¼¼°èÀÇ ÀÌ»êÈź¼Ò Á¦°Å(CDR) ½ÃÀåÀº ±â¾÷ÀÇ ³Ý Á¦·Î ¸ñÇ¥¿¡ ´ëÇÑ Çå½Å Áõ°¡¿Í ºÎÁ¤ÀûÀÎ ¹èÃâ ±â¼úÀÇ Çʿ伺¿¡ ´ëÇÑ ÀÎ½Ä Áõ°¡·Î ÀÎÇØ ºü¸£°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ÇöÀç ½ÃÀå ±Ô¸ð´Â ¾à 20¾ï ´Þ·¯·Î ÃßÁ¤µÇ¸ç, 2030³â±îÁö 500¾ï ´Þ·¯·Î È®´ëµÉ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, 2035³â±îÁö 2,500¾ï ´Þ·¯¸¦ ÃʰúÇÒ °ÍÀ¸·Î Àü¸ÁµË´Ï´Ù.
ÀÌ ½ÃÀå¿¡´Â ´Ù¾çÇÑ ±â¼úÀÌ Æ÷ÇԵǾî Á÷Á¢ °ø±â ȸ¼ö(DAC), ź¼Ò ȸ¼ö¡¤Àú·ù¸¦ ¼ö¹ÝÇÏ´Â ¹ÙÀÌ¿À¿¡³ÊÁö(BECCS), Ç³È ÃËÁøÀº ´ëÇ¥ÀûÀÎ ÀΰøÀû Á¢±ÙÀÔ´Ï´Ù. ½Ä¹°, Åä¾ç ź¼Ò °Ý¸® ¹× ÇØ¾çÀ» ÀÌ¿ëÇÑ ¹æ¹ý°ú °°Àº ÀÚ¿¬ ¼Ö·ç¼ÇÀº ÀÌ·¯ÇÑ ±â¼úÀû Á¢±Ù¹ýÀ» º¸¿ÏÇÕ´Ï´Ù. Á÷Á¢ °ø±â ȸ¼ö´Â ÇöÀç ±Ô¸ð´Â ÀÛÁö¸¸ Å« ÅõÀÚ¿Í ±â¾÷ÀÇ °ü½ÉÀ» ¸ðÀ¸°í ÀÖÀ¸¸ç, ±× ºñ¿ëÀº ±â¼úÀ̳ª ±Ô¸ð¿¡ µû¶ó ´Ù¸£Áö¸¸ CO2 Á¦°Å 1Åæ´ç 200-900´Þ·¯ÀÔ´Ï´Ù.
±â¼ú °³¹ßÀº ´Ù¹æ¸é¿¡ °ÉÃÄ ºü¸£°Ô ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. Á÷Á¢ °ø±â ȸ¼ö¸¦ ¼öÇàÇÏ´Â ±â¾÷Àº ¼³°è °³¼± ¹× ¿î¿µ °æÇèÀ» ÅëÇØ ¿î¿µ ±Ô¸ð¸¦ È®´ëÇÏ°í ºñ¿ëÀ» Àý°¨Çϰí ÀÖ½À´Ï´Ù. Ç³È ÃËÁø ÇÁ·ÎÁ§Æ®´Â ¿¬±¸¿¡¼ »ó¾÷Àû ½ÇÁõÀ¸·Î ÀüȯÇϰí ÀÖÀ¸¸ç, BECCS ½Ã¼³Àº ±Ô¸ð¿Í È¿À²¼ºÀ» È®´ëÇϰí ÀÖ½À´Ï´Ù. ¹ÙÀÌ¿À ¿ÀÀÏ °Ý¸® ¹× ¹«±âÈ ±â¼úÀ» Æ÷ÇÔÇÑ »õ·Î¿î Á¢±Ù¹ýÀÌ ¿¬±¸ ´Ü°è¿¡¼ ³ªÅ¸³µ½À´Ï´Ù. ½ÃÀå ¼ºÀåÀ» µÞ¹ÞħÇÏ´Â °ÍÀº ƯÈ÷ ±â¼ú ±â¾÷°ú ±ÝÀ¶ ±â°ü¿¡ ÀÇÇÑ °íǰÁú ź¼Ò Á¦°Å Å©·¹µ÷¿¡ ´ëÇÑ ±â¾÷ ¼ö¿ä Áõ°¡ÀÔ´Ï´Ù. ÷´Ü ½ÃÀå Çå½Å°ú Àå±â ±¸¸Å °è¾àÀº ÇÁ·ÎÁ§Æ® °³¹ßÀÚ¿¡°Ô ¸Å¿ì Áß¿äÇÑ ¼öÀÍ È®½Ç¼ºÀ» Á¦°øÇÕ´Ï´Ù. ¹Ì±¹ÀÇ 45Q ¼¼¾×°øÁ¦¿Í À¯·´¿¬ÇÕ(EU)ÀÇ Çõ½Å±â±Ý µîÀÇ Á¦µµ¸¦ ÅëÇÑ Á¤ºÎÀÇ Áö¿øÀº ÇÁ·ÎÁ§Æ®ÀÇ °æÁ¦¼ºÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù.
ÀÚ¿ø ºÀ»ç ź¼Ò ½ÃÀåÀº ź¼Ò Á¦°Å Å©·¹µ÷À» ±âÁ¸ ȸÇÇ Å©·¹µ÷°ú Â÷º°ÈÇϱâ À§ÇØ ÁøÈÇϰí ÀÖÀ¸¸ç, Á¦°Å Å©·¹µ÷Àº ³ôÀº °¡°ÝÀ¸·Î °Å·¡µÇ°í ÀÖ½À´Ï´Ù. ½ÃÀå ÀÎÇÁ¶ó °³¹ß¿¡´Â »õ·Î¿î °Å·¡ Ç÷§Æû, °ËÁõ ±â¹ý °³¼±, Ư¼ö ±ÝÀ¶ »óǰ µîÀÌ Æ÷ÇԵ˴ϴÙ. ±âÁ¸ ź¼Ò ½ÃÀå°úÀÇ ÅëÇÕ°ú Ç¥ÁØÈµÈ ÇÁ·ÎÅäÄÝÀÇ °³¹ßÀº ½ÃÀåÀÇ ¼º¼÷À» Áö¿øÇÕ´Ï´Ù.
±âÈÄ º¯È ¸ñÇ¥¸¦ ´Þ¼ºÇϱâ À§ÇÑ ÀÌ»êÈź¼Ò Á¦°ÅÀÇ Çʿ伺¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁü¿¡ µû¶ó ÇâÈÄ ½ÃÀå Àü¸ÁÀº °·ÂÇØÁö°í ÀÖ½À´Ï´Ù. ±â¼úÀÇ Áøº¸¿Í ½ºÄÉÀϸµ È¿°ú´Â »ó´çÇÑ ºñ¿ë Àý°¨À» ¿¹ÃøÇϰí, 2035³â±îÁö ÀϺΠÁ¢±Ù¹ýÀº Åæ´ç 100-200´Þ·¯¿¡ À̸¦ ¼ö ÀÖ½À´Ï´Ù. ½ÃÀå ¼ºÀåÀº ÇöÀç ³ôÀº ºñ¿ë, ÀÎÇÁ¶ó ¿ä±¸ »çÇ×, ±ÔÁ¦ ºÒÈ®½Ç¼º µîÀÇ °úÁ¦¿¡ Á÷¸éÇϰí ÀÖ½À´Ï´Ù.
ÇâÈÄ ¹ßÀüÀ» Çü¼ºÇÏ´Â ÁÖ¿ä µ¿ÇâÀ¸·Î´Â ¿©·¯ CDR Á¢±Ù ¹æ½ÄÀÇ ÅëÇÕ, Áö¿ª Á¦°Å Çãºê °³¹ß, Áö¼Ó¼º ¹× °ËÁõ¿¡ ´ëÇÑ ÁÖ¸ñ Áõ°¡ µîÀÌ ÀÖ½À´Ï´Ù. ½ÃÀåÀº Á¦°Å ±â¼úÀÇ ´Ù¾ç¼ºÀ» À¯ÁöÇÏ¸é¼ ±â¼ú °ø±ÞÀÚ °£ÀÇ ÅëÇÕÀÌ ÁøÇàµÉ °¡´É¼ºÀÌ ³ô½À´Ï´Ù. ¼º°øÀ» À§Çؼ´Â À̸¦ Áö¿øÇÏ´Â ÀÎÇÁ¶ó, ƯÈ÷ CO2 ¿î¼Û ¹× ÀúÀå ³×Æ®¿öÅ©ÀÇ °³¹ßÀÌ º´ÇàÇÏ¿© ÀÌ·ç¾îÁ®¾ß ÇÕ´Ï´Ù.
Á¤Ã¥ Áö¿øÀº ¼¼°èÀûÀ¸·Î °ÈµÉ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, Ä«º» ÇÁ¶óÀÌ½Ì ¸ÞÄ¿´ÏÁò°ú ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©´Â CDRÀÇ Àü°³¸¦ Áö¿øÇϵµ·Ï ÁøÈÇÕ´Ï´Ù. Ç¥ÁØ ¹× ÇÁ·ÎÅäÄÝ¿¡ ´ëÇÑ ±¹Á¦ Çù·ÂÀº ȯ°æÀÇ ¹«°á¼ºÀ» º¸ÀåÇÏ¸é¼ ¹ßÀüÀ» °¡¼ÓÈÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÎ¼´Â º¥Ã³ ijÇÇÅ»°ú Àü·«Àû »ê¾÷ ÁøÃâ ±â¾÷ ¸ðµÎÀÇ ÅõÀÚ°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç Áö¼ÓÀûÀÎ ±â¼ú Çõ½Å°ú ±Ô¸ð È®´ë¸¦ Áö¿øÇÕ´Ï´Ù.
½ÃÀå Àü¸ÁÀº Å« ¼ºÀå °¡´É¼ºÀ» º¸¿©ÁÖ°í ÀÖÀ¸¸ç, 2050³â±îÁö ±â°¡Åæ ±Ô¸ðÀÇ Á¦°Å ´É·ÂÀÌ ÇÊ¿äÇÒ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. ÀÌ ±Ô¸ð¸¦ ´Þ¼ºÇÏ·Á¸é ±â¼ú °³¹ß, ÀÎÇÁ¶ó ÅõÀÚ, Áö¿ø Á¤Ã¥ Ʋ¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ³ë·ÂÀÌ ÇÊ¿äÇÕ´Ï´Ù. Áö¼Ó °¡´ÉÇÑ ½ÃÀå ¼ºÀåÀ» À§Çؼ´Â º¸´Ù ±¤¹üÀ§ÇÑ ±âÈÄ ¿ÏÈ È°µ¿°úÀÇ ÅëÇÕ°ú ȯ°æ ¿µÇâ¿¡ ´ëÇÑ ½ÅÁßÇÑ °í·Á°¡ ÇʼöÀûÀÔ´Ï´Ù.
º» º¸°í¼´Â ¼¼°èÀÇ ÀÌ»êÈź¼Ò Á¦°Å(CDR) ½ÃÀå¿¡ ´ëÇÑ Á¶»ç ºÐ¼®À» ÅëÇØ 2045³â±îÁö ±â¼ú, ½ÃÀå µ¿Çâ, ¼ºÀå ±âȸ¿¡ ´ëÇÑ »ó¼¼ÇÑ °íÂûÀ» Á¦°øÇÕ´Ï´Ù.
¸ñÂ÷
Á¦1Àå ÁÖ¿ä ¿ä¾à
- ÀÌ»êÈź¼Ò ¹èÃâÀÇ ÁÖ¿ä ¹ß»ý¿ø
- »óǰÀ¸·Î¼ÀÇ CO2
- ź¼Ò ½ÃÀåÀÇ ¿ª»ç¿Í ÁøÈ
- ±âÈÄ ¸ñÇ¥ ´Þ¼º
- CDR ±â¼úÀÇ °æ°¨ ºñ¿ë
- ½ÃÀå ¸Ê
- ÀÚ¹ßÀû ź¼Ò ½ÃÀåÀÇ CDR
- CDR ÅõÀÚ
- ÀÌ»êÈź¼Ò Á¦°Å(CDR)¿Í ź¼Ò ȸ¼ö¡¤À̿롤Àú·ù(CCUS)
- ½ÃÀå ±Ô¸ð
Á¦2Àå ¼·Ð
- À°»ó¿¡¼ÀÇ Á¾·¡ÀÇ CDR
- ÁÖ¿ä CDR ¹æ¹ý
- »õ·Î¿î CDR ¹æ¹ý
- ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
- ¹ë·ùüÀÎ
- ÀÌ»êÈź¼Ò Á¦°Å ±â¼úÀÇ Àü°³
Á¦3Àå ź¼Ò¹èÃâ±Ç
- °³¿ä
- ź¼Ò °¡°Ý
- ź¼Ò Á¦°Å vs. ź¼Ò ȸÇÇ »ó¼â
- ź¼Ò¹èÃâ±Ç ÀÎÁõ
- ź¼Ò µî·ÏºÎ
- ź¼Ò¹èÃâ±ÇÀÇ Ç°Áú
- ÀÚ¹ßÀû ź¼Ò¹èÃâ±Ç
- ÄÄÇöóÀ̾𽺠ź¼Ò¹èÃâ±Ç
- ³»±¸¼º ÀÖ´Â ÀÌ»êÈź¼Ò Á¦°Å(CDR) Å©·¹µ÷
- ±â¾÷ÀÇ Çå½Å
- Á¤ºÎ Áö¿ø°ú ±ÔÁ¦ °È
- ź¼Ò »ó¼â ÇÁ·ÎÁ§Æ®ÀÇ °ËÁõ°ú ¸ð´ÏÅ͸µÀÇ Áøº¸
- ź¼Ò¹èÃâ±Ç °Å·¡¿¡¼ ºí·ÏüÀÎ ±â¼úÀÇ °¡´É¼º
- ź¼Ò ¹èÃâ±ÇÀÇ ¸Å¸Å
- ÀÎÁõ
- °úÁ¦¿Í À§Çè
- ½ÃÀå ±Ô¸ð
Á¦4Àå ź¼Ò Á¦°Å¡¤ÀúÀå ±â´ÉÀ» °®Ãá ¹ÙÀÌ¿À¸Å½º(BICRS)
- ¿ø·á
- BiCRS º¯È¯ °æ·Î
- ź¼Ò Æ÷Áý¡¤ÀúÀåÀ» ÅëÇÑ ¹ÙÀÌ¿À¿¡³ÊÁö(BECCS)
- BIOCHAR
- BECCS¿Í BIOCHAR¸¦ ³ÑÀº Á¢±Ù
Á¦5Àå Á÷Á¢ °ø±â Æ÷Áý¡¤ÀúÀå(DACCS)
- °³¿ä
- Àü°³
- Æ÷ÀÎÆ® ¼Ò½º ź¼Ò Æ÷Áý°ú Á÷Á¢ °ø±â Æ÷Áý ºñ±³
- DAC ¹× ±âŸ ¿¡³ÊÁö¿ø
- Àü°³¿Í ±Ô¸ð È®´ë
- ºñ¿ë
- 񃬣
- DAC Ç÷£Æ® ¹× ÇÁ·ÎÁ§Æ® - ÇöÀç ¹× °èȹ Áß
- DAC ½ÃÀå
- ºñ¿ë ºÐ¼®
- °úÁ¦
- SWOT ºÐ¼®
- ±â¾÷°ú »ý»ê
Á¦6Àå ±¤¹°È ±â¹Ý CDR
- °³¿ä
- CO2 À¯·¡ ÄÜÅ©¸®Æ®¿¡ ÀúÀå
- »êȹ° ·çÇÎ
- Ç³È ÃËÁø
- ºñ¿ë ºÐ¼®
- SWOT ºÐ¼®
Á¦7Àå ½Ä¸²/Àç½Ä¸²
- °³¿ä
- ÀÌ»êÈź¼Ò Á¦°Å ¹æ¹ý
- 񃬣
- µ¿Çâ°ú ±âȸ
- °úÁ¦¿Í À§Çè
- SWOT ºÐ¼®
Á¦8Àå Åä¾ç ź¼Ò °Ý¸®(SCS)
- °³¿ä
- ½Çõ
- ÃøÁ¤ ¹× °ËÁõ
- ±â¾÷
- µ¿Çâ°ú ±âȸ
- ź¼Ò¹èÃâ±Ç
- °úÁ¦¿Í À§Çè
- SWOT ºÐ¼®
Á¦9Àå ÇØ¾ç ±â¹Ý ÀÌ»êÈź¼Ò Á¦°Å
- °³¿ä
- ÇØ¼ö·ÎºÎÅÍÀÇ CO2 Æ÷Áý
- ÇØ¾ç ºñ¿ÁÈ
- ÇØ¾ç ¾ËÄ®¸®È
- ¸ð´ÏÅ͸µ, º¸°í, °ËÁõ(MRV)
- ÇØ¾ç ±â¹Ý CDR ź¼Ò¹èÃâ±Ç
- µ¿Çâ°ú ±âȸ
- ÇØ¾ç ±â¹Ý ź¼Ò¹èÃâ±Ç
- ºñ¿ë ºÐ¼®
- °úÁ¦¿Í À§Çè
- SWOT ºÐ¼®
- ±â¾÷
Á¦10Àå ±â¾÷ ÇÁ·ÎÆÄÀÏ(±â¾÷ 143»çÀÇ ÇÁ·ÎÆÄÀÏ)
Á¦11Àå ¾à¾î
Á¦12Àå Á¶»ç ¹æ¹ý
Á¦13Àå Âü°í¹®Çå
KTH
The global carbon dioxide removal (CDR) market is experiencing rapid growth driven by increasing corporate commitments to net-zero targets and growing recognition of the need for negative emissions technologies. Current market size is estimated at approximately $2 billion, with projections suggesting expansion to $50 billion by 2030 and potentially exceeding $250 billion by 2035.
The market encompasses various technologies, with direct air capture (DAC), bioenergy with carbon capture and storage (BECCS), and enhanced weathering representing the leading engineered approaches. Natural solutions including afforestation, soil carbon sequestration, and ocean-based methods complement these technological approaches. Direct air capture, while currently small in scale, is attracting significant investment and corporate interest, with costs ranging from $200-900 per ton CO2 removed depending on technology and scale.
Technology development is advancing rapidly across multiple fronts. Direct air capture companies are scaling operations and reducing costs through improved designs and operational experience. Enhanced weathering projects are moving from research to commercial demonstration, while BECCS facilities are expanding in scale and efficiency. Novel approaches including bio-oil sequestration and mineralization technologies are emerging from research phases. Market growth is supported by increasing corporate demand for high-quality carbon removal credits, particularly from technology companies and financial institutions. Advanced market commitments and long-term purchase agreements are providing crucial revenue certainty for project developers. Government support through programs like the US 45Q tax credit and European Union innovation funding is improving project economics.
The voluntary carbon market is evolving to differentiate carbon removal credits from traditional avoidance credits, with removal credits commanding premium prices. Market infrastructure development includes new trading platforms, improved verification methodologies, and specialized financial products. Integration with existing carbon markets and development of standardized protocols are supporting market maturity.
Future market prospects are strong, driven by increasing recognition of the need for carbon dioxide removal to meet climate goals. Technological advancement and scaling effects are expected to reduce costs significantly, potentially reaching $100-200 per ton for some approaches by 2035. Market growth faces challenges including high current costs, infrastructure requirements, and regulatory uncertainty.
Key trends shaping future development include integration of multiple CDR approaches, development of regional removal hubs, and increasing focus on permanence and verification. The market is likely to see consolidation among technology providers while maintaining diversity in removal approaches. Success requires parallel development of supporting infrastructure, particularly CO2 transport and storage networks.
Policy support is expected to strengthen globally, with carbon pricing mechanisms and regulatory frameworks evolving to support CDR deployment. International cooperation on standards and protocols could accelerate market development while ensuring environmental integrity. The sector is attracting increasing investment from both venture capital and strategic industrial players, supporting continued innovation and scaling.
The market outlook suggests significant growth potential, with estimates indicating the need for gigatonne-scale removal capacity by 2050. Achievement of this scale requires sustained commitment to technology development, infrastructure investment, and supportive policy frameworks. Integration with broader climate mitigation efforts and careful consideration of environmental impacts will be crucial for sustainable market growth.
"The Global Carbon Dioxide Removal (CDR) Market 2025-2045" provides detailed insights into technologies, market trends, and growth opportunities through 2045. The report examines the transformation from conventional carbon reduction approaches to active carbon removal solutions, offering crucial market forecasts and competitive intelligence across all major CDR technologies and approaches. The study provides extensive coverage of key technologies including Direct Air Capture (DAC), Bioenergy with Carbon Capture and Storage (BECCS), Enhanced Weathering, Ocean-based CDR, and nature-based solutions. It analyzes major application areas, market drivers, and deployment challenges while offering detailed market forecasts from 2025-2045 segmented by technology and geography.
Key features include:
- Comprehensive analysis of carbon credit markets and pricing mechanisms
- Detailed technology assessments and commercialization roadmaps
- In-depth coverage of over 140 companies shaping the industry. Companies profiled include 3R-BioPhosphate, 44.01, 8Rivers, AirCapture, Air Liquide, Air Quality Solutions, AspiraDAC, Avnos, Banyu Carbon, BC Biocarbon, Biochar Now, Bio-Logica Carbon, Biomacon, Biosorra, Blusink, Brineworks, Calcin8 Technologies, Cambridge Carbon Capture, Capchar, Captura Corporation, Captur Tower, Capture6, Carba, Carbon Blade, Carbon Blue, Carbon CANTONNE, Carbon Capture Inc., Carbon Clean, Carbon Collect, CarbonCure Technologies, CarbonFree, CarbonQuest, CarbonStar Systems, Carbon Engineering, Carbon Reform, CarbonZero, Carbyon, Charm Industrial, Chiyoda Corporation, Clairity Technology, Climeworks, CO280, CO2CirculAir, Cool Planet Energy, CREW Carbon, C-Quester, Cquestr8, Decarbontek, Deep Sky, Drax, Ebb Carbon, EcoCera, EcoLocked, Eion Carbon, E-Quester, Equatic, Equinor, Freres Biochar, Funga, GigaBlue, Graphyte, Grassroots Biochar, GreenCap Solutions, Green Sequest, Greenlyte Carbon Technologies, Gulf Coast Sequestration, Heimdal CCU, Heirloom Carbon Technologies, High Hopes Labs, Holy Grail, Hydrocell, Hyvegeo, Infinitree, InnoSepra, Inplanet, InterEarth, ION Clean Energy, Kawasaki Heavy Industries, Levidian Nanosystems, Limenet, Lithos Carbon, Mantel Capture, Mercurius Biorefining, Minera Systems, Mission Zero Technologies, MOFWORX, Mosaic Materials, Myno Carbon, NEG8 Carbon, NeoCarbon, NetZero, Neustark, Nevel, Novocarbo, novoMOF, Noya, Nuada Carbon Capture, Occidental Petroleum, OCOchem, Octavia Carbon, Onnu, Parallel Carbon and more.
- Analysis of policy frameworks and regulatory environments
- Environmental impact and sustainability considerations
- Strategic insights into market opportunities and challenges
- Regional market analysis covering major global regions
- Detailed cost analysis and economic viability assessments
The report provides particular focus on emerging technologies and innovative approaches, including mineralization-based CDR, soil carbon sequestration, and hybrid solutions. It examines the crucial role of carbon markets, pricing mechanisms, and verification systems in driving industry growth.
Extended coverage includes:
- Technology readiness levels across all CDR approaches
- Supply chain analysis and value chain optimization
- Investment trends and funding analysis
- Corporate commitments and market drivers
- Infrastructure requirements and deployment challenges
- Environmental impact assessments
- Policy and regulatory frameworks
TABLE OF CONTENTS
1. EXECUTIVE SUMMARY
- 1.1. Main sources of carbon dioxide emissions
- 1.2. CO2 as a commodity
- 1.3. History and evolution of carbon markets
- 1.4. Meeting climate targets
- 1.5. Mitigation costs of CDR technologies
- 1.6. Market map
- 1.7. CDR in voluntary carbon markets
- 1.8. CDR investments
- 1.9. Carbon Dioxide Removal (CDR) and Carbon Capture, Utilization, and Storage (CCUS)
- 1.10. Market size
- 1.10.1. Carbon dioxide removal capacity by technology
- 1.10.2. DACCS Carbon Removal
- 1.10.3. BECCS Carbon Removal
- 1.10.4. Biochar and Biomass Burial Carbon Removal
- 1.10.5. Mineralization Carbon Removal
- 1.10.6. Ocean-based Carbon Removal
2. INTRODUCTION
- 2.1. Conventional CDR on land
- 2.1.1. Wetland and peatland restoration
- 2.1.2. Cropland, grassland, and agroforestry
- 2.2. Main CDR methods
- 2.3. Novel CDR methods
- 2.4. Market drivers
- 2.5. Value chain
- 2.6. Deployment of carbon dioxide removal technologies
3. CARBON CREDITS
- 3.1. Description
- 3.2. Carbon pricing
- 3.3. Carbon Removal vs Carbon Avoidance Offsetting
- 3.4. Carbon credit certification
- 3.5. Carbon registries
- 3.6. Carbon credit quality
- 3.7. Voluntary Carbon Credits
- 3.7.1. Definition
- 3.7.2. Purchasing
- 3.7.3. Market players
- 3.7.4. Pricing
- 3.8. Compliance Carbon Credits
- 3.8.1. Definition
- 3.8.2. Market players
- 3.8.3. Pricing
- 3.9. Durable carbon dioxide removal (CDR) credits
- 3.10. Corporate commitments
- 3.11. Increasing government support and regulations
- 3.12. Advancements in carbon offset project verification and monitoring
- 3.13. Potential for blockchain technology in carbon credit trading
- 3.14. Buying and Selling Carbon Credits
- 3.14.1. Carbon credit exchanges and trading platforms
- 3.14.2. Over-the-counter (OTC) transactions
- 3.14.3. Pricing mechanisms and factors affecting carbon credit prices
- 3.15. Certification
- 3.16. Challenges and risks
- 3.17. Market size
4. BIOMASS WITH CARBON REMOVAL AND STORAGE (BICRS)
- 4.1. Feedstocks
- 4.2. BiCRS Conversion Pathways
- 4.3. Bioenergy with carbon capture and storage (BECCS)
- 4.3.1. Biomass conversion
- 4.3.2. CO2 capture technologies
- 4.3.3. BECCS facilities
- 4.3.4. Cost analysis
- 4.3.5. BECCS carbon credits
- 4.3.6. Challenges
- 4.4. BIOCHAR
- 4.4.1. What is biochar?
- 4.4.2. Properties of biochar
- 4.4.3. Feedstocks
- 4.4.4. Production processes
- 4.4.4.1. Sustainable production
- 4.4.4.2. Pyrolysis
- 4.4.4.3. Gasification
- 4.4.4.4. Hydrothermal carbonization (HTC)
- 4.4.4.5. Torrefaction
- 4.4.4.6. Equipment manufacturers
- 4.4.5. Biochar pricing
- 4.4.6. Biochar carbon credits
- 4.4.6.1. Overview
- 4.4.6.2. Removal and reduction credits
- 4.4.6.3. The advantage of biochar
- 4.4.6.4. Prices
- 4.4.6.5. Buyers of biochar credits
- 4.4.6.6. Competitive materials and technologies
- 4.5. Approaches beyond BECCS and biochar
- 4.5.1. Bio-oil based CDR
- 4.5.2. Integration of biomass-derived carbon into steel and concrete
- 4.5.3. Bio-based construction materials for CDR
5. DIRECT AIR CAPTURE AND STORAGE (DACCS)
- 5.1. Description
- 5.2. Deployment
- 5.3. Point source carbon capture versus Direct Air Capture
- 5.4. DAC and other Energy Sources
- 5.5. Deployment and Scale-Up
- 5.6. Costs
- 5.7. Technologies
- 5.7.1. Solid sorbents
- 5.7.2. Liquid sorbents
- 5.7.3. Liquid solvents
- 5.7.4. Airflow equipment integration
- 5.7.5. Passive Direct Air Capture (PDAC)
- 5.7.6. Direct conversion
- 5.7.7. Co-product generation
- 5.7.8. Low Temperature DAC
- 5.7.9. Regeneration methods
- 5.7.10. Commercialization and plants
- 5.7.11. Metal-organic frameworks (MOFs) in DAC
- 5.8. DAC plants and projects-current and planned
- 5.9. Markets for DAC
- 5.10. Cost analysis
- 5.11. Challenges
- 5.12. SWOT analysis
- 5.13. Players and production
6. MINERALIZATION-BASED CDR
- 6.1. Overview
- 6.2. Storage in CO2-Derived Concrete
- 6.3. Oxide Looping
- 6.4. Enhanced Weathering
- 6.4.1. Overview
- 6.4.2. Benefits
- 6.4.3. Monitoring, Reporting, and Verification (MRV)
- 6.4.4. Applications
- 6.4.5. Commercial activity and companies
- 6.4.6. Challenges and Risks
- 6.5. Cost analysis
- 6.6. SWOT analysis
7. AFFORESTATION/REFORESTATION
- 7.1. Overview
- 7.2. Carbon dioxide removal methods
- 7.2.1. Nature-based CDR
- 7.2.2. Land-based CDR
- 7.3. Technologies
- 7.3.1. Remote Sensing
- 7.3.2. Drone technology and robotics
- 7.3.3. Automated forest fire detection systems
- 7.3.4. AI/ML
- 7.3.5. Genetics
- 7.4. Trends and Opportunities
- 7.5. Challenges and Risks
- 7.6. SWOT analysis
8. SOIL CARBON SEQUESTRATION (SCS)
- 8.1. Overview
- 8.2. Practices
- 8.3. Measuring and Verifying
- 8.4. Companies
- 8.5. Trends and Opportunities
- 8.6. Carbon credits
- 8.7. Challenges and Risks
- 8.8. SWOT analysis
9. OCEAN-BASED CARBON DIOXIDE REMOVAL
- 9.1. Overview
- 9.2. CO2 capture from seawater
- 9.3. Ocean fertilisation
- 9.3.1. Biotic Methods
- 9.3.2. Coastal blue carbon ecosystems
- 9.3.3. Algal Cultivation
- 9.3.4. Artificial Upwelling
- 9.4. Ocean alkalinisation
- 9.4.1. Electrochemical ocean alkalinity enhancement
- 9.4.2. Direct Ocean Capture
- 9.4.3. Artificial Downwelling
- 9.5. Monitoring, Reporting, and Verification (MRV)
- 9.6. Ocean-based CDR Carbon Credits
- 9.7. Trends and Opportunities
- 9.8. Ocean-based carbon credits
- 9.9. Cost analysis
- 9.10. Challenges and Risks
- 9.11. SWOT analysis
- 9.12. Companies
10. COMPANY PROFILES (143 company profiles)
11. ABBREVIATIONS
12. RESEARCH METHODOLOGY
13. REFERENCES