¿î¿µ ¿¹Ãø À¯Áöº¸¼ö ½ÃÀå : À¯Çüº°, Àü°³ ¸ðµ¨º°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº°
Operational Predictive Maintenance Market, By Type, By Deployment Model, By End User, By Geography
»óǰÄÚµå : 1768013
¸®¼­Ä¡»ç : Coherent Market Insights
¹ßÇàÀÏ : 2025³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹®
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,500 £Ü 6,324,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 7,000 £Ü 9,838,000
PDF (Multi User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷Àå¿¡¼­ 7¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 10,000 £Ü 14,055,000
PDF (Enterprise User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


¤± Add-on °¡´É: °í°´ÀÇ ¿äû¿¡ µû¶ó ÀÏÁ¤ÇÑ ¹üÀ§ ³»¿¡¼­ CustomizationÀÌ °¡´ÉÇÕ´Ï´Ù. ÀÚ¼¼ÇÑ »çÇ×Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Çѱ۸ñÂ÷

¿î¿µ ¿¹Ãø À¯Áöº¸¼ö ½ÃÀå 2025³â ½ÃÀå ±Ô¸ð´Â 65¾ï 2,000¸¸ ´Þ·¯, 2032³â¿¡´Â 353¾ï 2,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, 2025-2032³â ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)Àº 27.3%¸¦ ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

º¸°í¼­ ¹üÀ§ º¸°í¼­ »ó¼¼
±âÁØ ¿¬µµ 2024³â 2025³â ½ÃÀå ±Ô¸ð 65¾ï 2,000¸¸ ´Þ·¯
½ÇÀû µ¥ÀÌÅÍ 2020-2024³â ¿¹Ãø ±â°£ 2025-2032³â
¿¹Ãø ±â°£ : 2025-2032³â 27.30% 2032³â ±Ý¾× ¿¹Ãø 353¾ï 2,000¸¸ ´Þ·¯

¼¼°è ¿î¿µ ¿¹Ãø À¯Áöº¸¼ö ½ÃÀåÀº ´Ù¾çÇÑ ºÎ¹®ÀÇ ¼³ºñ ¹× ÀÚ»êÀÇ ¿î¿µ»óÀÇ °ÇÀü¼ºÀ» ´Éµ¿ÀûÀ¸·Î ¸ð´ÏÅ͸µÇϰí À¯ÁöÇÏ´Â °ÍÀ» ¸ñÀûÀ¸·Î ÇÏ´Â ±â¼ú, ¼Ö·ç¼Ç, ¼­ºñ½º Á¦°ø¿¡ ÁßÁ¡À» µÐ ½ÃÀåÀ» ÀǹÌÇÕ´Ï´Ù. ¿¹Ãøº¸ÀüÀº °í±Þ ºÐ¼®, ¸Ó½Å·¯´×, ÀΰøÁö´É(AI)À» Ȱ¿ëÇÏ¿© µ¥ÀÌÅ͸¦ ºÐ¼®Çϰí ÀáÀçÀûÀÎ ÀåºñÀÇ °íÀåÀ» »çÀü¿¡ ÆÄ¾ÇÇÕ´Ï´Ù. ¿¹Ãøº¸Àü ±â¼úÀ» Ȱ¿ëÇϸé Á¶Á÷Àº À¯Áöº¸¼ö ÀÏÁ¤À» ÃÖÀûÈ­Çϰí, °èȹµÇÁö ¾ÊÀº ´Ù¿îŸÀÓÀ» ÁÙÀ̸ç, ºñ¿ëÀÌ ¸¹ÀÌ µå´Â °íÀåÀ» ¹æÁöÇÏ¿© ¿î¿µ È¿À²¼ºÀ» ³ôÀÌ°í ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå ¿ªÇÐ

¼¼°è ¿î¿µ ¿¹Ãøº¸Àü ½ÃÀåÀº ¸î °¡Áö Áß¿äÇÑ ¿ªÇп¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ù°, »ê¾÷ Àü¹Ý¿¡ °ÉÃÄ ºñ¿ë Àý°¨°ú ¿î¿µ È¿À²È­¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϸ鼭 Á¶Á÷ÀÇ À¯Áöº¸¼ö ÀÛ¾÷À» ÃÖÀûÈ­Çϰí, ´Ù¿îŸÀÓÀ» ÁÙÀ̸ç, Àåºñ °íÀåÀ» ÃÖ¼ÒÈ­ÇÏ´Â µ¥ µµ¿òÀÌ µÇ´Â ¿¹Ãøº¸Àü ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. µÑ°, AI, ¸Ó½Å·¯´×, IoT µîÀÇ ±â¼ú ¹ßÀüÀ¸·Î º¸´Ù Á¤È®Çϰí Á¤±³ÇÑ ¿¹Ãø ºÐ¼®ÀÌ °¡´ÉÇØÁ® ¿¹Ãøº¸Àü ¸ðµ¨ÀÇ È¿À²¼ºÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. ¼Â°, ¿¹Ãøº¸Àü Àü·«ÀÇ ÀåÁ¡°ú »ó´çÇÑ ºñ¿ë Àý°¨ °¡´É¼º¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁö¸é¼­ ¿î¿µ ¿¹Ãø À¯Áöº¸¼öÀÇ Ã¤ÅÃÀÌ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù.

º» Á¶»çÀÇ ÁÖ¿ä Æ¯Â¡

¸ñÂ÷

Á¦1Àå Á¶»ç ¸ñÀû°ú ÀüÁ¦Á¶°Ç

Á¦2Àå ½ÃÀå Àü¸Á

Á¦3Àå ½ÃÀå ¿ªÇÐ, ±ÔÁ¦, µ¿Ç⠺м®

Á¦4Àå ¼¼°èÀÇ ¿î¿µ ¿¹Ãø À¯Áöº¸¼ö ½ÃÀå, À¯Çüº°, 2020-2032³â

Á¦5Àå ¼¼°èÀÇ ¿î¿µ ¿¹Ãø À¯Áöº¸¼ö ½ÃÀå, Àü°³ ¸ðµ¨º°, 2020-2032³â

Á¦6Àå ¼¼°èÀÇ ¿î¿µ ¿¹Ãø À¯Áöº¸¼ö ½ÃÀå, ÃÖÁ¾»ç¿ëÀÚº°, 2020-2032³â

Á¦7Àå ¼¼°èÀÇ ¿î¿µ ¿¹Ãø À¯Áöº¸¼ö ½ÃÀå, Áö¿ªº°, 2020-2032³â

Á¦8Àå °æÀï ±¸µµ

Á¦9Àå ¼½¼Ç

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Operational Predictive Maintenance Market is estimated to be valued at USD 6.52 Bn in 2025 and is expected to reach USD 35.32 Bn by 2032, growing at a compound annual growth rate (CAGR) of 27.3% from 2025 to 2032.

Report Coverage Report Details
Base Year: 2024 Market Size in 2025: USD 6.52 Bn
Historical Data for: 2020 To 2024 Forecast Period: 2025 To 2032
Forecast Period 2025 to 2032 CAGR: 27.30% 2032 Value Projection: USD 35.32 Bn

The global operational predictive maintenance market refers to the market that focuses on providing technologies, solutions, and services aimed at proactively monitoring and maintaining the operational health of equipment and assets in various sectors. Operational predictive maintenance utilizes advanced analytics, machine learning, and Artificial Intelligence (AI) to analyze data and identify potential equipment failures before they occur. By leveraging predictive maintenance techniques, organizations can optimize maintenance schedules, reduce unplanned downtime, and avoid costly breakdowns, leading to increased operational efficiency and cost savings.

Market Dynamics:

The global operational predictive maintenance market is driven by several key dynamics. Firstly, the growing need for cost reduction and operational efficiency across industries is fueling the demand for predictive maintenance solutions that help organizations optimize their maintenance practices, reduce downtime, and minimize equipment failures. Secondly, advancements in technology, such as AI, machine learning, and IoT, are enabling more accurate and sophisticated predictive analytics, improving the effectiveness of predictive maintenance models. Thirdly, increasing awareness of the benefits of proactive maintenance strategies and the potential for significant cost savings is driving the adoption of operational predictive maintenance.

Key features of the study:

Detailed Segmentation:

Table of Contents

1. Research Objectives and Assumptions

2. Market Purview

3. Market Dynamics, Regulations, and Trends Analysis

4. Global Operational Predictive Maintenance Market, By Type, 2020-2032, (US$ Bn)

5. Global Operational Predictive Maintenance Market, By Deployment Model, 2020-2032, (US$ Bn)

6. Global Operational Predictive Maintenance Market, By End User, 2020-2032, (US$ Bn)

7. Global Operational Predictive Maintenance Market, By Region, 2020-2032, (US$ Bn)

8. Competitive Landscape

9. Section

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â