Global Superabsorbent Polymers (SAPs) Market 2025-2035
상품코드:1646803
리서치사:Future Markets, Inc.
발행일:2025년 02월
페이지 정보:영문 183 Pages, 128 Tables, 47 Figures
라이선스 & 가격 (부가세 별도)
한글목차
고흡수성 수지(SAP)는 액체에 대해 그 무게의 몇 배에 달하는 수분을 보유할 수 있는 뛰어난 액체 흡수 능력을 가진 특수 소재입니다. 기존에는 석유 유래 아크릴레이트 폴리머, 특히 폴리아크릴산나트륨이 주류를 이루었으나, 환경 문제에 대한 관심으로 인해 지속가능하고 생분해 가능한 대체품으로 시장이 크게 변화하고 있습니다. 세계 SAP 시장은 여전히 주로 위생 용도에 의해 주도되고 있으며, 유아용 기저귀가 가장 큰 부문을 차지하고 있습니다. 그러나 성인용 요실금 제품 및 기타 용도가 점유율을 확대함에 따라 이러한 우위는 점차 감소할 것으로 예상됩니다. 전통적인 산업 시장과 달리 SAP 수요는 주요 최종 제품이 의료에 필수적인 것으로 간주되므로 경제 사이클보다 인구 동향과 더 밀접한 상관관계가 있습니다. 시장의 중요한 촉진요인은 환경 지속가능성에 대한 관심 증가입니다. 기존의 아크릴레이트계 SAP는 우수한 흡수 특성을 가지고 있는 반면, 비생분해성 및 석유 유래라는 점에서 환경적으로 큰 문제를 안고 있습니다. 이 때문에 개질 전분, 셀룰로오스 유도체, 기타 천연 고분자 등 바이오 대체품에 대한 집중적인 연구가 진행되고 있지만, 현재 기존 SAP에 비해 성능 및 비용 측면에서 문제가 있습니다.
시장 성숙도는 지역에 따라 크게 다릅니다. 선진국 시장(북미와 서유럽)은 전통적인 용도로는 안정적인 수요를 보이고 있지만, 저출산이라는 역풍에 직면해 있습니다. 그러나 고령화로 인한 성인용 요실금 제품에 대한 수요 증가가 이를 상쇄하고 있습니다. 아시아태평양, 특히 동북아시아는 가처분 소득 증가와 개발도상국 시장으로의 제품 보급으로 인해 주요 성장 시장으로 부상하고 있습니다. SAP는 전통적인 위생 용도 외에도 다음과 같은 용도로도 점점 더 많이 사용되고 있습니다.
농업용수 관리
의료, 상처 치료
건축자재
환경복원
특수 산업 용도
연구개발은 다음과 같은 분야에 중점을 두고 있습니다.
바이오의 생분해성 대체품
성능 특성 향상
비용 효율적인 생산 방식
새로운 용도
시장이 해결해야 할 과제
환경적 지속가능성 요구사항
원자재 비용 및 가용성
성능 요건 및 생분해성
지역별 규제 차이
채택에 영향을 미치는 문화적-사회적 요인
이러한 도전에도 불구하고 세계 SAP 시장은 다음과 같은 요인에 힘입어 긍정적인 성장 전망을 유지하고 있습니다.
개발도상국 시장에서의 보급
선진국의 고령화
적용 범위 확대
지속가능한 소재의 기술 혁신
세계의 고흡수성 수지(SAP) 시장에 대해 조사 분석했으며, 주요 개발, 시장 동향, 성장 기회, 2025-2035년 상세 예측 등의 정보를 전해드립니다.
목차
제1장 서론
SAP의 특징
분류
고흡수성 재료의 유형
작동 원리 및 메커니즘
주요 성능 지표
제조 프로세스
밸류체인 분석
규제 상황
제2장 고흡수성 수지 유형
합성 고흡수성 수지
천연, 바이오 기반 고흡수성 물질
복합 고흡수성 재료
신재료
제3장 제조와 생산
생산 방식
원재료
생산능력
제조 비용
품질관리와 테스트
제4장 시장과 용도
퍼스널 위생 제품
농업 용도
의료
산업 용도
신규 용도
제5장 시장 분석
세계 시장 규모와 성장
시장의 현황
시장 예측(2024-2035년)
지역 시장
북미
유럽
아시아태평양
라틴아메리카
중동 및 아프리카
시장 촉진요인과 동향
시장이 해결해야 할 과제
제6장 지속가능성과 환경에 대한 영향
환경상 우려
지속가능솔루션
규제 준수
제7장 공급망과 유통
원재료 공급
생산과 제조
유통 채널
최종사용자 시장
공급망의 과제
제8장 기업 개요(28사의 기업 개요)
제9장 부록
제10장 참고 문헌
KSA
영문 목차
영문목차
Superabsorbent polymers (SAPs) are specialized materials with remarkable liquid absorption capabilities, able to retain many times their weight in fluids. While traditionally dominated by petroleum-based acrylate polymers, particularly sodium polyacrylate, the market is experiencing a significant shift toward sustainable and biodegradable alternatives in response to environmental concerns. The global SAP market remains primarily driven by hygiene applications, with baby diapers representing the largest segment. However, this dominance is expected to gradually decrease as adult incontinence products and other applications gain market share. Unlike traditional industrial markets, SAP demand correlates more strongly with demographic trends than economic cycles, as the primary end products are considered essential healthcare items. A critical market driver is the increasing focus on environmental sustainability. Traditional acrylate-based SAPs, while offering superior absorption properties, present significant environmental challenges due to their non-biodegradable nature and petroleum-based origins. This has spurred intensive research into bio-based alternatives, including modified starches, cellulose derivatives, and other natural polymers, though these currently face performance and cost challenges compared to conventional SAPs.
Market maturity varies significantly by region. Developed markets (North America and Western Europe) show stable demand in traditional applications but face headwinds from declining birth rates. However, this is offset by growing demand for adult incontinence products due to aging populations. Asia Pacific, particularly Northeast Asia, represents the primary growth market, driven by rising disposable incomes and increasing product penetration in developing countries. Beyond traditional hygiene applications, SAPs find increasing use in:
Agricultural water management
Medical and wound care
Construction materials
Environmental remediation
Specialty industrial applications
Research and development efforts focus on:
Bio-based and biodegradable alternatives
Enhanced performance characteristics
Cost-effective production methods
Novel application areas
Market Challenges include:
Environmental sustainability requirements
Raw material cost and availability
Performance requirements vs. biodegradability
Regional regulatory variations
Cultural and social factors affecting adoption
Despite these challenges, the global SAP market maintains positive growth prospects, supported by:
Increasing penetration in developing markets
Aging populations in developed regions
Expanding application scope
Technological innovations in sustainable materials
The industry faces a critical transition period as it balances performance requirements with environmental sustainability, driving innovation in both materials and applications. This evolution presents both challenges and opportunities for market participants across the value chain.
"Global Superabsorbent Polymers (SAPs) Market 2025-2035" provides an in-depth analysis of the global superabsorbent polymers (SAPs) sector, covering key developments, market trends, growth opportunities, and detailed forecasts from 2025 to 2035. The study examines the entire value chain, from raw materials to end-user applications, with particular focus on emerging sustainable solutions and technological innovations.
Key Features of the Report:
Comprehensive analysis of various SAP types, including synthetic, natural, and bio-based materials
Detailed examination of manufacturing processes and production technologies
In-depth market size analysis with forecasts to 2035 (in both revenue and volume terms)
Regional market analysis covering North America, Europe, Asia Pacific, Latin America, and Middle East & Africa
Evaluation of key application sectors and emerging opportunities
Assessment of sustainability challenges and environmental impacts
Detailed company profiles of major market players and innovators. Companies profiled include BASF, Asahi Kasei Corporation, Chuetsu Pulp & Paper Co., Ltd., Daio Paper Corporation, Ecovia Biopolymers, EF Polymer, ICI, Formosa Plastics Corporation, Jiangtian Chemical, Kao Corporation, Nagase, Nippon Shokubai, Qingdao Soco New Materials Co., Ltd., Sanyo Chemical, Sumitomo Seika, Yixing Danson Technology, and ZymoChem.
The report provides detailed analysis across major SAP categories:
Synthetic Superabsorbent Polymers:
Sodium polyacrylate
Polyacrylamide copolymers
Polyvinyl alcohol copolymers
Other synthetic variants
Natural and Bio-based Superabsorbents:
Modified starches
Cellulose-based materials
Chitosan derivatives
Alginate compounds
Plant-based superabsorbents
Protein-based SAPs
Composite Superabsorbent Materials:
Clay-polymer composites
Nanocellulose composites
Graphene-based composites
Detailed market assessment is provided across key application sectors:
Personal Hygiene Products:
Baby diapers
Adult incontinence products
Feminine hygiene products
Agricultural Applications:
Water retention in soils
Controlled release fertilizers
Seed coating
Medical and Healthcare:
Wound dressings
Drug delivery systems
Medical devices
Industrial Applications:
Cable water blocking
Construction materials
Packaging
Oil spill treatment
Emerging Applications:
Smart textiles
Environmental remediation
Energy storage
Food packaging
TABLE OF CONTENTS
1. INTRODUCTION
1.1. Characteristics of SAPs
1.2. Classification
1.3. Types of superabsorbent materials
1.3.1. Non-biodegradable, fossil-based SAPs
1.3.2. Biodegradable, fossil-based SAPs
1.4. Working principles and mechanisms
1.4.1. Cross-linking agents
1.4.2. Water absorbing mechanism of SAPs
1.5. Key performance metrics
1.6. Manufacturing processes
1.7. Value chain analysis
1.8. Regulatory landscape
2. TYPES OF SUPERABSORBENT POLYMERS
2.1. Synthetic Superabsorbent Polymers
2.1.1. Sodium polyacrylate
2.1.1.1. Chemical structure and properties
2.1.1.2. Synthesis methods
2.1.1.3. Absorption mechanisms
2.1.1.4. Performance characteristics
2.1.1.5. Commercial grades and specifications
2.1.1.6. Market applications
2.1.2. Polyacrylamide copolymers
2.1.2.1. Types and compositions
2.1.2.2. Cross-linking mechanisms
2.1.2.3. Synthesis routes
2.1.2.4. Performance metrics
2.1.2.5. Application-specific grades
2.1.2.6. Market positioning
2.1.3. Polyvinyl alcohol copolymers
2.1.3.1. Molecular structure
2.1.3.2. Manufacturing processes
2.1.3.3. Property modification techniques
2.1.3.4. Performance characteristics
2.1.3.5. Application areas
2.1.4. Other synthetic polymers
2.1.4.1. Poly(vinyl pyrrolidone)
2.1.4.2. Polyethylene oxide derivatives
2.1.4.3. Polyurethane-based materials
2.1.4.4. Novel synthetic approaches
2.1.4.4.1. Double Network Systems
2.1.4.4.2. Nanocomposite SAPs
2.1.4.4.3. Bio-based Hybrid SAPs
2.1.4.4.4. Stimuli-Responsive SAPs
2.1.4.4.5. Microporous Networks
2.1.4.4.6. Surface Modified SAPs
2.1.4.4.7. Zero-monomer SAPs
2.1.4.4.8. Reversible Cross-linking
2.1.4.4.9. Multi-functional SAPs
2.1.4.4.10. Dendrimeric SAPs
2.1.4.5. Emerging materials
2.1.4.5.1. Zwitterionic Polymers
2.1.4.5.2. Graphene-based SAPs
2.1.4.5.3. Self-healing SAPs
2.1.4.5.4. Biodegradable Synthetics
2.1.4.5.5. Thermo-responsive SAPs
2.1.4.5.6. pH-selective SAPs
2.1.4.5.7. Magnetic Responsive SAPs
2.1.4.5.8. Shape Memory SAPs
2.1.4.5.9. Photonic SAPs
2.1.4.5.10. Conductive SAPs
2.2. Natural and Bio-based Superabsorbents
2.2.1. Modified starches
2.2.1.1. Sources and types
2.2.1.2. Modification methods
2.2.1.3. Property enhancement
2.2.1.4. Performance characteristics
2.2.1.5. Environmental benefits
2.2.1.6. Cost analysis
2.2.2. Cellulose-based materials
2.2.2.1. Types of cellulose derivatives
2.2.2.2. Manufacturing processes
2.2.2.3. Cross-linking methods
2.2.2.4. Performance metrics
2.2.2.5. Environmental impact
2.2.2.6. Market applications
2.2.3. Chitosan derivatives
2.2.3.1. Source materials
2.2.3.2. Modification techniques
2.2.3.3. Property profiles
2.2.3.4. Application areas
2.2.4. Alginate compounds
2.2.4.1. Types and sources
2.2.4.2. Processing methods
2.2.4.3. Performance characteristics
2.2.4.4. Application development
2.2.4.5. Market opportunities
2.2.5. Plant-based superabsorbents
2.2.5.1. Natural sources
2.2.5.2. Extraction methods
2.2.5.3. Modification techniques
2.2.5.4. Sustainability aspects
2.2.5.5. Market potential
2.2.6. Protein-based SAPs
2.2.7. Homo poly(amino acid)-based SAPs
2.2.8. Other natural and bio-based materials
2.3. Composite Superabsorbent Materials
2.3.1. Clay-polymer composites
2.3.1.1. Types of clay minerals
2.3.1.2. Synthesis methods
2.3.1.3. Property enhancement
2.3.1.4. Performance characteristics
2.3.1.5. Cost-benefit analysis
2.3.1.6. Market applications
2.3.2. Nanocellulose composites
2.3.2.1. Types of nanocellulose
2.3.2.2. Fabrication methods
2.3.2.3. Performance metrics
2.3.2.4. Application areas
2.3.2.5. Future prospects
2.3.3. Graphene-based composites
2.3.3.1. Material types
2.3.3.2. Synthesis routes
2.3.3.3. Property enhancement
2.3.3.4. Performance characteristics
2.3.3.5. Market potential
2.3.3.6. Cost considerations
2.4. Novel and Emerging Materials
2.4.1. Smart superabsorbents
2.4.1.1. Response mechanisms
2.4.1.2. Types and categories
2.4.1.3. Performance characteristics
2.4.1.4. Application development
2.4.1.5. Market potential
2.4.2. Stimuli-responsive materials
2.4.2.1. Response types
2.4.2.2. Design principles
2.4.2.3. Performance metrics
2.4.2.4. Application areas
2.4.3. Biodegradable synthetics
2.4.3.1. Material types
2.4.3.2. Degradation mechanisms
2.4.3.3. Performance characteristics
2.4.3.4. Environmental impact
2.4.3.5. Market opportunities
3. MANUFACTURING AND PRODUCTION
3.1. Production Methods
3.1.1. Solution polymerization
3.1.1.1. Process parameters and controls
3.1.1.2. Equipment requirements
3.1.1.3. Batch vs continuous processing
3.1.1.4. Yield optimization
3.1.1.5. Quality control points
3.1.1.6. Energy consumption
3.1.1.7. Cost analysis
3.1.2. Suspension polymerization
3.1.2.1. Process conditions
3.1.2.2. Stabilizer systems
3.1.2.3. Particle size control
3.1.2.4. Equipment specifications
3.1.2.5. Process optimization
3.1.2.6. Production rates
3.1.2.7. Cost considerations
3.1.3. Bulk polymerization
3.1.3.1. Process variables
3.1.3.2. Heat management
3.1.3.3. Conversion rates
3.1.3.4. Equipment needs
3.1.3.5. Scale-up considerations
3.1.3.6. Production efficiency
3.1.3.7. Economic analysis
3.1.4. Grafting methods
3.1.4.1. Substrate preparation
3.1.4.2. Process controls
3.1.4.3. Equipment requirements
3.1.4.4. Yield optimization
3.1.4.5. Cost factors
3.2. Raw Materials
3.2.1. Monomers and crosslinkers
3.2.1.1. Types and specifications
3.2.1.2. Quality requirements
3.2.1.3. Cost trends
3.2.1.4. Environmental considerations
3.2.2. Initiators and catalysts
3.2.2.1. Types and selection criteria
3.2.2.2. Performance impact
3.2.2.3. Cost analysis
3.2.3. Natural raw materials
3.2.3.1. Sources and availability
3.2.3.2. Processing requirements
3.2.3.3. Quality variations
3.2.3.4. Cost implications
3.3. Production Capacities
3.4. Manufacturing Costs
3.5. Quality Control and Testing
4. MARKETS AND APPLICATIONS
4.1. Personal Hygiene Products
4.1.1. Baby diapers
4.1.1.1. Product requirements
4.1.1.2. Material specifications
4.1.1.3. Market size by region
4.1.1.4. Growth drivers
4.1.1.5. Technology trends
4.1.1.6. Cost analysis
4.1.2. Adult incontinence products
4.1.2.1. Regional demand
4.1.2.2. Growth factors
4.1.2.3. Manufacturing considerations
4.1.2.4. Market opportunities
4.1.3. Feminine hygiene products
4.1.3.1. Product categories
4.1.3.2. Material requirements
4.1.3.3. Market dynamics
4.1.3.4. Growth trends
4.1.3.5. Future outlook
4.1.4. Market size (2020-2035)
4.2. Agricultural Applications
4.2.1. Water retention in soils
4.2.1.1. Application methods
4.2.1.2. Performance metrics
4.2.1.3. Cost-benefit analysis
4.2.1.4. Market adoption
4.2.2. Controlled release fertilizers
4.2.3. Seed coating
4.2.4. Market trends
4.2.5. Market size (2020-2025)
4.3. Medical and Healthcare
4.3.1. Wound dressings
4.3.2. Drug delivery systems
4.3.3. Medical devices
4.3.4. Tissue Engineering
4.3.5. Market dynamics
4.3.6. Regulatory considerations
4.3.7. Market size (2020-2025)
4.4. Industrial Applications
4.4.1. Cable water blocking
4.4.2. Construction materials
4.4.2.1. Fiber concrete
4.4.3. Packaging
4.4.4. Water treatment
4.4.5. Oil spill treatment
4.4.6. Market size (2020-2025)
4.5. Emerging Applications
4.5.1. Smart textiles
4.5.2. Environmental remediation
4.5.3. Energy storage
4.5.4. Food packaging
4.5.5. Future prospects
5. MARKET ANALYSIS
5.1. Global Market Size and Growth
5.1.1. Current market status
5.1.2. Market forecasts 2024-2035
5.1.2.1. Revenues
5.1.2.2. Metric tons
5.2. Regional Markets
5.2.1. North America
5.2.2. Europe
5.2.3. Asia Pacific
5.2.4. Latin America
5.2.5. Middle East and Africa
5.3. Market Drivers and Trends
5.4. Market Challenges
6. SUSTAINABILITY AND ENVIRONMENTAL IMPACT
6.1. Environmental Concerns
6.1.1. Biodegradability
6.1.2. Microplastic issues
6.1.3. Waste management
6.2. Sustainable Solutions
6.2.1. Bio-based alternatives
6.2.2. Recycling technologies
6.2.3. Circular economy approaches
6.3. Regulatory Compliance
6.3.1. Medical and Healthcare Applications
6.3.2. Food Packaging and Agricultural Use
6.3.3. Environmental and Waste Management Compliance