ÁÖ¿ä ¿ä¾à
mRNA ¹é½ÅÀº ¸Þ½ÅÀú RNA(mRNA)¸¦ ÀÌ¿ëÇÏ¿© ü³» ¼¼Æ÷¿¡ ¸é¿ª¹ÝÀÀÀ» ÀÏÀ¸Å°´Â ´Ü¹éÁú »ý»êÀ» Áö½ÃÇÏ´Â ¹é½ÅÀÔ´Ï´Ù. ¾àµ¶È ¶Ç´Â ºñȰ¼ºÈ ¹ÙÀÌ·¯½º¸¦ »ç¿ëÇÏ´Â ±âÁ¸ ¹é½Å°ú ´Þ¸®, mRNA ¹é½Å¿¡´Â ÇÕ¼º À¯Àü¹°ÁúÀÌ Æ÷ÇԵǾî ÀÖ¾î ü³» ¼¼Æ÷°¡ ¹ÙÀÌ·¯½ºÀÇ ÀϺÎ(º¸Åë ¹ÙÀÌ·¯½º Ç¥¸é¿¡¼ ¹ß°ßµÇ´Â ½ºÆÄÀÌÅ© ´Ü¹éÁú)¸¦ »ý»êÇϵµ·Ï Áö½ÃÇÏ´Â ÁöħÀ» Àü´ÞÇÕ´Ï´Ù. ¹é½Å ºÐ¾ßÀÇ È¹±âÀûÀÎ ±â¼úÀ̸ç, º¸´Ù ºü¸¥ Á¦Á¶, À¯¿¬¼º, ±¤¹üÀ§ÇÑ Áúº´À» ´ë»óÀ¸·Î ÇÏ´Â ´É·ÂÀ» Á¦°øÇÕ´Ï´Ù.
Äڷγª19 ÆÒµ¥¹ÍÀº mRNA ¹é½ÅÀÇ ÀåÁ¡À» ºÎ°¢½ÃÄ×°í, ÈÀÌÀÚ ¹ÙÀÌ¿À¾ØÅ×Å© ¹é½Å°ú ¸ð´õ³ª ¹é½ÅÀÌ ±â·ÏÀûÀÎ ¼Óµµ·Î °³¹ßµÇ¾ú½À´Ï´Ù. µÎ ¹é½Å ¸ðµÎ 2020³â ÃÊ ¹ÙÀÌ·¯½ºÀÇ ¿°±â¼¿ÀÌ ÇØµ¶µÈ ÈÄ ¸î ´Þ ¸¸¿¡ ¼³°è ¹× ½ÃÇèÀÌ ½ÃÀ۵Ǿú°í, ±× Á÷ÈÄ ÀÓ»ó½ÃÇèÀÌ ½ÃÀ۵Ǿú½À´Ï´Ù. ÀÌ·¯ÇÑ ½Å¼ÓÇÑ ´ëÀÀÀº ÆÒµ¥¹ÍÀ» Á¦¾ÐÇÏ´Â µ¥ ÇʼöÀûÀ̾ú½À´Ï´Ù. ¹é½ÅÀº ³ôÀº ¼öÁØÀÇ Ç×ü¸¦ »ý¼ºÇÒ »Ó¸¸ ¾Æ´Ï¶ó Àå±âÀûÀÎ ¸é¿ª¿¡ Áß¿äÇÑ °·ÂÇÑ T ¼¼Æ÷ ¹ÝÀÀÀ» ÀÏÀ¸Ä×½À´Ï´Ù.
Moderna¿Í °°Àº ÁÖ¿ä ±â¾÷µéÀº Äڷγª19¿Í µ¶°¨À» ¸ðµÎ Ç¥ÀûÀ¸·Î Çϴ ȥÇÕ ¹é½ÅÀ» °³¹ßÇϰí ÀÖÀ¸¸ç, ÇöÀç 3»ó ÀÓ»ó½ÃÇèÀ» ÁøÇà ÁßÀÔ´Ï´Ù. ÀÌ È¸»çÀÇ 2»ó ÆÄÀÌÇÁ¶óÀο¡´Â µ¶°¨ ¹× È£Èí±â¼¼Æ÷À¶ÇÕ¹ÙÀÌ·¯½º(RSV) Èĺ¸¹°ÁúÀÌ Æ÷ÇԵǾî ÀÖ¾î ¼¼±Õ¼º º´¿øÃ¼ ¹é½ÅÀ¸·Î ´«¿¡ ¶ç°Ô È®ÀåµÈ ¸ð½ÀÀ» º¸¿©ÁÖ°í ÀÖ½À´Ï´Ù. ¶Ç ´Ù¸¥ ÁÖ¿ä ±â¾÷ÀÎ ¹ÙÀÌ¿À¿£ÅØÀº mRNA ±â¼úÀ» Ȱ¿ëÇÏ¿© ¸ÂÃãÇü ¾Ï ¹é½ÅÀ» °³¹ßÇϰí ÀÖ½À´Ï´Ù. ÀÌ È¸»ç´Â 2030³â±îÁö mRNA ±â¹Ý Ä¡·á¿ë ¾Ï ¹é½ÅÀÌ ½ÂÀ뵃 ¼ö ÀÖÀ» °ÍÀ¸·Î ¿¹»óÇϰí ÀÖÀ¸¸ç, 2026³â ù ¹øÂ° ¾Ï Ä¡·áÁ¦¸¦ Ãâ½ÃÇÒ °èȹÀÔ´Ï´Ù.
ÁÖ¿ä ±â¾÷ ¸ñ·Ï
mRNA ¹é½Å ÆÄÀÌÇÁ¶óÀÎÀÇ ÁÖ¿ä ¾÷ü´Â ´ÙÀ½°ú °°½À´Ï´Ù.
mRNA-1283: mRNA-1283Àº ModernaÀÇ Â÷¼¼´ë Äڷγª19 ¹é½ÅÀ¸·Î, ÀÓ»ó 3»ó ½ÃÇè¿¡¼ ÁÖ¿ä Æò°¡Ç׸ñÀ» ´Þ¼ºÇϰí SARS-CoV-2¿¡ ´ëÇÑ ³ôÀº ¸é¿ª¹ÝÀÀÀ» º¸¿´½À´Ï´Ù.
BNT111: BNT111Àº ¸é¿ª¿ø¼º¿¡ ÃÖÀûÈµÈ 4°³ÀÇ ¾Ï ƯÀÌÀû Ç׿ø °íÁ¤ ¼¼Æ®¸¦ ¾ÏÈ£ÈÇϰí, RNA-¸®Æ÷Ç÷º½º Á¦ÇüÀ¸·Î Àü´ÞµÇ´Â Á¤¸ÆÁÖ»ç ¾Ï ¸é¿ªÄ¡·áÁ¦ Èĺ¸¹°Áú·Î, ½Å±Ô Ç׿ø ƯÀÌÀû Ç×Á¾¾ç ¸é¿ª¹ÝÀÀÀ» À¯µµÇϰí, ÇÇºÎ Èæ»öÁ¾ÀÇ 90% À̻󿡼 ¹ßÇöµÇ´Â Ç׿ø¿¡ ´ëÇÑ ±âÁ¸ ¸é¿ª¹ÝÀÀÀ» °ÈÇÕ´Ï´Ù. BNT111Àº ¹ÙÀÌ¿À¿£ÅØÀÇ °³¹ß ÆÄÀÌÇÁ¶óÀο¡ ÀÖ´Â 4°³ÀÇ ÀÓ»ó´Ü°è FixVac Á¦Ç° Èĺ¸¹°Áú Áß ÇϳªÀ̸ç, BNT111Àº Èæ»öÁ¾ °ü·Ã Ç׿ø¿¡ ´ëÇÑ ±âÁ¸ ¸é¿ª¹ÝÀÀÀ» °ÈÇÕ´Ï´Ù.
±ÔÁ¦»ó ÁöÁ¤
ÇÕº´ ¹× ÀμöÇÕº´
ÇâÈÄ Àü¸Á ¹× °á·Ð
mRNA ¹é½Å ÆÄÀÌÇÁ¶óÀÎÀÇ ¹Ì·¡´Â ±â¼úÀÇ ¹ßÀü, ºñ°¨¿°¼º Áúȯ¿¡ ´ëÇÑ Àû¿ë È®´ë, ¿¬±¸°³¹ß¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ÅõÀÚ·Î ÀÎÇØ ¸Å¿ì À¯¸ÁÇÑ °ÍÀ¸·Î º¸À̸ç, mRNA ¹é½ÅÀÇ °¡Àå Èï¹Ì·Î¿î ¹Ì·¡ ÀÀ¿ë »ç·Ê Áß Çϳª´Â ¾Ï ¸é¿ª¿ä¹ýÀÔ´Ï´Ù. °³ÀÎÀÇ Æ¯Á¤ ¾Ï µ¹¿¬º¯ÀÌ¿¡ ¸ÂÃá ¸ÂÃãÇü ¾Ï ¹é½ÅÀÌ È°¹ßÈ÷ ¿¬±¸µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹é½ÅÀº ¸é¿ªÃ¼°è¸¦ ÀÚ±ØÇÏ¿© ¾Ï¼¼Æ÷¸¦ Ç¥ÀûÀ¸·Î »ï¾Æ ÆÄ±«ÇÏ´Â °ÍÀ» ¸ñÇ¥·Î ÇÕ´Ï´Ù.
BioNTech, Moderna¿Í °°Àº °³¹ß¾÷üµéÀº Èæ»öÁ¾°ú °°Àº ¾ÏÀ» Ä¡·áÇϱâ À§ÇÑ mRNA ±â¹Ý ¹é½ÅÀ» °³¹ßÇϰí ÀÖ½À´Ï´Ù. Ãʱ⠴ܰèÀÇ ÀÓ»ó½ÃÇè¿¡¼ À¯¸ÁÇÑ °á°ú°¡ ³ª¿À°í ÀÖÀ¸¸ç, ±¤¹üÀ§ÇÑ ¾Ï¿¡ ´ëÇÑ ¹é½Å °³¹ßÀÇ °¡´É¼ºÀº Á¾¾çÇÐ ºÐ¾ß¿¡ ¸Å¿ì Å« °¡Ä¡¸¦ °¡Áö°í ÀÖ½À´Ï´Ù.
mRNA ¹é½ÅÀÇ Áß¿äÇÑ °úÁ¦ Áß Çϳª´Â mRNA¸¦ Ç¥Àû ¼¼Æ÷¿¡ È¿À²ÀûÀ¸·Î Àü´ÞÇÏ´Â °ÍÀ¸·Î, mRNA ¹é½ÅÀÇ ¾ÈÁ¤¼º, »ýü ÀÌ¿ë·ü ¹× Ç¥Àû¼ºÀ» °³¼±Çϱâ À§ÇØ Ã·´Ü ÁöÁú ³ª³ëÀÔÀÚ ¹× ±âŸ Àü´Þ ½Ã½ºÅÛ °³¹ßÀÌ ¿ì¼±ÀûÀ¸·Î ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. ÀÚ°¡ÁõÆø RNA(saRNA) ¹× ³ª³ëÀÔÀÚ ±â¹Ý ½Ã½ºÅÛ°ú °°Àº »õ·Î¿î Àü´Þ ±â¼úÀº ´õ ÀûÀº ¿ë·®À¸·Î ´õ È¿À²ÀûÀÎ ¹é½Å Àü´ÞÀ» °¡´ÉÇÏ°Ô Çϰí, ´õ °·ÂÇÑ ¸é¿ª ¹ÝÀÀÀ» °¡Á®¿Ã ¼ö ÀÖ½À´Ï´Ù.
Äڷγª19 ÆÒµ¥¹ÍÀº mRNA ¹é½ÅÀÌ »õ·Î¿î ¹ÙÀÌ·¯½º¿¡ ´ëÇØ ¾ó¸¶³ª ºü¸£°Ô °³¹ßµÇ°í ¹èÆ÷µÉ ¼ö ÀÖ´ÂÁö¸¦ º¸¿©ÁÖ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ½Å¼ÓÇÑ °³¹ß ´É·ÂÀº mRNA ¹é½ÅÀÌ ¹Ì·¡ÀÇ ÆÒµ¥¹Í¿¡ ´ëºñÇÒ ¼ö ÀÖ´Â ±ÍÁßÇÑ µµ±¸°¡ µÉ ¼ö ÀÖ½À´Ï´Ù. ±ÔÁ¦ ´ç±¹Àº ÇöÀç mRNA ¹é½ÅÀÌ »õ·Î¿î Àü¿°º´¿¡ ºü¸£°Ô ÀûÀÀÇÒ ¼ö ÀÖ´Â °¡´É¼ºÀ» ÀÎÁ¤Çϰí ÀÖÀ¸¸ç, º¸´Ù ½Å¼ÓÇÑ ½ÂÀΰú À¯ÅëÀ» À§ÇÑ ÇÁ·¹ÀÓ¿öÅ©°¡ ¸¶·ÃµÇ°í ÀÖ½À´Ï´Ù. ÀÌ´Â ÇâÈÄ ¿¡º¼¶ó, ÁöÄ«, ±âŸ ½ÅÈï º´¿øÃ¼¿Í °°Àº Áúº´ÀÌ ¹ß»ýÇßÀ» ¶§ º¸´Ù ½Å¼ÓÇÑ ¹é½Å »ý»êÀ¸·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù.
Executive Summary
mRNA vaccines use messenger RNA (mRNA) to instruct cells in the body to produce a protein that triggers an immune response. Unlike traditional vaccines that use weakened or inactivated forms of a virus, mRNA vaccines contain synthetic genetic material that carries the instructions for the body's own cells to produce a piece of the virus, typically the spike protein found on the surface of the virus. mRNA vaccines represent a groundbreaking technology in the vaccine field, offering faster production, flexibility and the ability to target a wide range of diseases.
The COVID-19 pandemic highlighted the mRNA vaccine benefit, where the Pfizer-BioNTech and Moderna vaccines were developed in record time. Both vaccines were designed and tested within months of the virus being sequenced in early 2020, with clinical trials initiated shortly after. This rapid response was crucial for controlling the pandemic. The vaccines not only generated high levels of antibodies but also triggered a strong T-cell response, which is important for long-term immunity.
Major companies like Moderna are developing a combination vaccine targeting both COVID-19 and flu, currently in Phase III trials. The company's Phase II pipeline includes candidates for flu and respiratory syncytial virus (RSV), marking a notable expansion into bacterial pathogen vaccines. BioNTech, another key player, is leveraging mRNA technology to develop personalized cancer vaccines. The company anticipates potential approval of mRNA-based therapeutic cancer vaccines by 2030, with plans to launch its first cancer therapies starting in 2026.
List of Key Companies
The major and key players in the mRNA vaccines pipeline include
mRNA-1283: mRNA-1283 is Moderna's next-generation COVID-19 vaccine, has successfully met the primary endpoints of its Phase 3 clinical trial, demonstrating a higher immune response against SARS-CoV-2.
BNT111: BNT111 is an intravenous therapeutic cancer immunotherapy candidate encoding a fixed set of four cancer-specific antigens optimized for immunogenicity and delivered as RNA-lipoplex formulation. BNT111 induces novel antigen-specific anti-tumor immune responses and enhances pre-existing immune responses against the encoded melanoma-associated antigens, which are expressed in more than 90% of cutaneous melanomas. BNT111 is one of four clinical-stage FixVac product candidates within BioNTech's development pipeline.
Regulatory Designations
Merger and Acquisitions
Future Perspectives and Conclusion
The future of the mRNA vaccines pipeline looks exceptionally promising, driven by technological advances, expanding applications beyond infectious diseases and ongoing investments in research and development. One of the most exciting future applications of mRNA vaccines is in cancer immunotherapy. Personalized cancer vaccines, which are tailored to an individual's specific cancer mutations, are being actively researched. These vaccines aim to stimulate the immune system to target and destroy cancer cells.
Companies like BioNTech and Moderna are developing mRNA-based vaccines to treat cancers like melanoma. Early-stage clinical trials have shown promise, and the potential to create vaccines for a wide range of cancers holds enormous value for the oncology field.
One of the critical challenges with mRNA vaccines is the efficient delivery of the mRNA to target cells. The development of advanced lipid nanoparticles and other delivery systems is a priority to improve the stability, bioavailability and targeting of mRNA vaccines. New delivery technologies, such as self-amplifying RNA (saRNA) or nanoparticle-based systems, could allow for more efficient vaccine delivery with fewer doses and potentially more potent immune responses.
The COVID-19 pandemic demonstrated how quickly mRNA vaccines could be developed and deployed in response to a new virus. This rapid development capacity makes mRNA vaccines a valuable tool for future pandemic preparedness. Regulatory bodies are now recognizing the potential of mRNA vaccines for rapid adaptation to new infectious diseases, and frameworks for faster approval and distribution are being set in motion. This could lead to faster vaccine production during future outbreaks of diseases like Ebola, Zika, or other emerging pathogens.