ°æ Ä£ÈÀûÀÎ Æ÷Àå ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó Æ÷Àå »ê¾÷ ºÐ¾ß°¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ȯ°æ ¹®Á¦¿¡ ´ëÇÑ °ü½É°ú ÇÃ¶ó½ºÆ½ Æó±â¹° °¨¼ÒÀÇ ±ÔÁ¦ ¾Ð·ÂÀ¸·Î ¸¹Àº ±â¾÷µéÀÌ ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½ ¼ÒÀç·Î ÀüȯÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼ÒÀç´Â ±âÁ¸ÀÇ ÇÃ¶ó½ºÆ½°ú µ¿ÀÏÇÑ ±â´ÉÀ» °¡Áö¸é¼ »ýºÐÇØ¼º ¹× ÀçȰ¿ë¼ºÀÌ ¿ì¼öÇϱ⠶§¹®¿¡ ÀçȰ¿ë ÀÎÇÁ¶ó¿Í ±â¼ú Çõ½Å¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ Ãß¼¼´Â ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½ ÀçȰ¿ë ÀÌ´Ï¼ÅÆ¼ºêÀÇ ¼ºÀåÀ» ¼¼°èÀûÀ¸·Î Å©°Ô µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À̰ÍÀº ȯ°æ ÀÇ½Ä Áõ°¡, Á¤ºÎÀÇ Áö¿ø Á¤Ã¥, ±Þ¼ÓÇÑ »ê¾÷Ȱ¡ ¹è°æ¿¡ ÀÖ½À´Ï´Ù. Áß±¹, Àεµ, ÀϺ» µî ÁÖ¿ä ±¹°¡¿¡ ÀÇÇÑ Áö¼Ó °¡´ÉÇÑ ÆÐŰ¡ ä¿ë Áõ°¡ ¹× ÀçȰ¿ë ÀÎÇÁ¶ó ÅõÀÚ Áõ°¡°¡ ½ÃÀå È®´ë¸¦ °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Ä£È¯°æ Á¦Ç°¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼ö¿ä ¹× ±â¾÷ÀÇ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ³ë·ÂÀº È¿À²ÀûÀÎ ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½ Æó±â¹° °ü¸® ¼Ö·ç¼Ç¿¡ ´ëÇÑ °ÇÑ µÞ¹ÞħÀÌ µÇ°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì´Â °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´Â ÀÏȸ¿ë ÇÃ¶ó½ºÆ½ ±ÝÁö, È®´ë »ý»êÀÚ Ã¥ÀÓ¹ý, Áö¼Ó °¡´ÉÇÑ Æ÷ÀåÀ» ÃËÁøÇÏ´Â ÀçÁ¤Àû Àμ¾Æ¼ºê µîÀÇ ¾ö°ÝÇÑ ±ÔÁ¦ ¶§¹®ÀÔ´Ï´Ù. ȯ°æ Ä£ÈÀûÀÎ Á¦Ç°¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ¼±È£µµ°¡ ³ô¾ÆÁö°í ±â¾÷ÀÇ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ³ë·ÂÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÈÇÐÀû ¹× ±â°èÀû ÀçȰ¿ë ±â¼úÀÇ Áøº¸·Î ¼±º° ¹× ó¸® È¿À²ÀÌ Çâ»óµÇ°í ¿î¿µ ºñ¿ëÀÌ Àý°¨µÇ¾î Áö¿ª Àüü¿¡¼ ´ë±Ô¸ð ÀçȰ¿ë »ç¾÷ÀÌ °¡´ÉÇØÁö°í ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Bioplastic Recycling Market is accounted for $12.90 billion in 2025 and is expected to reach $33.13 billion by 2032 growing at a CAGR of 14.42% during the forecast period. Bioplastic recycling refers to the process of recovering and reprocessing biodegradable and bio-based plastics to reduce waste, conserve resources, and minimize environmental impact. Unlike traditional plastics, bioplastics are derived from renewable sources like corn starch or sugarcane and can be recycled through mechanical, chemical, or organic methods. This sustainable approach supports circular economy goals by transforming used bioplastics into new products, thereby decreasing reliance on fossil fuels and lowering greenhouse gas emissions.
Rising adoption of circular economy practices
The increasing embrace of circular economy principles in the bioplastic recycling sector is fueled by heightened environmental awareness, evolving regulations, and progress in recycling technologies. Governments and international bodies are advocating for sustainable alternatives to traditional plastics, encouraging the use of bio-based and biodegradable materials that support circular systems. Improved recycling capabilities and life cycle analysis tools are enhancing the recovery and reuse of materials. At the same time, rising consumer preference for green products and corporate commitments to sustainability are driving momentum.
Lack of proper recycling infrastructure
Most recycling systems are designed for conventional plastics and are not equipped to handle bioplastics, which often require specialized sorting and processing techniques. This results in limited recycling capabilities, with many bioplastics ending up in landfills or incineration facilities. Additionally, the absence of clear labeling and insufficient consumer awareness further complicate the collection and segregation process. Developing countries, in particular, face significant challenges due to inadequate investment in waste management technologies. These infrastructure gaps hinder the growth and effectiveness of bioplastic recycling on a global scale.
Innovation in biodegradable materials
Emerging feedstocks like algae, mushroom roots, and agricultural by-products are broadening the scope beyond conventional inputs such as sugarcane and cornstarch. These innovations not only boost biodegradability but also enhance strength and functionality, making them more suitable for recycling and composting within circular economy frameworks. Increased consumer interest in environmentally friendly products and strategic industry partnerships are fueling further R&D. As businesses focus on scalable and affordable options, biodegradable bioplastics are gaining traction across various sectors.
Competition from traditional plastics
Traditional plastics hold a competitive edge in the market due to their mature supply chains, low manufacturing costs, and extensive infrastructure, making them a more financially viable option for producers and consumers. In contrast, bioplastics typically face higher production costs, driven by smaller-scale operations and reliance on renewable raw materials. This cost gap limits their adoption, particularly in industries where affordability is crucial. Moreover, the proven performance and widespread familiarity of petroleum-based plastics pose challenges for bioplastics to gain market share.
The COVID-19 pandemic had a multifaceted impact on the bioplastic recycling market. Initially, the market faced a downturn due to global lockdowns, supply chain disruptions, and a decline in green investments as companies prioritized immediate public health and economic concerns. However, the pandemic also led to a significant surge in the use of single-use plastics, including medical personal protective equipment (PPE) and food packaging, intensifying public awareness of plastic pollution. Renewed focus on sustainability and heightened environmental consciousness are now driving a long-term increase in the demand for bioplastics and their recycling.
The polylactic acid (PLA) segment is expected to be the largest during the forecast period
The polylactic acid (PLA) segment is expected to account for the largest market share during the forecast period, driven by stricter environmental policies, shifting consumer demand, and progress in material science. Derived from renewable resources like corn and sugarcane, PLA offers a greener substitute to conventional plastics. Enhanced manufacturing techniques such as better thermal stability and more affordable processing are broadening PLA's use in packaging, farming, and healthcare, increasing its recycling potential.
The packaging industry segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the packaging industry segment is predicted to witness the highest growth rate, due to increasing demand for sustainable and eco-friendly packaging solutions. With growing environmental concerns and regulatory pressures to reduce plastic waste, many companies are shifting to bioplastic materials. These materials offer similar functionality to conventional plastics while being biodegradable or recyclable, prompting investments in recycling infrastructure and innovation. This trend significantly boosts the growth of bioplastic recycling initiatives globally.
During the forecast period, the Asia Pacific region is expected to hold the largest market share, due to rising environmental awareness, supportive government policies, and rapid industrialization. Increasing adoption of sustainable packaging by major economies like China, India, and Japan, along with growing investments in recycling infrastructure, are accelerating market expansion. Additionally, consumer demand for eco-friendly products and corporate sustainability initiatives are fostering a strong push towards efficient bioplastic waste management solutions.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, owing to strict regulations like bans on single-use plastics, extended producer responsibility laws, and financial incentives promoting sustainable packaging. Increasing consumer preference for eco-friendly products and rising corporate sustainability efforts are also contributing factors. Additionally, advancements in recycling technologies both chemical and mechanical are improving sorting and processing efficiency, reducing operational costs, and enabling large-scale recycling operations across the region.
Key players in the market
Some of the key players in Bioplastic Recycling Market include BASF SE, Eastman Chemical Company, NatureWorks LLC, Veolia Environnement, Novamont S.p.A., BioBag International, Biome Bioplastics, Toray Industries, Inc., TotalEnergies Corbion, Braskem, Mitsubishi Chemical Group, Plantic Technologies, Danimer Scientific, Green Dot Bioplastics, and FKuR Kunststoff GmbH.
In June 2025, Eastman announced the launch of Eastman Esmeri(TM) CC1N10, a high-performance, readily biodegradable cellulose ester micropowder for color cosmetics. Sourced from sustainably managed forests, Esmeri is designed to meet stringent EU regulations for synthetic polymer microparticles that fully biodegrade and do not persist in the environment.
In April 2025, BASF and Hagihara Industries, Inc., have joined forces to develop highly durable polyolefin yarns for artificial turf used in sports arenas, including football stadiums, baseball fields, and tennis courts. After three years of collaborative research and development, the two companies have created an advanced formulation with a series of Tinuvin(R) grades that significantly enhances the durability of synthetic grass.
In March 2025, TotalEnergies Corbion and Benvic have come together to drive the adoption of sustainable Luminy(R) PLA-based compounds. This collaboration will expand the use of plant-based solutions in durable applications such as automotive, healthcare and medical, cosmetics packaging, appliances, and electric & electronics.