¼¼°èÀÇ »ê¾÷¿ë ·Îº¿ ½ÃÀå(2026-2046³â)
The Global Industrial Robots Market 2026-2046
»óǰÄÚµå : 1749731
¸®¼­Ä¡»ç : Future Markets, Inc.
¹ßÇàÀÏ : 2025³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 554 Pages, 218 Tables, 59 Figures
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
¡Ì 1,200 £Ü 2,254,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

»ê¾÷¿ë ·Îº¿ ½ÃÀåÀº ÄÉÀÌÁö¿¡ °¤Èù ´Ü¼øÇÑ ±â°è¿¡¼­ ±âÁ¸ »ê¾÷¿ë ·Îº¿, Çùµ¿ ·Îº¿(ÄÚº¿), ÈÞ¸Ó³ëÀÌµå ·Îº¿, Áö´ÉÇü ¸ð¹ÙÀÏ ½Ã½ºÅÛÀ» Æ÷ÇÔÇÑ Á¤±³ÇÑ ¿¡ÄڽýºÅÛÀ¸·Î ÁøÈ­Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ È®ÀåµÈ ȯ°æÀº ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ Àΰ£ ÀÛ¾÷ÀÚ¿Í Ã·´Ü ·Îº¿ ±â¼úÀ» ¿øÈ°ÇÏ°Ô ÅëÇÕÇÏ´Â À¯¿¬Çϰí ÀûÀÀ·Â ÀÖ´Â ÀÚµ¿È­·Î Á¦Á¶°¡ º¯È­Çϰí ÀÖÀ½À» ¹Ý¿µÇÕ´Ï´Ù. ¿À´Ã³¯ÀÇ »ê¾÷¿ë ·Îº¿ ½ÃÀåÀº ´Ù¾çÇÑ Ä«Å×°í¸®¿¡ °ÉÃÄ ÀÖÀ¸¸ç, °¢ Ä«Å×°í¸®´Â ƯÁ¤ Á¦Á¶ ¿ä±¸ »çÇ×À» ÃæÁ·ÇÕ´Ï´Ù. ±âÁ¸ »ê¾÷¿ë ·Îº¿Àº ÀÚµ¿Â÷ ¿ëÁ¢À̳ª ÀüÀÚÁ¦Ç° Á¶¸³°ú °°Àº ´Ù¼ö ¹× °íÁ¤¹Ð ¿ëµµ¸¦ °è¼Ó µ¶Á¡Çϰí ÀÖ½À´Ï´Ù. ±×·¯³ª Çùµ¿ ·Îº¿Àº º¸È£º® ¾øÀÌ Àΰ£ ÀÛ¾÷ÀÚ¿Í ÇÔ²² ¾ÈÀüÇÏ°Ô ÀÛ¾÷ÇÒ ¼ö ÀÖµµ·Ï ¼³°èµÈ °ÔÀÓ Ã¼ÀÎÀú·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÄÚº¿Àº ÷´Ü Èû Á¦ÇÑ ±â¼ú, ¼Óµµ ¸ð´ÏÅ͸µ ½Ã½ºÅÛ, ½Å¼ÓÇÑ ¹èÄ¡ ¹× À籸¼ºÀ» °¡´ÉÇÏ°Ô ÇÏ´Â Á÷°üÀûÀÎ ÇÁ·Î±×·¡¹Ö ÀÎÅÍÆäÀ̽º¸¦ Ư¡À¸·Î ÇÕ´Ï´Ù.

Boston Dynamics, Figure AI, Agility Robotics¿Í °°Àº ±â¾÷µéÀº Ç¥ÁØ »ê¾÷ ȯ°æÀ» À̵¿Çϰí, ´Ù¾çÇÑ ¹°Ã¼¸¦ Á¶ÀÛÇϰí, ´Ù´Ü°è Á¶¸³ °øÁ¤À» ¼öÇàÇÒ ¼ö ÀÖ´Â 2Á· º¸Çà ÈÞ¸Ó³ëÀÌµå ½Ã½ºÅÛÀ» °³¹ßÇϰí ÀÖ½À´Ï´Ù. ´Ù´Ü°è Á¶¸³ °øÁ¤À» ¼öÇàÇÒ ¼ö ÀÖ´Â ÀÌÁ·º¸Çà ÈÞ¸Ó³ëÀÌµå ½Ã½ºÅÛÀ» °³¹ßÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ±âÁ¸ÀÇ °íÁ¤½Ä ·Îº¿ÀÌ ¼öÇàÇϱ⿡´Â ³Ê¹« º¹ÀâÇÑ ÀÛ¾÷À» ¼öÇàÇϸ鼭 ³ëµ¿·Â ºÎÁ·¿¡ ´ëóÇÒ ¼ö ÀÖÀ» °ÍÀ¸·Î ±â´ëµÇ°í ÀÖ½À´Ï´Ù.

ÀÚÀ²ÁÖÇà ¿î¹Ý ·Îº¿(AMR)°ú ¸ð¹ÙÀÏ ¸Å´Ïǽ·¹ÀÌÅÍ´Â À̵¿¼º°ú Á¶ÀÛ ´É·ÂÀ» °áÇÕÇÏ¿© º¯È­ÇÏ´Â »ý»ê ·¹À̾ƿô¿¡ ÀûÀÀÇÒ ¼ö ÀÖ´Â À¯¿¬ÇÑ ÀÚµ¿È­ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ½Ã½ºÅÛÀº ÷´Ü SLAM(Simultaneous Localization and Mapping) ±â¼ú, LiDAR ¼¾¼­, AI ±â¹Ý ³×ºñ°ÔÀ̼ÇÀ» Ȱ¿ëÇÏ¿© Àΰ£ ÀÛ¾÷ÀÚ¿Í ÇÔ²² ¿ªµ¿ÀûÀΠȯ°æ¿¡¼­ ¾ÈÀüÇÏ°Ô ÀÛ¾÷ÇÒ ¼ö ÀÖ½À´Ï´Ù.

±â¼ú À¶ÇÕ°ú AIÀÇ ÅëÇÕ: AIÀÇ ÅëÇÕÀº »ê¾÷¿ë ·Îº¿ÀÇ ´É·ÂÀ» ±Ùº»ÀûÀ¸·Î º¯È­½ÃÄ×½À´Ï´Ù. ÃֽŠ½Ã½ºÅÛ¿¡´Â ½Ç½Ã°£ ǰÁú °Ë»ç, ¹°Ã¼ ÀνÄ, ÀûÀÀÇü Á¶¸³¿¡ »ç¿ëµÇ´Â ÄÄÇ»ÅÍ ºñÀüÀÌ ³»ÀåµÇ¾î ÀÖ½À´Ï´Ù. ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀº ·Îº¿ÀÌ Áö¼ÓÀûÀ¸·Î ¼º´ÉÀ» ÃÖÀûÈ­Çϰí, »ý»ê º¯µ¿À¸·ÎºÎÅÍ ÇнÀÇϰí, ½Ã°£ÀÌ Áö³²¿¡ µû¶ó Á¤È®µµ¸¦ Çâ»ó½Ãų ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ¸ÖƼ¸ð´Þ AI ½Ã½ºÅÛÀº ½Ã°¢, Èû, À½¼º 󸮸¦ °áÇÕÇÏ¿© °í±Þ ÀÇ»ç°áÁ¤À» ÇÒ ¼ö ÀÖ´Â ·Îº¿À» ±¸ÇöÇÕ´Ï´Ù.

¿§Áö ÄÄÇ»ÆÃÀº ·Îº¿ÀÌ ¼¾¼­ µ¥ÀÌÅ͸¦ ·ÎÄÿ¡¼­ ºÐ¼®ÇÏ¿© »óȲ º¯È­¿¡ Áï°¢ÀûÀ¸·Î ´ëÀÀÇÒ ¼ö ÀÖµµ·Ï ÇÏ´Â ½Ç½Ã°£ 󸮿¡ ÇʼöÀûÀÎ ¿ä¼ÒÀÔ´Ï´Ù. ÀÌ ±â´ÉÀº »ç¶÷ÀÇ Á¸À糪 ¿¹±âÄ¡ ¸øÇÑ Àå¾Ö¹°¿¡ Áï°¢ÀûÀ¸·Î ´ëÀÀÇØ¾ß ÇÏ´Â ¾ÈÀüÀÌ ¿ä±¸µÇ´Â Çù¾÷ ¾ÖÇø®ÄÉÀ̼ǿ¡¼­ ƯÈ÷ Áß¿äÇÕ´Ï´Ù. ÷´Ü ¼¾¼­ À¶ÇÕÀº Ä«¸Þ¶ó, LiDAR, Èû ¼¾¼­, ±ÙÁ¢ ¼¾¼­ÀÇ µ¥ÀÌÅ͸¦ °áÇÕÇÏ¿© Á¾ÇÕÀûÀΠȯ°æ ÀνÄÀ» Á¦°øÇÕ´Ï´Ù.

ÀÚµ¿Â÷ »ê¾÷Àº ¿©ÀüÈ÷ »ê¾÷¿ë ·Îº¿À» °¡Àå ¸¹ÀÌ Ã¤ÅÃÇϰí ÀÖÀ¸¸ç, ÃÖÁ¾ Á¶¸³ ÀÛ¾÷¿¡´Â ÄÚº¿, º¹ÀâÇÑ ¹è¼± ¹× ³»ºÎ ºÎǰ ÀåÂø¿¡´Â ÈÞ¸Ó³ëÀÌµå ·Îº¿À» »ç¿ëÇϰí ÀÖ½À´Ï´Ù. ÀüÀÚ±â±â Á¦Á¶¿¡¼­´Â ¼¶¼¼ÇÑ ºÎǰ Ãë±Þ ¹× Å×½ºÆ® °øÁ¤¿¡ Çùµ¿ ·Îº¿ÀÌ »ç¿ëµÇ°í ÀÖÀ¸¸ç, Àΰ£°ú °°Àº ¼ÕÀçÁÖ°¡ ÇÊ¿äÇÑ ½º¸¶Æ®Æù ¹× ÅÂºí¸´ Á¶¸³¿¡ ÈÞ¸Ó³ëÀÌµå ½Ã½ºÅÛÀÌ À¯¸ÁÇÑ °ÍÀ¸·Î Æò°¡¹Þ°í ÀÖ½À´Ï´Ù. ½ÄÀ½·á °¡°ø¿¡¼­´Â Æ÷Àå, ǰÁú °Ë»ç, ÀÚÀç°ü¸®¿¡ ÷´Ü ·Îº¿ÀÇ È°¿ëÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. Çùµ¿ ·Îº¿Àº À¯¿¬¼º°ú ¼Õ½¬¿î û¼Ò°¡ ÇʼöÀûÀÎ ½Äǰ Á¶¸® ¹× Æ÷Àå¿¡ Ź¿ùÇÑ ¼º´ÉÀ» ¹ßÈÖÇÕ´Ï´Ù. ÀǾàǰ Á¦Á¶¿¡¼­´Â ¹«±Õ Ãë±Þ, Á¤¹ÐÇÑ ºÐÁÖ, ÀÇ·á±â±âÀÇ º¹ÀâÇÑ Á¶¸³¿¡ ÀÌ·¯ÇÑ ±â¼úÀÌ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù.

Àη ºÎÁ·Àº ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖÀ¸¸ç, ƯÈ÷ ·Îº¿Àº Ç×°ø¿ìÁÖ, Á¶¼± µîÀÇ »ê¾÷¿¡¼­ ¼÷·ÃµÈ Àη ºÎÁ·À» ÇØ¼ÒÇÏ´Â µ¥ ÀûÇÕÇÕ´Ï´Ù. ¼±Áø±¹¿¡¼­´Â ³ëµ¿·ÂÀÇ °í·ÉÈ­°¡ ÁøÇàµÇ¸é¼­ ¼÷·ÃµÈ ÀÛ¾÷ÀÚ°¡ °¨µ¶°ú ǰÁú °ü¸®¿¡ Àü³äÇÏ´Â ¹Ý¸é, ·Îº¿ÀÌ À°Ã¼ÀûÀ¸·Î Èûµç ÀÛ¾÷À» ¼öÇàÇÒ ¼ö ÀÖ´Â ±âȸ°¡ »ý±â°í ÀÖ½À´Ï´Ù.

¼¼°èÀÇ »ê¾÷¿ë ·Îº¿ ½ÃÀå¿¡ ´ëÇØ Á¶»ç ºÐ¼®ÇßÀ¸¸ç, °¢ ºÎ¹®º° ½ÃÀå ±Ô¸ð¿Í ¼ºÀå ¿¹Ãø, ±â¼ú »óȲ°ú ±â¼ú Çõ½Å µ¿Çâ, ±â¾÷ ÇÁ·ÎÆÄÀϰú °æÀï ±¸µµ µîÀÇ Á¤º¸¸¦ ÀüÇØµå¸³´Ï´Ù.

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­·Ð

Á¦3Àå ¼¼°è ½ÃÀå ºÐ¼®

Á¦4Àå ±â¼ú »óȲ

Á¦5Àå ±â¼ú ÄÄÆ÷³ÍÆ®¿Í ¼­ºê½Ã½ºÅÛ

Á¦6Àå ÃÖÁ¾ ÀÌ¿ë »ê¾÷ ºÐ¼®

Á¦7Àå ½ÃÀå ¼ºÀå ÃËÁø¿äÀΰú ¾ïÁ¦¿äÀÎ

  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ

    Á¦8Àå »õ·Î¿î µ¿Çâ°ú ¹ßÀü

    • ½º¿ú ·Îº¸Æ½½º
    • Àΰ£°ú ·Îº¿ Çùµ¿
    • ÀÚ±â ÇнÀÇü ¹× ÀûÀÀÇü ·Îº¿
    • Ŭ¶ó¿ìµå ·Îº¸Æ½½º
    • µðÁöÅÐ Æ®À© ÅëÇÕ
    • RaaS(Robot-as-a-Service) ºñÁî´Ï½º ¸ðµ¨
    • ¼ÒÇÁÆ® ·Îº¸Æ½½º
    • ·Îº¸Æ½½º¿ë ´º·Î¸ðÇÈ ÄÄÇ»ÆÃ
    • ¸¶ÀÌÅ©·Î ³ª³ë·Îº¿
    • ºê·¹ÀÎ ÄÄÇ»ÅÍ ÀÎÅÍÆäÀ̽º
    • ¸ð¹ÙÀÏ ÄÚº¿
    • Àδõ½ºÆ®¸® 5.0 ¹× Çùµ¿ ·Îº¿
    • Àúź¼Ò ·Îº¿ Á¦Á¶
    • ÀÚÀ² ³»ºñ°ÔÀÌ¼Ç ¹× À§Ä¡ ƯÁ¤
    • ÀÚÀ²ÁÖÇàÂ÷¿¡ ±¸µ¿µÇ´Â ³»ºñ°ÔÀÌ¼Ç ¼¾¼­

    Á¦9Àå °úÁ¦¿Í ±âȸ

    • ±â¼úÀû °úÁ¦
    • ½ÃÀåÀÌ ÇØ°áÇØ¾ß ÇÒ °úÁ¦
    • ±ÔÁ¦»ó °úÁ¦

    Á¦10Àå ÇâÈÄ Àü¸Á

    • ±â¼ú ·Îµå¸Ê(2025-2046³â)
    • »ê¾÷ À¶ÇÕ ±âȸ
    • ·Îº¸Æ½½º¿Í ³ëµ¿ ¹Ì·¡

    Á¦11Àå ±â¾÷ °³¿ä(±â¾÷ 120°³»ç °³¿ä)

    Á¦12Àå Âü°í ¹®Çå

    LSH
  • ¿µ¹® ¸ñÂ÷

    ¿µ¹®¸ñÂ÷

    The industrial robots market has undergone a dramatic transformation, evolving from simple, cage-enclosed machines into a sophisticated ecosystem encompassing traditional industrial robots, collaborative robots (cobots), humanoid robots, and intelligent mobile systems. This expanded landscape reflects manufacturing's shift toward flexible, adaptive automation that seamlessly integrates human workers with advanced robotic technologies across diverse industrial applications. Today's industrial robotics market spans multiple categories, each addressing specific manufacturing needs. Traditional industrial robots continue to dominate high-volume, high-precision applications like automotive welding and electronics assembly. However, collaborative robots have emerged as a game-changing segment, designed to work safely alongside human operators without protective barriers. These cobots feature advanced force-limiting technology, speed monitoring systems, and intuitive programming interfaces that enable rapid deployment and reconfiguration.

    Humanoid robots represent the market's most ambitious frontier, offering human-like dexterity and mobility for complex manufacturing tasks. Companies like Boston Dynamics, Figure AI, and Agility Robotics are pioneering bipedal humanoid systems capable of navigating standard industrial environments, manipulating diverse objects, and performing multi-step assembly processes. These systems promise to address labor shortages while handling tasks too complex for traditional fixed-base robots.

    Autonomous Mobile Robots (AMRs) and mobile manipulators combine mobility with manipulation capabilities, creating flexible automation solutions that can adapt to changing production layouts. These systems utilize advanced SLAM (Simultaneous Localization and Mapping) technology, LiDAR sensors, and AI-powered navigation to operate safely in dynamic environments alongside human workers.

    Technological Convergence and AI Integration The integration of artificial intelligence has fundamentally transformed industrial robotics capabilities. Modern systems incorporate computer vision for real-time quality inspection, object recognition, and adaptive assembly. Machine learning algorithms enable robots to optimize their performance continuously, learning from production variations and improving accuracy over time. Multi-modal AI systems combine vision, force sensing, and audio processing to create robots capable of sophisticated decision-making.

    Edge computing has become crucial for real-time processing, allowing robots to analyze sensor data locally and respond instantly to changing conditions. This capability is particularly important for collaborative applications where safety requires immediate response to human presence or unexpected obstacles. Advanced sensor fusion combines data from cameras, LiDAR, force sensors, and proximity detectors to create comprehensive environmental awareness.

    The automotive industry remains the largest adopter of industrial robotics, increasingly deploying cobots for final assembly operations and humanoid robots for complex wiring and interior component installation. Electronics manufacturing has embraced collaborative robots for delicate component handling and testing procedures, while humanoid systems show promise for smartphone and tablet assembly requiring human-like dexterity. Food and beverage processing increasingly utilizes advanced robotics for packaging, quality inspection, and material handling. Collaborative robots excel in food preparation and packaging applications where flexibility and easy cleaning are essential. Pharmaceutical manufacturing adopts these technologies for sterile handling, precise dispensing, and complex assembly of medical devices.

    Labor shortages continue driving market growth, with humanoid robots particularly positioned to address skilled labor gaps in industries like aerospace and shipbuilding. The aging workforce in developed nations creates opportunities for robots to perform physically demanding tasks while experienced workers focus on oversight and quality control.

    Asia-Pacific leads global adoption, with China implementing ambitious automation initiatives across manufacturing sectors. Japanese companies like Honda and Toyota are pioneering humanoid robot applications in manufacturing, while South Korean firms focus on collaborative robotics for electronics production. European manufacturers emphasize collaborative systems and sustainable automation technologies, particularly in automotive and precision manufacturing. North American adoption focuses on advanced applications in aerospace, medical device manufacturing, and high-tech industries. The region's emphasis on reshoring manufacturing creates opportunities for sophisticated automation systems that can compete with low-cost overseas production.

    The industrial robotics market is transitioning toward increasingly intelligent, adaptable systems. Robot-as-a-Service (RaaS) models are emerging to lower entry barriers, particularly for small and medium enterprises. These subscription-based approaches provide access to advanced robotics technology without significant capital investment.

    Swarm robotics represents an emerging trend where multiple robots coordinate to accomplish complex tasks, particularly valuable in large-scale manufacturing and logistics operations. The integration of digital twin technology enables virtual testing and optimization of robotic systems before physical deployment.

    As artificial intelligence continues advancing, the distinction between different robot types will blur, with systems becoming more versatile and capable of handling diverse tasks. The future industrial robotics market will likely feature increasingly autonomous systems that can adapt to new products, processes, and environments with minimal human intervention, fundamentally reshaping manufacturing's operational paradigms while creating new opportunities for human-robot collaboration.

    "The Global Industrial Robots Market 2026-2046" provides in-depth analysis of the industrial robotics ecosystem, covering traditional industrial robots, collaborative robots (cobots), humanoid robots, autonomous mobile robots (AMRs), and emerging robotic technologies that are reshaping manufacturing across industries worldwide.

    Report contents include:

    TABLE OF CONTENTS

    1. EXECUTIVE SUMMARY

    2. INTRODUCTION

    3. GLOBAL MARKET ANALYSIS

    4. TECHNOLOGY LANDSCAPE

    5. TECHNOLOGY COMPONENTS AND SUBSYSTEMS

    6. END-USE INDUSTRY ANALYSIS

    7. MARKET DRIVERS AND RESTRAINTS

    8. EMERGING TRENDS AND DEVELOPMENTS

    9. CHALLENGES AND OPPORTUNITIES

    10. FUTURE OUTLOOK

    11. COMPANY PROFILES (120 company profiles)

    12. REFERENCES

    (ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
    ¨Ï Copyright Global Information, Inc. All rights reserved.
    PC¹öÀü º¸±â