¼¼°èÀÇ ¿¹Áöº¸Àü ½ÃÀå ±Ô¸ð Á¶»ç ¹× ¿¹Ãø : ÄÄÆ÷³ÍÆ®º°, µµÀÔ ¸ðµ¨º°, Á¶Á÷ ±Ô¸ðº°, ¾÷°èº°, Áö¿ªº° ºÐ¼®(2023-2030³â)
Global Predictive Maintenance Market Size Study & Forecast, by Component, By Deployment Model, By Organization Size, By Industry Vertical, and Regional Analysis, 2023-2030
»óǰÄÚµå : 1472086
¸®¼­Ä¡»ç : Bizwit Research & Consulting LLP
¹ßÇàÀÏ : 2024³â 04¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 200 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,950 £Ü 6,857,000
Unprintable PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠺Ұ¡´ÉÇϸç, ÅØ½ºÆ®ÀÇ Copy&Pasteµµ ºÒ°¡´ÉÇÕ´Ï´Ù.
US $ 6,250 £Ü 8,658,000
Printable PDF (Enterprise License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


¤± Add-on °¡´É: °í°´ÀÇ ¿äû¿¡ µû¶ó ÀÏÁ¤ÇÑ ¹üÀ§ ³»¿¡¼­ CustomizationÀÌ °¡´ÉÇÕ´Ï´Ù. ÀÚ¼¼ÇÑ »çÇ×Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Çѱ۸ñÂ÷

¼¼°èÀÇ ¿¹Áöº¸Àü ½ÃÀåÀº 2022³â¿¡ ¾à 54¾ï 5,000¸¸ ´Þ·¯¿¡ ´ÞÇϸç, ¿¹Ãø ±â°£ÀÎ 2023-2030³â¿¡´Â 30.90% ÀÌ»óÀÇ °ÇÀüÇÑ ¼ºÀå·ü·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù.

¿¹Áöº¸ÀüÀº ±â±â°¡ °íÀ峪±â Àü¿¡ ¹Ì¸® ¿¹ÃøÇϰí À̸¦ ¿ÏÈ­ÇÏ¿© ¿î¿µ È¿À²¼ºÀ» ÃÖÀûÈ­ÇÏ°í ´Ù¿îŸÀÓÀ» ÁÙÀ̱â À§ÇØ Á¶Á÷ÀÌ Ã¤ÅÃÇÏ´Â »çÀü ¿¹¹æÀû À¯Áöº¸¼ö Àü·«ÀÔ´Ï´Ù. ÀÌ Á¢±Ù ¹æ½ÄÀº °í±Þ µ¥ÀÌÅÍ ºÐ¼®, ¸Ó½Å·¯´× ¾Ë°í¸®Áò ¹× ¼¾¼­ ±â¼ú¿¡ ÀÇÁ¸ÇÏ¿© ±â°è »óŸ¦ ¸ð´ÏÅ͸µÇÏ°í °ú°Å ¼º´É µ¥ÀÌÅÍ¿Í ½Ç½Ã°£ ¿î¿µ ¸Å°³ º¯¼ö¸¦ ±â¹ÝÀ¸·Î ÀáÀçÀûÀÎ °íÀå ¹× Àå¾Ö¸¦ ¿¹ÃøÇÕ´Ï´Ù. ¿¹Áöº¸ÀüÀÇ Àû¿ë ¹üÀ§´Â Á¦Á¶, ¿î¼Û, ¿¡³ÊÁö, ÀÇ·á µî ´Ù¾çÇÑ »ê¾÷¿¡ °ÉÃÄ ÀÖ½À´Ï´Ù. ÀåºñÀÇ °ÇÀü¼º°ú ¼º´É ÁöÇ¥¸¦ Áö¼ÓÀûÀ¸·Î ¸ð´ÏÅ͸µÇÔÀ¸·Î½á Á¶Á÷Àº ÀÓ¹ÚÇÑ °íÀåÀ̳ª ÀÚ»ê »óÅÂÀÇ ¾ÇÈ­¸¦ ³ªÅ¸³»´Â ÆÐÅÏÀ̳ª ÀÌ»óÀ» ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù. À̸¦ ÅëÇØ Á¤±âÀûÀÎ À¯Áöº¸¼ö Ȱµ¿, ºÎǰ ±³Ã¼ ¹× ½ÃÁ¤ Á¶Ä¡¸¦ ÅëÇØ Àû½Ã¿¡ °³ÀÔÇÏ¿© ºñ¿ëÀÌ ¸¹ÀÌ µå´Â °íÀåÀ» ¹æÁöÇϰí, »ý»ê Áß´ÜÀ» ÃÖ¼ÒÈ­Çϸç, Áß¿äÇÑ ÀÚ»êÀÇ ¼ö¸íÀ» ¿¬ÀåÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ »ê¾÷¿ë »ç¹°ÀÎÅͳÝ(IIoT) µµÀÔ È®´ë, ÀÚ»ê ¼º´É °ü¸®¿¡ ´ëÇÑ °ü½É Áõ°¡, »çÈÄ À¯Áöº¸¼ö¿¡¼­ »çÀü ¿¹¹æÀû À¯Áöº¸¼ö·ÎÀÇ ÀüȯÀÌ Áõ°¡ÇÔ¿¡ µû¶ó 2023-2030³â ¿¹Ãø ±â°£ Áß ½ÃÀå¿¡ À¯¸®ÇÑ ¼ö¿ä¸¦ âÃâÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¶ÇÇÑ »ê¾÷ ȯ°æ¿¡¼­ IIoT µð¹ÙÀ̽º¿Í Ä¿³ØÆ¼µå ¼Ö·ç¼ÇÀÇ º¸±ÞÀ¸·Î ¼³ºñ¿Í ±â°è¿¡¼­ ¹æ´ëÇÑ ¾çÀÇ ½Ç½Ã°£ µ¥ÀÌÅ͸¦ ½±°Ô ¼öÁýÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ µ¥ÀÌÅ͸¦ ¿¹Ãø ºÐ¼® ¹× »óÅ ¸ð´ÏÅ͸µ¿¡ Ȱ¿ëÇÔÀ¸·Î½á »çÀü ¿¹¹æÀû À¯Áöº¸¼ö Ȱµ¿ÀÌ °¡´ÉÇØÁ® ¿¹Áöº¸Àü ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖÀ¸¸ç, 2021³â, ¼¼°èÀÇ »ç¹°ÀÎÅͳÝ(IIoT) ½ÃÀåÀº 2,635¾ï 2,000¸¸ ´Þ·¯¿¡ ´ÞÇϸç, 2028³â±îÁö´Â 2Á¶ 1,887¾ï 3,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù. ±× °á°ú, IIoTÀÇ Ã¤Åà Ȯ´ë°¡ ½ÃÀå ¼ºÀåÀ» Áö¿øÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ ¼¾¼­ ±â¼ú, IoT ±â±â, Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ, ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀÇ ¹ßÀü, »ê¾÷È­ÀÇ ÁøÀüÀº ½ÃÀå ¼ºÀå¿¡ À¯¸®ÇÑ ±âȸ¸¦ âÃâÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±×·¯³ª ³ôÀº Ãʱ⠵µÀÔ ºñ¿ë°ú ¼÷·ÃµÈ ÀηÂÀÇ ºÎÁ·Àº 2023-2030³âÀÇ ¿¹Ãø ±â°£ Áß ½ÃÀå ¼ºÀåÀ» ÀúÇØÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

¼¼°èÀÇ ¿¹Áöº¸Àü ½ÃÀå Á¶»ç¿¡¼­ °í·ÁµÈ ÁÖ¿ä Áö¿ªÀº ¾Æ½Ã¾ÆÅÂÆò¾ç, ºÏ¹Ì, À¯·´, ¶óƾ¾Æ¸Þ¸®Ä«, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÔ´Ï´Ù. ºÏ¹Ì´Â IoT ¹× ¼¾¼­ ±â¼ú äÅà Áõ°¡, ¿¹Áöº¸Àü¿¡ ´ëÇÑ ÀÎ½Ä Áõ°¡, Àδõ½ºÆ®¸® 4.0 ¹× µðÁöÅÐ Àüȯ ±¸»óÀÇ ºÎ»ó, µ¥ÀÌÅÍ ºÐ¼® ¹× ¸Ó½Å·¯´×ÀÇ ¹ßÀüÀ¸·Î ÀÎÇØ 2022³â ½ÃÀå Á¡À¯À²ÀÌ °¡Àå ±Ô¸ð°¡ Å« Áö¿ªÀ¸·Î ²ÅÇû½À´Ï´Ù. ÇÑÆí, ¾Æ½Ã¾ÆÅÂÆò¾çÀº Á¦Á¶¾÷, ¿¡³ÊÁö, ¿î¼Û, ÇコÄÉ¾î µî ´Ù¾çÇÑ »ê¾÷¿¡¼­ »ê¾÷¿ë IoT ¹× ¼¾¼­ ±â¼úÀÇ ºü¸¥ äÅÃ, Á¤ºÎÀÇ Àδõ½ºÆ®¸® 4.0 ÃßÁø ³ë·Â, µ¥ÀÌÅÍ ºÐ¼® ¹× AI ±â¼úÀÇ ¹ßÀü, ÀÌ Áö¿ªÀÇ Á¦Á¶¾÷ ¹× ÀÎÇÁ¶ó ºÎ¹®ÀÇ È®Àå µîÀÇ ¿äÀÎÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ Áß °¡Àå ºü¸¥ ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

º» Á¶»çÀÇ ¸ñÀûÀº ÃÖ±Ù ´Ù¾çÇÑ ºÎ¹®°ú ±¹°¡ÀÇ ½ÃÀå ±Ô¸ð¸¦ Á¤ÀÇÇϰí, ÇâÈÄ ¼ö³â°£ °¡Ä¡¸¦ ¿¹ÃøÇÏ´Â °ÍÀÔ´Ï´Ù. Á¶»ç ´ë»ó±¹¿¡¼­ »ê¾÷ÀÇ ÁúÀû¡¤¾çÀû Ãø¸é ¾çÃøÀ» Æ÷ÇÔ½Ã۵µ·Ï ¼³°èµÇ°í ÀÖ½À´Ï´Ù.

¶ÇÇÑ ½ÃÀåÀÇ ÇâÈÄ ¼ºÀåÀ» ±ÔÁ¤ÇÏ´Â ÃËÁø¿äÀÎ ¹× °úÁ¦ µîÀÇ Áß¿äÇÑ Ãø¸é¿¡ °üÇÑ »ó¼¼ Á¤º¸µµ Á¦°øÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÁÖ¿ä ±â¾÷ÀÇ °æÀï ±¸µµ ¹× Á¦Ç° Á¦°øÀÇ »ó¼¼ ºÐ¼®°ú ÇÔ²² ÀÌÇØ°ü°èÀÚ°¡ ÅõÀÚÇϱâ À§ÇÑ ¹Ì½ÃÀû ½ÃÀå¿¡¼­ÀÇ ÀáÀçÀû ±âȸµµ ÅëÇÕÇϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼¼°èÀÇ ¿¹Áöº¸Àü ½ÃÀå Á¤ÀÇ¿Í ¹üÀ§

Á¦3Àå ¼¼°èÀÇ ¿¹Áöº¸Àü ½ÃÀå ¿ªÇÐ

Á¦4Àå ¼¼°èÀÇ ¿¹Áöº¸Àü ½ÃÀå : »ê¾÷ ºÐ¼®

Á¦5Àå ¼¼°èÀÇ ¿¹Áöº¸Àü ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

Á¦6Àå ¼¼°èÀÇ ¿¹Áöº¸Àü ½ÃÀå : µµÀÔ ¸ðµ¨º°

Á¦7Àå ¼¼°èÀÇ ¿¹Áöº¸Àü ½ÃÀå : Á¶Á÷ ±Ô¸ðº°

Á¦8Àå ¿¹Áöº¸Àü ½ÃÀå : ¾÷°èº°

Á¦9Àå ¼¼°èÀÇ ¿¹Áöº¸Àü ½ÃÀå, Áö¿ª ºÐ¼®

Á¦10Àå °æÀï Á¤º¸

Á¦11Àå Á¶»ç ÇÁ·Î¼¼½º

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Predictive Maintenance Market is valued approximately at USD 5.45 billion in 2022 and is anticipated to grow with a healthy growth rate of more than 30.90% over the forecast period 2023-2030. Predictive Maintenance is a proactive maintenance strategy employed by organizations to anticipate and mitigate equipment failures before they occur, thereby optimizing operational efficiency and reducing downtime. This approach relies on advanced data analytics, machine learning algorithms, and sensor technologies to monitor the condition of machinery and predict potential faults or failures based on historical performance data and real-time operational parameters. The application of Predictive Maintenance spans various industries, including manufacturing, transportation, energy, and healthcare, among others. By continuously monitoring equipment health and performance metrics, organizations can identify patterns and anomalies indicative of impending failures or degradation in asset condition. This enables timely intervention through scheduled maintenance activities, part replacement, or corrective actions, thereby preventing costly breakdowns, minimizing production disruptions, and extending the lifespan of critical assets. Moreover, the growing adoption industrial internet of things (IIoT), increasing focus on asset performance management, and rising shift from reactive to proactive maintenance are anticipated to create the lucrative demand for the market during forecast period 2023-2030.

Additionally, the proliferation of IIoT devices and connectivity solutions in industrial settings has facilitated the collection of vast amounts of real-time data from equipment and machinery. This data can be leveraged for predictive analytics and condition monitoring, enabling proactive maintenance actions, driving the growth of the Predictive Maintenance market. In 2021, the global industrial internet of things (IIoT) market was valued USD 263.52 billion and it is anticipated to reach USD 2,188.73 billion by 2028. Aa a result, the growing adoption of IIoT is anticipated to support the market growth. Moreover, the growing advancement in sensor technology, IoT devices, cloud computing, and machine learning algorithms, and growing industrialization are anticipated to create lucrative opportunity for the market growth. However, the high initial implementing costs, and inadequate availability of skilled workforce stifles market growth throughout the forecast period of 2023-2030.

The key regions considered for the Global Predictive Maintenance Market study include Asia Pacific, North America, Europe, Latin America, and Middle East & Africa. North America dominated the market in 2022 with largest market share owing to the increasing adoption of IOT and sensor technologies, growing awareness of predictive maintenance, rise of industry 4.0 and digital transformation initiatives, and advancement in data analytics and machine learning. Whereas, the Asia Pacific region is expected to grow with the fastest growth rate during the forecast period, owing to factors such as the rapid adoption of industrial IoT and sensor technologies across various industries such as manufacturing, energy, transportation, and healthcare, government initiatives promoting industry 4.0, growing advancements in data analytics and ai technologies, and expansion of manufacturing and infrastructure sectors in the region.

Major market players included in this report are:

Recent Developments in the Market:

Global Predictive Maintenance Market Report Scope:

The objective of the study is to define market sizes of different segments & countries in recent years and to forecast the values to the coming years. The report is designed to incorporate both qualitative and quantitative aspects of the industry within countries involved in the study.

The report also caters detailed information about the crucial aspects such as driving factors & challenges which will define the future growth of the market. Additionally, it also incorporates potential opportunities in micro markets for stakeholders to invest along with the detailed analysis of competitive landscape and product offerings of key players. The detailed segments and sub-segment of the market are explained below:

By Component:

By Deployment Model:

By Organization Size:

By Industry Vertical:

By Region:

Table of Contents

Chapter 1.Executive Summary

Chapter 2.Global Predictive Maintenance Market Definition and Scope

Chapter 3.Global Predictive Maintenance Market Dynamics

Chapter 4.Global Predictive Maintenance Market: Industry Analysis

Chapter 5.Global Predictive Maintenance Market, by Component

Chapter 6.Global Predictive Maintenance Market, by Deployment Model

Chapter 7.Global Predictive Maintenance Market, by Organization Size

Chapter 8.Predictive Maintenance Market, by Industry Vertical

Chapter 9.Global Predictive Maintenance Market, Regional Analysis

Chapter 10.Competitive Intelligence

Chapter 11.Research Process

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â