¼¼°èÀÇ MLOps ½ÃÀå ±Ô¸ð Á¶»ç ¹× ¿¹Ãø : ÄÄÆ÷³ÍÆ®º°, µµÀÔº°, Á¶Á÷ ±Ô¸ðº°, ¾÷°èº°, Áö¿ªº° ºÐ¼®(2023-2030³â)
Global MLOps Market Size Study & Forecast, by Component, by Deployment, by Organization Size, by Vertical, and Regional Analysis, 2023-2030
»óǰÄÚµå
:
1453748
¸®¼Ä¡»ç
:
Bizwit Research & Consulting LLP
¹ßÇàÀÏ
:
2024³â 03¿ù
ÆäÀÌÁö Á¤º¸
:
¿µ¹®
¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
¤± Add-on °¡´É: °í°´ÀÇ ¿äû¿¡ µû¶ó ÀÏÁ¤ÇÑ ¹üÀ§ ³»¿¡¼ CustomizationÀÌ °¡´ÉÇÕ´Ï´Ù. ÀÚ¼¼ÇÑ »çÇ×Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.
¼¼°èÀÇ MLOps ½ÃÀå ±Ô¸ð´Â 2022³â¿¡ ¾à 11¾ï 9,000¸¸ ´Þ·¯¿¡ ´ÞÇϸç, ¿¹Ãø ±â°£ÀÎ 2023-2030³â¿¡ 39.7% ÃʰúÀÇ °ÇÀüÇÑ ¼ºÀå·ü·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù.
MLOps(±â°èÇнÀ ¿ÀÆÛ·¹À̼Ç)´Â ½ÇÀü ȯ°æ¿¡¼ ±â°èÇнÀ(ML) ¸ðµ¨ µµÀÔ, °¨½Ã, °ü¸®ÀÇ ÇÕ¸®È¸¦ ¸ñÀûÀ¸·Î ÇÑ ÇÁ·¢Æ¼½º, Åø, ¹æ¹ýÀ» Æ÷ÇÔÇÕ´Ï´Ù. µ¥ÀÌÅÍ »çÀÌ¾ð½º¿Í IT ¿î¿µÀÇ °ÝÂ÷¸¦ ÇØ¼ÒÇϱâ À§ÇØ µ¥ºê¿É½º(DevOps) ¿øÄ¢À» ÅëÇÕÇϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä ÄÄÆ÷³ÍÆ®·Î´Â ML ¸ðµ¨ ¹× µ¥ÀÌÅÍ ¹öÀü °ü¸®, ÀÚµ¿ÈµÈ Å×½ºÆ®, CI/CD ÆÄÀÌÇÁ¶óÀÎ, ¸ðµ¨ ¸ð´ÏÅ͸µ, È®Àå °¡´ÉÇÑ ML ¹èÆ÷¸¦ À§ÇÑ ÀÎÇÁ¶ó °ü¸® µîÀÌ ÀÖ½À´Ï´Ù. MLOps´Â µ¥ÀÌÅÍ °úÇÐÀÚ, ¿£Áö´Ï¾î, ¿î¿µÆÀ °£ÀÇ Çù¾÷À» ÃËÁøÇÏ°í °Å¹ö³Í½º, ÄÄÇöóÀ̾ð½º, º¸¾È Ç¥ÁØÀ» À¯ÁöÇÏ¸é¼ °·ÂÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖÀ¸¸ç È®Àå °¡´ÉÇÑ ML ¸ðµ¨À» º¸ÀåÇÕ´Ï´Ù. ÇコÄɾî, ±ÝÀ¶, E-Commerce µî ´Ù¾çÇÑ ¿µ¿ª¿¡¼ Çõ½ÅÀ» ÃßÁøÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù. È¿À²ÀûÀÎ ÆÀ¿öÅ©¸¦ À§ÇÑ ML ÇÁ·Î¼¼½º Ç¥ÁØÈ, ¸ð´ÏÅ͸µ °¡´É¼º Çâ»óÀ» ÅëÇÑ È¿À²¼º Çâ»ó, »ý»ê¼º Çâ»ó ¹× AIÀÇ ½Å¼ÓÇÑ ±¸Çö¿¡ ´ëÇÑ °ü½É Áõ°¡´Â Àü ¼¼°è¿¡¼ ½ÃÀå ¼ö¿ä¸¦ ÃËÁøÇÏ´Â °¡Àå µÎµå·¯Áø ¿äÀÎÀÔ´Ï´Ù.
¶ÇÇÑ Å¬¶ó¿ìµå ±â¹Ý ÀÎÇÁ¶ó¿Í Åø·ÎÀÇ ºü¸¥ ÀüȯÀ¸·Î ´õ ¸¹Àº »ç¿ëÀÚ°¡ AI °³¹ß ¹× µµÀÔ¿¡ ½±°Ô Á¢±ÙÇÒ ¼ö ÀÖ°Ô µÇ¾úÀ¸¸ç, Statista¿¡ µû¸£¸é Ŭ¶ó¿ìµå IT ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÁöÃâÀº 2023³â ¾à 940¾ï ´Þ·¯·Î 2026³â 1, 337¾ï ´Þ·¯·Î ±ÞÁõÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. 337¾ï ´Þ·¯·Î ±ÞÁõÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÆÛºí¸¯ Ŭ¶ó¿ìµå ÀÎÇÁ¶óÀÇ È®´ë´Â ¿©ÀüÈ÷ IT ÁöÃâ Áõ°¡ÀÇ Áß¿äÇÑ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. Dell Technologies, HPE, Inspur, Lenovo, IBM, Huawei µî ÁÖ¿ä ±â¾÷Àº Ŭ¶ó¿ìµå ±â´ÉÀ» Ȱ¿ëÇÏ¿© È®Àå °¡´ÉÇÏ°í ¹ÎøÇϸç Á¢±Ù¼ºÀÌ ¶Ù¾î³ ¼Ö·ç¼ÇÀ» Á¦°øÇÏ´Â MLOps Ç÷§ÆûÀ¸·Î ½ÃÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ±ÝÀ¶ ºÐ¾ß¿¡¼ÀÇ ¸Ó½Å·¯´× Ȱ¿ë Áõ°¡¿Í ±â¾÷ÀÇ ML/AI ±â¹Ý ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ ¼ö¿ä ±ÞÁõÀº ÇâÈÄ ¼ö³â°£ ´Ù¾çÇÑ À¯¸®ÇÑ ±âȸ¸¦ Á¦°øÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±×·¯³ª ´Ù¾çÇÑ ÆÄÀÌÇÁ¶óÀÎ °ü¸®ÀÇ ¾î·Á¿ò°ú ¿ø½Ã µ¥ÀÌÅÍ Á¶ÀÛÀÇ À§ÇèÀº 2023-2030³âÀÇ ¿¹Ãø ±â°£ Áß ½ÃÀå ¼ºÀåÀ» ÀúÇØÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¼¼°èÀÇ MLOps ½ÃÀå Á¶»ç¿¡¼ °í·ÁµÈ ÁÖ¿ä Áö¿ªÀº ¾Æ½Ã¾ÆÅÂÆò¾ç, ºÏ¹Ì, À¯·´, ¶óƾ¾Æ¸Þ¸®Ä«, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÔ´Ï´Ù. ºÏ¹Ì´Â °æÁ¦ ¼±Áø±¹, ¿¬±¸±â°ü, ÁÖ¿ä AI ±â¾÷ÀÇ Áö¿ø°ú ³ôÀº ÀΰøÁö´É(AI) R&D ¿ª·®À¸·Î ÀÎÇØ 2022³â ½ÃÀåÀ» µ¶½ÄÇÒ °ÍÀ¸·Î ¿¹»óÇß½À´Ï´Ù. °í°´ °æÇè Çâ»ó°ú ºñÁî´Ï½º ¿î¿µ ÃÖÀûȸ¦ À§ÇÑ Ã·´Ü ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡´Â ºÏ¹Ì Àü¿ª¿¡¼ À¯¸®ÇÑ ¼ºÀå Àü¸ÁÀ» âÃâÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. ¶ÇÇÑ ÀÌ Áö¿ªÀº ³ôÀº ¼öÁØÀÇ AI R&D ¿ª·®À» º¸À¯Çϰí ÀÖÀ¸¸ç, AI °ü·Ã ±â¼ú¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ºÏ¹Ì´Â AI °³¹ßÀ» ÃËÁøÇÏ´Â Á¤Ã¥À» ½ÃÇàÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î 2022³â 12¿ù ¿ÀǼҽº ±â¾÷ ¾Ë·¹±×·Î AI(Allegro AI)´Â »ç¿ëÀÚ ±â¹Ý, ±â¾÷ ¸ÅÃâ, Çù¾÷¿¡¼ °ý¸ñÇÒ ¸¸ÇÑ ¼ºÀå¼¼¸¦ ±â·ÏÇß´Ù°í ¹ßÇ¥Çϸç AI Çõ½Å ÃßÁø¿¡ ´ëÇÑ ºÏ¹ÌÀÇ ÀÇÁö¸¦ ´õ¿í °Á¶Çß½À´Ï´Ù. ÇÑÆí, ¾Æ½Ã¾ÆÅÂÆò¾çÀº ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ ºÐ¾ßÀÇ ±Þ°ÝÇÑ ¼ºÀå°ú ¾Æ¸¶Á¸ À¥ ¼ºñ½º(Amazon Web Services, Inc.), ¸¶ÀÌÅ©·Î¼ÒÇÁÆ®(Microsoft), ±¸±Û(Google)°ú °°Àº ÁÖ¿ä ±â¾÷ÀÇ °ÅÁ¡ È®ÀåÀÌ ÀÌ Áö¿ª ½ÃÀå ¼ö¿ä¸¦ Å©°Ô °ßÀÎÇϰí ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý MLOps ¼Ö·ç¼ÇÀº Á¶Á÷ÀÌ Å¬¶ó¿ìµå ÀÎÇÁ¶óÀÇ È®À强°ú À¯¿¬¼ºÀ» ÅëÇÕÇÔ¿¡ µû¶ó ÀÌ Áö¿ª¿¡¼ Å©°Ô äÅÃµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ Á¤ºÎ¿Í ±â¾÷Àº AI¿Í ¸Ó½Å·¯´×¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖÀ¸¸ç, ÀÌ·Î ÀÎÇØ ´ë±Ô¸ð ¸Ó½Å·¯´× ¸ðµ¨ÀÇ °³¹ß ¹× ¹èÆ÷¸¦ ÃËÁøÇÒ ¼ö ÀÖ´Â MLOps ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
º» Á¶»çÀÇ ¸ñÀûÀº ÃÖ±Ù ´Ù¾çÇÑ ºÎ¹®°ú ±¹°¡ ½ÃÀå ±Ô¸ð¸¦ Á¤ÀÇÇϰí, ÇâÈÄ ¼ö³â°£ °¡Ä¡¸¦ ¿¹ÃøÇÏ´Â °ÍÀÔ´Ï´Ù. Á¶»ç ´ë»ó±¹¿¡¼ »ê¾÷ÀÇ ÁúÀû¡¤¾çÀû Ãø¸é ¾çÃøÀ» Æ÷ÇÔ½Ã۵µ·Ï ¼³°èµÇ°í ÀÖ½À´Ï´Ù.
¶ÇÇÑ ½ÃÀåÀÇ ¹Ì·¡Àû ¼ºÀåÀ» ±ÔÁ¤ÇÏ´Â ÃËÁø¿äÀÎ ¹× °úÁ¦ µîÀÇ Áß¿äÇÑ Ãø¸é¿¡ °üÇÑ »ó¼¼ Á¤º¸µµ Á¦°øÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÁÖ¿ä ±â¾÷ÀÇ °æÀï ±¸µµ ¹× Á¦Ç° Á¦°øÀÇ »ó¼¼ ºÐ¼®°ú ÇÔ²² ÀÌÇØ°ü°èÀÚ°¡ ÅõÀÚÇϱâ À§ÇÑ ¹Ì½ÃÀû ½ÃÀå¿¡¼ÀÇ ÀáÀçÀû ±âȸµµ Æ÷ÇÔÇϰí ÀÖ½À´Ï´Ù.
¸ñÂ÷
Á¦1Àå ÁÖ¿ä ¿ä¾à
Á¦2Àå ¼¼°èÀÇ MLOps ½ÃÀå Á¤ÀÇ¿Í ¹üÀ§
- Á¶»ç ¸ñÀû
- ½ÃÀå Á¤ÀÇ¿Í ¹üÀ§
- Á¶»ç ´ë»ó³â
- ÅëÈ È¯»êÀ²
Á¦3Àå ¼¼°èÀÇ MLOps ½ÃÀå ¿ªÇÐ
- MLOps ½ÃÀåÀÇ ¿µÇ⠺м®(2020-2030³â)
- ½ÃÀå ÃËÁø¿äÀÎ
- Ŭ¶ó¿ìµå ±â¹Ý ÀÎÇÁ¶ó·ÎÀÇ ±Þ¼ÓÇÑ À̵¿
- È¿°úÀûÀÎ ÆÀ¿öÅ©¸¦ À§ÇÑ ML ÇÁ·Î¼¼½º Ç¥ÁØÈ¿¡ ´ëÇÑ ÁÖ¸ñÀÇ Áõ°¡
- ½ÃÀåÀÌ ÇØ°áÇØ¾ß ÇÒ °úÁ¦
- ´Ù¾çÇÑ ÆÄÀÌÇÁ¶óÀÎ °ü¸®°¡ °ï¶õ
- ¹Ì°¡°ø µ¥ÀÌÅÍ Á¶ÀÛÀÇ ¸®½ºÅ©
- ½ÃÀå ±âȸ
- ±ÝÀ¶ ºÐ¾ß¿¡¼ ±â°èÇнÀ ÀÌ¿ëÀÇ Áõ°¡
- ±â¾÷¿¡¼ ML/AI ±â¹Ý ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ ¼ö¿äÀÇ ±ÞÁõ
Á¦4Àå ¼¼°èÀÇ MLOps ½ÃÀå »ê¾÷ ºÐ¼®
- Porter's Five Forces ¸ðµ¨
- °ø±Þ ±â¾÷ÀÇ ±³¼··Â
- ±¸¸ÅÀÚÀÇ ±³¼··Â
- ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
- ´ëüǰÀÇ À§Çù
- °æÀï ±â¾÷°£ °æÀï °ü°è
- Porter's Five Forces ¿µÇ⠺м®
- PEST ºÐ¼®
- Á¤Ä¡
- °æÁ¦
- »çȸ
- 񃬣
- ȯ°æ
- ¹ý·ü
- ÁÖ¿ä ÅõÀÚ ±âȸ
- ÁÖ¿ä ¼º°ø Àü·«
- COVID-19 ¿µÇ⠺м®
- ÆÄ±«Àû µ¿Çâ
- ¾÷°è Àü¹®°¡ÀÇ ½ÃÁ¡
- ¾Ö³Î¸®½ºÆ®ÀÇ °á·Ð¡¤Á¦¾È
Á¦5Àå ¼¼°èÀÇ MLOps ½ÃÀå : ÄÄÆ÷³ÍÆ®º°
- ½ÃÀå ½º³À¼ô
- ¼¼°èÀÇ MLOps ½ÃÀå : ÄÄÆ÷³ÍÆ®º°, ½ÇÀû - ÀáÀç·Â ºÐ¼®
- ¼¼°èÀÇ MLOps ½ÃÀå : ÄÄÆ÷³ÍÆ®º°, ÃßÁ¤¡¤¿¹Ãø(2020-2030³â)
- MLOps ½ÃÀå : ÇÏÀ§ ºÎ¹® ºÐ¼®
Á¦6Àå ¼¼°èÀÇ MLOps ½ÃÀå : µµÀÔº°
- ½ÃÀå ½º³À¼ô
- ¼¼°èÀÇ MLOps ½ÃÀå : µµÀÔº°, ½ÇÀû - ÀáÀç·Â ºÐ¼®
- ¼¼°èÀÇ MLOps ½ÃÀå : µµÀÔº°, ÃßÁ¤¡¤¿¹Ãø(2020-2030³â)
- MLOps ½ÃÀå : ÇÏÀ§ ºÎ¹® ºÐ¼®
Á¦7Àå ¼¼°èÀÇ MLOps ½ÃÀå : Á¶Á÷ ±Ô¸ðº°
- ½ÃÀå ½º³À¼ô
- ¼¼°èÀÇ MLOps ½ÃÀå : Á¶Á÷ ±Ô¸ðº°, ½ÇÀû - ÀáÀç·Â ºÐ¼®
- ¼¼°èÀÇ MLOps ½ÃÀå : Á¶Á÷ ±Ô¸ðº°, ÃßÁ¤¡¤¿¹Ãø(2020-2030³â)
- MLOps ½ÃÀå : ÇÏÀ§ ºÎ¹® ºÐ¼®
Á¦8Àå MLOps ½ÃÀå : ¾÷°èº°
- ½ÃÀå ½º³À¼ô
- ¼¼°èÀÇ MLOps ½ÃÀå : ¾÷°èº°, ½ÇÀû - ÀáÀç·Â ºÐ¼®
- ¼¼°èÀÇ MLOps ½ÃÀå : ¾÷°èº°, ÃßÁ¤¡¤¿¹Ãø(2020-2030³â)
- MLOps ½ÃÀå : ÇÏÀ§ ºÎ¹® ºÐ¼®
- BFSI
- ÇコÄɾ»ý¸í°úÇÐ
- ¼Ò¸Å¡¤E-Commerce
- IT ¡¤Åë½Å
- ¿¡³ÊÁö¡¤À¯Æ¿¸®Æ¼
- Á¤ºÎ¡¤°ø°ø ºÎ¹®
- ¹Ìµð¾î¡¤¿£ÅÍÅ×ÀÎ¸ÕÆ®
- ±âŸ
Á¦9Àå ¼¼°èÀÇ MLOps ½ÃÀå : Áö¿ª ºÐ¼®
- ÁÖ¿ä ±¹°¡
- ÁÖ¿ä ½ÅÈï ±¹°¡
- ¼¼°èÀÇ MLOps ½ÃÀå : Áö¿ª ½ÃÀå ½º³À¼ô
- ºÏ¹Ì
- ¹Ì±¹
- ÄÄÆ÷³ÍÆ® ÃßÁ¤¡¤¿¹Ãø(2020-2030³â)
- µµÀÔ ÃßÁ¤¡¤¿¹Ãø(2020-2030³â)
- Á¶Á÷ ±Ô¸ð ÃßÁ¤¡¤¿¹Ãø(2020-2030³â)
- ¾÷°èÀÇ ÃßÁ¤¡¤¿¹Ãø(2020-2030³â)
- ij³ª´Ù
- À¯·´
- ¿µ±¹
- µ¶ÀÏ
- ÇÁ¶û½º
- ½ºÆäÀÎ
- ÀÌÅ»¸®¾Æ
- ±âŸ À¯·´
- ¾Æ½Ã¾ÆÅÂÆò¾ç
- Áß±¹
- Àεµ
- ÀϺ»
- È£ÁÖ
- Çѱ¹
- ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
- ¶óƾ¾Æ¸Þ¸®Ä«
- Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
- »ç¿ìµð¾Æ¶óºñ¾Æ
- ³²¾ÆÇÁ¸®Ä«°øÈ±¹
- ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
Á¦10Àå °æÀï Á¤º¸
- ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®
- ÁÖ¿ä ½ÃÀå Àü·«
- ±â¾÷ °³¿ä
- International Business Machines(IBM) Corporation
- Microsoft Corporation
- Google LLC
- Amazon Web Services, Inc.
- Hewlett Packard Enterprise Development LP
- Neptune Labs, Inc.
- DataRobot, Inc.
- Dataiku.
- ALTERYX, Inc.
- GAVS Technologies N.A., Inc.
Á¦11Àå Á¶»ç ÇÁ·Î¼¼½º
- Á¶»ç ÇÁ·Î¼¼½º
- µ¥ÀÌÅÍ ¸¶ÀÌ´×
- ºÐ¼®
- ½ÃÀå ÃßÁ¤
- °ËÁõ
- ÃâÆÇ
- Á¶»ç ¼Ó¼º
- Á¶»ç ÀüÁ¦Á¶°Ç
KSA
¿µ¹® ¸ñÂ÷
Global MLOps Market is valued at approximately USD 1.19 billion in 2022 and is anticipated to grow with a healthy growth rate of more than 39.7% during the forecast period 2023-2030. MLOps, or Machine Learning Operations, encompasses practices, tools, and methodologies aimed at streamlining the deployment, monitoring, and management of Machine Learning (ML) models in production environments. It integrates principles from DevOps to bridge the gap between data science and IT operations. Key components include version control for ML models and data, automated testing, CI/CD pipelines, model monitoring, and infrastructure management for scalable ML deployments. MLOps facilitates collaboration between data scientists, engineers, and operations teams, ensuring robust, reliable, and scalable ML models while upholding governance, compliance, and security standards. It plays a vital role in operationalizing ML, enabling organizations to derive value from their investments and drive innovation across various domains such as healthcare, finance, and e-commerce. The growing focus on the standardization of ML processes for effective teamwork, and improved efficiency due to increased monitorability, coupled with increased productivity and quicker AI implementation are the most prominent factors that are propelling the market demand across the globe.
In addition, the rapid shift towards cloud-based infrastructure and tools facilitates easier access to AI development and deployment for a wider range of users. According to Statista, the expenditure on cloud IT infrastructure accounts for nearly USD 94 billion in 2023, which is anticipated to surge to USD 133.7 billion by 2026. The expansion of public cloud infrastructure remains a significant catalyst for IT spending growth. Key players dominating the market landscape comprise Dell Technologies, HPE, Inspur, Lenovo, IBM, and Huawei. MLOps platforms leverage cloud capabilities to provide scalable, agile, and accessible solutions. Moreover, the rise in the use of machine learning in the financial sector, as well as the surge in demand for ML/AI-based projects among businesses presents various lucrative opportunities over the forecast years. However, the difficulty in managing various pipelines and the risk of raw data manipulation is hindering the market growth throughout the forecast period of 2023-2030.
The key regions considered for the Global MLOps Market study include Asia Pacific, North America, Europe, Latin America, and Middle East & Africa. North America dominated the market in 2022 owing to the region's robust research and development competencies in Artificial Intelligence (AI), supported by well-established economies, research institutions, and leading AI firms. The growing investment in advanced technologies aimed at augmenting customer experiences and optimizing business operations is poised to create lucrative growth prospects across North America. Additionally, the region boasts sophisticated AI research and development capabilities, with substantial investments in AI-related technologies. Furthermore, North America has implemented policies conducive to fostering AI development. For instance, in December 2022, Allegro AI, an open-source company, announced significant growth milestones in user base, revenue, and collaborations, further underscoring the region's commitment to advancing AI innovation. Whereas, Asia Pacific is expected to grow at the highest CAGR over the forecast years. The rapid growth of the cloud computing sector, along with key players like Amazon Web Services, Inc., Microsoft, and Google expanding their footprint are significantly propelling the market demand across the region. Cloud-based MLOps solutions are projected to witness substantial adoption in the region, as organizations integrate the scalability and flexibility of cloud infrastructure. Moreover, governments and enterprises across the APAC region are making significant investments in AI and machine learning, thereby fueling the demand for MLOps solutions capable of facilitating the development and deployment of machine learning models at scale.
Major market players included in this report are:
- International Business Machines (IBM) Corporation
- Microsoft Corporation
- Google LLC
- Amazon Web Services, Inc.
- Hewlett Packard Enterprise Development LP
- Neptune Labs, Inc.
- DataRobot, Inc.
- Dataiku.
- ALTERYX, Inc.
- GAVS Technologies N.A., Inc.
Recent Developments in the Market:
- In April 2023, Canonical Ltd., a renowned computer software company, unveiled the release of Charmed Kubeflow, its machine learning operations toolkit, on Amazon Web Services Inc.'s cloud marketplace. This launch caters to businesses seeking to initiate and advance their machine learning and artificial intelligence endeavors effectively.
- In May 2022, GAVS Technologies announced its collaboration with NTT Ltd., marking the integration of the ZIF AIOps platform into NTT Ltd.'s Infrastructure Managed Services (IMS).
- In January 2021, Alteryx partnered with Snowflake to meet the increasing demand in the market. This partnership merges Alteryx's data science and automation capabilities with Snowflake's platform to provide shared customers with automated data pipelining, accelerated data processing, and enhanced analytics capabilities at scale.
Global MLOps Market Report Scope:
- Historical Data - 2020 - 2021
- Base Year for Estimation - 2022
- Forecast period - 2023-2030
- Report Coverage - Revenue forecast, Company Ranking, Competitive Landscape, Growth factors, and Trends
- Segments Covered - Component, Deployment, Organization Size, Vertical, Region
- Regional Scope - North America; Europe; Asia Pacific; Latin America; Middle East & Africa
- Customization Scope - Free report customization (equivalent up to 8 analyst's working hours) with purchase. Addition or alteration to country, regional & segment scope*
The objective of the study is to define market sizes of different segments & countries in recent years and to forecast the values to the coming years. The report is designed to incorporate both qualitative and quantitative aspects of the industry within countries involved in the study.
The report also caters detailed information about the crucial aspects such as driving factors & challenges which will define the future growth of the market. Additionally, it also incorporates potential opportunities in micro markets for stakeholders to invest along with the detailed analysis of competitive landscape and product offerings of key players. The detailed segments and sub-segment of the market are explained below:
By Component:
By Deployment:
By Organization Size:
By Vertical:
- BFSI
- Healthcare & Life Sciences
- Retail & E-Commerce
- IT & Telecom
- Energy & Utilities
- Government & Public Sector
- Media & Entertainment
- Others
By Region:
- North America
- U.S.
- Canada
- Europe
- UK
- Germany
- France
- Spain
- Italy
- ROE
- Asia Pacific
- China
- India
- Japan
- Australia
- South Korea
- RoAPAC
- Latin America
- Brazil
- Mexico
- Middle East & Africa
- Saudi Arabia
- South Africa
- Rest of Middle East & Africa
Table of Contents
Chapter 1.Executive Summary
- 1.1.Market Snapshot
- 1.2.Global & Segmental Market Estimates & Forecasts, 2020-2030 (USD Billion)
- 1.2.1.MLOps Market, by Region, 2020-2030 (USD Billion)
- 1.2.2.MLOps Market, by Component, 2020-2030 (USD Billion)
- 1.2.3.MLOps Market, by Deployment, 2020-2030 (USD Billion)
- 1.2.4.MLOps Market, by Organization Size, 2020-2030 (USD Billion)
- 1.2.5.MLOps Market, by Vertical, 2020-2030 (USD Billion)
- 1.3.Key Trends
- 1.4.Estimation Methodology
- 1.5.Research Assumption
Chapter 2.Global MLOps Market Definition and Scope
- 2.1.Objective of the Study
- 2.2.Market Definition & Scope
- 2.2.1.Industry Evolution
- 2.2.2.Scope of the Study
- 2.3.Years Considered for the Study
- 2.4.Currency Conversion Rates
Chapter 3.Global MLOps Market Dynamics
- 3.1.MLOps Market Impact Analysis (2020-2030)
- 3.1.1.Market Drivers
- 3.1.1.1.Rapid shift towards cloud-based infrastructure
- 3.1.1.2.Rising focus on the standardization of ML processes for effective teamwork
- 3.1.2.Market Challenges
- 3.1.2.1.Difficulty in managing various pipelines
- 3.1.2.2.Risk of raw data manipulation
- 3.1.3.Market Opportunities
- 3.1.3.1.Rise in use of machine learning in financial sector
- 3.1.3.2.Surge in demand for ML/AI-based projects among businesses
Chapter 4.Global MLOps Market Industry Analysis
- 4.1.Porter's 5 Force Model
- 4.1.1.Bargaining Power of Suppliers
- 4.1.2.Bargaining Power of Buyers
- 4.1.3.Threat of New Entrants
- 4.1.4.Threat of Substitutes
- 4.1.5.Competitive Rivalry
- 4.2.Porter's 5 Force Impact Analysis
- 4.3.PEST Analysis
- 4.3.1.Political
- 4.3.2.Economical
- 4.3.3.Social
- 4.3.4.Technological
- 4.3.5.Environmental
- 4.3.6.Legal
- 4.4.Top investment opportunity
- 4.5.Top winning strategies
- 4.6.COVID-19 Impact Analysis
- 4.7.Disruptive Trends
- 4.8.Industry Expert Perspective
- 4.9.Analyst Recommendation & Conclusion
Chapter 5.Global MLOps Market, by Component
- 5.1.Market Snapshot
- 5.2.Global MLOps Market by Component, Performance - Potential Analysis
- 5.3.Global MLOps Market Estimates & Forecasts by Component 2020-2030 (USD Billion)
- 5.4.MLOps Market, Sub Segment Analysis
- 5.4.1.Platform
- 5.4.2.Service
Chapter 6.Global MLOps Market, by Deployment
- 6.1.Market Snapshot
- 6.2.Global MLOps Market by Deployment, Performance - Potential Analysis
- 6.3.Global MLOps Market Estimates & Forecasts by Deployment 2020-2030 (USD Billion)
- 6.4.MLOps Market, Sub Segment Analysis
- 6.4.1.Cloud
- 6.4.2.On-premise
Chapter 7.Global MLOps Market, by Organization Size
- 7.1.Market Snapshot
- 7.2.Global MLOps Market by Organization Size, Performance - Potential Analysis
- 7.3.Global MLOps Market Estimates & Forecasts by Organization Size 2020-2030 (USD Billion)
- 7.4.MLOps Market, Sub Segment Analysis
- 7.4.1.SMEs
- 7.4.2.Large Enterprises
Chapter 8.MLOps Market, by Vertical
- 8.1.Market Snapshot
- 8.2.Global MLOps Market by Vertical, Performance - Potential Analysis
- 8.3.Global MLOps Market Estimates & Forecasts by Vertical 2020-2030 (USD Billion)
- 8.4.MLOps Market, Sub Segment Analysis
- 8.4.1.BFSI
- 8.4.2.Healthcare & Life Sciences
- 8.4.3.Retail & E-Commerce
- 8.4.4.IT & Telecom
- 8.4.5.Energy & Utilities
- 8.4.6.Government & Public Sector
- 8.4.7.Media & Entertainment
- 8.4.8.Others
Chapter 9.Global MLOps Market, Regional Analysis
- 9.1.Top Leading Countries
- 9.2.Top Emerging Countries
- 9.3.MLOps Market, Regional Market Snapshot
- 9.4.North America MLOps Market
- 9.4.1.U.S. MLOps Market
- 9.4.1.1.Component breakdown estimates & forecasts, 2020-2030
- 9.4.1.2.Deployment breakdown estimates & forecasts, 2020-2030
- 9.4.1.3.Organization Size breakdown estimates & forecasts, 2020-2030
- 9.4.1.4.Vertical breakdown estimates & forecasts, 2020-2030
- 9.4.2.Canada MLOps Market
- 9.5.Europe MLOps Market Snapshot
- 9.5.1.U.K. MLOps Market
- 9.5.2.Germany MLOps Market
- 9.5.3.France MLOps Market
- 9.5.4.Spain MLOps Market
- 9.5.5.Italy MLOps Market
- 9.5.6.Rest of Europe MLOps Market
- 9.6.Asia-Pacific MLOps Market Snapshot
- 9.6.1.China MLOps Market
- 9.6.2.India MLOps Market
- 9.6.3.Japan MLOps Market
- 9.6.4.Australia MLOps Market
- 9.6.5.South Korea MLOps Market
- 9.6.6.Rest of Asia Pacific MLOps Market
- 9.7.Latin America MLOps Market Snapshot
- 9.7.1.Brazil MLOps Market
- 9.7.2.Mexico MLOps Market
- 9.8.Middle East & Africa MLOps Market
- 9.8.1.Saudi Arabia MLOps Market
- 9.8.2.South Africa MLOps Market
- 9.8.3.Rest of Middle East & Africa MLOps Market
Chapter 10.Competitive Intelligence
- 10.1.Key Company SWOT Analysis
- 10.1.1.Company 1
- 10.1.2.Company 2
- 10.1.3.Company 3
- 10.2.Top Market Strategies
- 10.3.Company Profiles
- 10.3.1.International Business Machines (IBM) Corporation
- 10.3.1.1.Key Information
- 10.3.1.2.Overview
- 10.3.1.3.Financial (Subject to Data Availability)
- 10.3.1.4.Product Summary
- 10.3.1.5.Recent Developments
- 10.3.2.Microsoft Corporation
- 10.3.3.Google LLC
- 10.3.4.Amazon Web Services, Inc.
- 10.3.5.Hewlett Packard Enterprise Development LP
- 10.3.6.Neptune Labs, Inc.
- 10.3.7.DataRobot, Inc.
- 10.3.8.Dataiku.
- 10.3.9.ALTERYX, Inc.
- 10.3.10.GAVS Technologies N.A., Inc.
Chapter 11.Research Process
- 11.1.Research Process
- 11.1.1.Data Mining
- 11.1.2.Analysis
- 11.1.3.Market Estimation
- 11.1.4.Validation
- 11.1.5.Publishing
- 11.2.Research Attributes
- 11.3.Research Assumption
°ü·ÃÀÚ·á