마이크로그리드 LDES(장기 에너지 저장)가 큰 기회가 될 것 : 솔라 빌딩, 데이터센터, 커뮤니티, 담수화 장비, 산업 공정을 위한 시장과 기술(2025-2045년)
Microgrid Long Duration Energy Storage LDES Becomes a Large Opportunity: Markets, Technologies for Solar Buildings, Data Centers, Communities, Desalinators, Industrial Processes 2025-2045
상품코드:1638133
리서치사:Zhar Research
발행일:2025년 01월
페이지 정보:영문 394 Pages
라이선스 & 가격 (부가세 별도)
한글목차
마이크로그리드 LDES(장기 에너지 저장) 시장은 540억 달러 규모에 달할 것으로 전망됩니다:
LDES는 주로 전력망용 주류 스토리지로 간주되지만, 다른 중요한 응용 분야에서는 다양한 요구 사항과 기술 우선 순위가 다르기 때문에 경쟁이 덜한 상황입니다.
마이크로그리드 LDES(장기 에너지 저장) 시장과 기술에 대해 조사했으며, 그리드 및 비욘드 그리드 LDES의 유력한 후보 기술 및 기타 기술에 대한 개요, 주요 기능, 제조 기술 및 재료, 최종사용자 산업 및 용도, 연구개발 동향, 시장 성장 예측 등의 정보를 정리하여 전해드립니다.
목차
제1장 주요 요약 및 결론
제2장 소개
개요
LDES
세계 전력 동향
비욘드 그리드 : 건물, 산업 공정, 미니 그리드, 마이크로그리드, 기타
비욘드 그리드 발전 및 관리
오프그리드 메가 트렌드
태양광발전의 메가트렌드
LDES의 전망과 비용 문제
비욘드 그리드 스토리지의 다기능성
그리드 및 비욘드 그리드에서 LDES 기술의 가능성에 대한 전체적 개요
그리드 및 비욘드 그리드를 위한 LDES 도구 키트
LDES의 물리 및 화학
그리드, 마이크로그리드, 건물용 LDES를 최대로 구현하는 기술
제3장 LDES 저장 옵션 비교 : 매개변수별 비교
LCOS의 개요, 정의, 유용성
등가 효율 vs 저장 시간 : LCOS 계산, 9가지 기술군, 17가지 기준
9가지 LDES 기술군 및 기타 17가지 기준
그리드를 포함한 LDES 기술 선택
완료 및 계획 중인 LDES 프로젝트에서 얻은 교훈
LDES 기술의 사용 가능한 사이트 및 공간 효율성
LCOS($/kWh) 추세 vs 저장 및 방전 시간
LDES 전력의 GW 추세와 저장 및 방전 시간과의 관계
LDES 기술 저장 일수 및 정격 전력 회수량(MW)
LDES 기술 저장 일수 및 용량(MWh)
다양한 지연 후 피크 전력으로 LDES를 공급할 수 있는 기술 가능성
제4장 비욘드 그리드의 주요 LDES 옵션 : 레독스 플로우 배터리(RFB)
개요
RFB 기술
SWOT 평가 : 고정식 저장
SWOT 평가 : LDES용 RFB 에너지 저장장치
LDES의 RFB 파라미터 평가
RFB 기업 56개사를 8개의 열로 비교
RFB 기업 52개사의 상세 프로필
조사의 신뢰성
제5장 비욘드 그리드의 주요 LDES 옵션 : ACCB(첨단 재래식 건설용 배터리)
개요
SWOT 평가 : 비욘드그리드 LDES를 위한 ACCB
LDES용 ACCB의 파라미터 평가
7대 ACCB 제조사 비교 : 이름, 브랜드, 기술, 기술 준비도, 비욘드 그리드에 대한 초점, LDES에 대한 초점, 코멘트
Iron-air : Form Energy USA - SWOT 평가
용융칼슘 안티몬 : Ambri USA : SWOT 평가
니켈수소 : EnerVenue USA : SWOT 평가
나트륨 이온 : 많은 기업에서 활용되고 있지만, 비욘드 그리드 LDES의 가능성은 제한적
유황나트륨 : NGK/BASF Japan/Germany 등 : SWOT 분석
아연에어 : eZinc Canada : SWOT 분석
아연 할로겐화 아연 : EOS Energy Enterprises USA : SWOT 분석
제6장 비욘드 그리드의 주요 LDES 옵션 : 액화 가스 에너지 저장(LAES 또는 CO2)
개요
가스 저장 3사 비교
LAES(액체 공기 에너지 저장)
CO2(액체 이산화탄소 에너지 저장) 기술, 시장, 성과 및 전망
제7장 비욘드 그리드 LDES 저장 옵션 : APHES, CAES, ETES, SGES
개요
그리드 및 비욘드 그리드 애플리케이션을 위한 주요 LDES 툴킷
첨단 양수발전 : 산이 필요 없다
압축 공기 에너지 저장(CAES)
비욘드 그리드 LDES를 위한 전기열 에너지 저장(ETES)
고체 중력 에너지 저장
제8장 가능성이 낮은 비욘드그리드 LDES 기술 : 기존형 PHES, CAES, H2ES
개요
비욘드 그리드 LDES를 위한 기존 양수발전 시스템
경제성 및 SWOT 평가 : CAES Beyond Grid LDES
SWOT 평가 : 비욘드그리드 LDES를 위한 수소 H2ES, 메탄, 암모니아
ksm
영문 목차
영문목차
Summary
Microgrid Long Duration Energy Storage LDES Headed to be a $54 Billion Market
Long Duration Energy Storage LDES is rightly seen as primarily mainstream storage for grids but a very substantial other use has different requirements and technology priorities and less competition. They are addressed in the unique new Zhar Research report, "Microgrid Long Duration Energy Storage LDES becomes a large opportunity: markets, technologies for solar buildings, data centers, communities, desalinators, industrial processes 2025-2045".
Some of the questions answered are:
Gaps in the market?
Emerging competition?
Research pipeline analysis?
Full appraisal of technology options?
Technology sweet spots by parameter?
Market forecasts and roadmaps 2025-2045?
Technology readiness and potential improvement?
Technology parameters compared against each other?
Potential winners and losers by company and technology?
Appraisal of proponents, your prospective partners and acquisitions?
How "beyond-grid" LDES will progress - day to week, to months, why?
This comprehensive, commercially-oriented report has 394 pages with 143 infograms, tables and graphs, over 80 companies covered, 26 forecast lines, 10 SWOT appraisals and 8 chapters.
The 23-page Executive Summary and Conclusions is sufficient for those with limited time. Here are simply absorbed new graphics, 26 key conclusions and the new roadmaps and forecasts as table and graphs with explanations 2025-2045. The 22- page Introduction explains and exemplifies the Levelised Cost of Storage metric and efficiency as a function of storage duration. 9 LDES technology families are compared using 17 criteria and the lessons from current grid, fringe-of-grid and off-grid LDES are presented plus potential by many graphed parameters with explanations on the images.
The rest of the report consists of a deep dive into the most successful and the most promising beyond-grid LDES technologies then some that also have a place, not least because some beyond-grid applications will approach GWh levels of storage - it is not all about solar houses and small microgrids. These chapters detail latest applications, suppliers and potential for beyond-grid applications.
Four chapters are specific to these most promising options on current evidence - redox flow batteries including hybrid RFB bridging the properties of RFB and conventional batteries, advanced conventional construction batteries ACCB then liquid gas storage for delayed electricity. Each have their own chapters because of their major importance beyond-grid. Then a chapter covers other candidates that could be important later, but are currently less promising, notably advanced pumped hydro APHES, compressed air CAES, electric thermal energy storage ETES and solid gravity SGES. A final chapter explains other options that have little potential beyond-grid, the reasons being given, such as massive earthworks, long delays and unsuitability for urban locations. These are conventional pumped hydro PHES, underground CAES and hydrogen as intermediary - H2ES. They are candidates for grid applications.
Th 142-page Chapter 4. "Primary LDES options beyond grids: Redox flow batteries RFB" is the longest because this technology family has the most companies already making beyond-grid installations. Exceptionally, their sizes span almost grid-sized down to private houses and there is a strong research pipeline for this family also covered in this chapter, including 2025. See two SWOT appraisals. Learn the many options such as vanadium-based to iron, iron-chromium, organic and their latest pros and cons. Less space is given to hybrid RFB options, part ACCB, that may have only one tank of liquid, are smaller, but tend not to separate capacity and power for scalability. 56 RFB companies are compared in detail.
The 52-page Chapter 5. "Primary LDES options beyond grids: Advanced conventional construction batteries ACCB" examines three families, profiling leading proponents, some claiming, but not yet installing, LDES for over 24-hour duration. See four SWOT appraisals, latest results and objectives and our analysis and predictions. For example, some leading ACCB could be particularly useful for small sizes even down to solar houses. However, they may never offer the longest durations required or compete for the largest units where scalability from separating power and capacity can assist.
The 33-page Chapter 6. "Primary LDES storage options beyond grids: liquid gas energy storage LAES or CO2" completes the presentation of the most promising options for beyond-grid LDES on current evidence, with liquid air intermediary the most proven but needing cryogenics and liquid carbon dioxide being newer, possibly lower cost and catching up in interest and collaboration. The chapter is shorter because fewer companies and options are involved.
Chapter 7. "Other LDES storage options beyond grids: APHES, CAES, ETES, SGES", with 56 pages, explains four families of technology that are unlikely to be leaders in the beyond-grid LDES value market but are important secondary options. Notably, advanced pumped hydro involves such things as pumping heavy water up mere hills and regular water down disused mines and, because they do not have to be enormous, these currently look interesting for suitable beyond-grid sites as do above ground compressed air if it can be improved, thermal energy as intermediary, notably using heat pumps and finally lifting blocks - solid gravity energy storage - perhaps in special high-rise buildings and disused mines for instance.
The report ends by briefly explaining other technologies that are strong candidates for grid LDES, where long delays, huge up-front costs and massive earthworks are tolerable, this being almost never the case for beyond-grid sites. Chapter 8. "Technologies with less potential for beyond-grid LDES: conventional PHES, CAES, H2ES" has 25 pages.
CAPTION: Eight ACCB manufacturers compared: 8 columns: name, brand, technology, tech. readiness, beyond-grid focus, LDES focus, comment. Source: Zhar Research report, "Microgrid Long Duration Energy Storage LDES becomes a large opportunity: markets, technologies for solar buildings, data centers, communities, desalinators, industrial processes 2025-2045".
Table of Contents
1. Executive summary and conclusions
1.1. Purpose of this report
1.2. The different characteristics of grid utility and beyond-grid LDES 2025-2045
1.3. Overview
1.4. Methodology of this analysis
1.5 10 primary conclusions concerning the beyond-grid LDES market
1.6 10 primary conclusions concerning the beyond-grid LDES technologies
1.7. Beyond-grid LDES roadmap 2025-2045
1.8. Market forecasts in 26 lines 2025-2045
1.8.1. LDES total value market showing beyond-grid gaining share 2023-2044
1.8.2. Beyond-grid LDES market for microgrids, minigrids, other in 8 categories $ billion 2025-2045: table and line graphs
1.8.3. Beyond-grid LDES market for microgrids, minigrids, other in 8 categories $ billion 2025-2045: table and area graphs with explanation
1.8.4. Regional share of beyond-grid LDES value market in four categories 2025-2045
1.8.5. Total LDES market in 11 technology categories $ billion 2025-2045 table and graphs
1.8.6. Microgrid global market $ billion 2025-2045 with LDES commentary
1.8.7. Solar building energy storage global market $bn 2025-2045 with LDES commentary
2. Introduction
2.1. Overview
2.1.1. LDES
2.1.2. Global electricity trends
2.1.3. Beyond-grid: buildings, industrial processes, minigrids, microgrids, other
2.1.4. Beyond-grid electricity production and management
2.2. The off-grid megatrend
2.3. The solar megatrend
2.4. The LDES prospect and cost challenge
2.4.1. Prospect
2.4.2. Challenge: compelling economics for local provision of LDES
2.4.3. Example of avoiding LDES by input matching: Ushant island
2.4.4. Reducing LDES need: Photovoltaics can provide more even power over more of the day
2.4.5. The trend to needing longer duration storage
2.4.6. LDES cost challenge
2.5. Multifunctional nature of beyond-grid storage
2.6. Big picture of LDES technology potential for grid and beyond-grid
2.7. LDES toolkit for grid and beyond-grid
2.8. Physics vs chemistry for LDES
2.9. Technologies for largest number of LDES sold for grids, microgrids, buildings 2025-2045
3. LDES storage options compared by parameter
3.1. Overview and definition and usefulness of LCOS
3.2. Equivalent efficiency vs storage hours, LCOS calculation, 9 technology families, vs 17 criteria
3.3. Nine LDES technology families, vs 17 other criteria
3.4. LDES technology choices including for grids
3.5. Lessons from LDES projects completed and planned
3.6. Available sites vs space efficiency for LDES technologies
3.7. LCOS $/kWh trend vs storage and discharge time
3.8. LDES power GW trend vs storage and discharge time
3.9. Days storage vs rated power return MW for LDES technologies
3.10. Days storage vs capacity MWh for LDES technologies
3.11. Potential by technology to supply LDES at peak power after various delays