많은 산업 분야의 급속한 기술 발전과 혁신이 첨단 소재 시장 수요를 견인하고 있습니다. 나노재료, 바이오소재, 스마트재료, 복합재료를 포함한 첨단재료는 강도, 내구성, 경량화, 기능성 향상 등 우수한 성능을 가지고 있습니다. 이러한 재료는 2024년에 780억 4,000만 달러의 매출을 돌파하며, 2032년에는 약 1,531억 6,000만 달러의 평가액에 달하는 것을 가능하게 하는 것으로 차세대 제품 및 기술의 구축에 필수적입니다.
정교한 소재에 대한 수요 증가를 촉진하는 또 다른 중요한 요소는 지속가능성과 에너지 효율을 중시하는 경향이 강화되고 있다는 점입니다. 환경 부하를 줄이고, 에너지 효율을 높이며, 지속가능한 개발을 촉진하는 재료에 대한 산업계의 요구가 증가하고 있으며, 2026-2032년 CAGR은 9.70%를 보일 것으로 예측됩니다.
첨단소재 시장 정의/개요
첨단 소재는 기존 소재보다 우수한 품질과 성능 특성을 가진 인공 물질입니다. 이러한 재료는 특정 사양에 맞게 조정되어 최첨단 기술 및 용도에 자주 채택되고 있습니다. 나노재료, 복합재료, 바이오소재, 스마트 재료 등이 포함됩니다. 예를 들어 나노 소재는 나노 스케일(10억분의 1미터)의 구조를 가진 물질로 전기적, 광학적, 기계적 특성이 뚜렷한 특성을 가지고 있습니다.
첨단 소재는 우수한 품질과 성능 특성으로 인해 많은 분야에 변화를 일으키고 있습니다. 이러한 소재는 항공우주산업과 방위산업에서 가볍고 내구성이 뛰어나며 강도가 높은 부품을 제조하는 데 매우 중요합니다. 예를 들어 탄소섬유 복합재료는 항공기 및 우주선에 널리 활용되고 있으며, 강도를 유지하면서 무게를 줄여 연비 효율과 성능을 향상시키고 있습니다.
첨단 소재의 미래 응용은 그 독특한 특성과 능력으로 인해 많은 산업 분야에서 큰 변화를 약속합니다. 첨단 소재는 에너지 분야에 큰 영향을 미칠 것으로 예측됩니다. 예를 들어 그래핀, 페로브스카이트, 첨단 복합재료는 에너지 산업을 변화시킬 준비가 되어 있습니다.
항공우주 산업 수요 증가는 첨단 소재 시장의 주요 촉진요인입니다. 항공기 제조업체들이 더 가볍고, 더 강하고, 더 연비가 좋은 설계를 추구함에 따라 복합재료, 첨단 합금, 나노소재와 같은 혁신적 재료의 중요성이 커지고 있습니다. 국제항공운송협회(IATA)에 따르면 세계 항공 여객 운송량은 2037년까지 두 배로 증가하여 연간 82억 명에 달할 것으로 예상되며, 보잉은 2037년까지 4,2,730대의 민간 항공기가 새로이 필요할 것으로 예측했습니다. 항공우주산업의 지속가능성을 위한 노력은 항공기를 경량화하고 연료 효율을 높일 수 있는 혁신적인 소재의 사용을 장려하고 있습니다.
또한 우주 개발 산업은 빠르게 확장되고 있으며, 정교한 재료에 대한 수요가 증가하고 있으며, NASA의 2023 회계연도 예산은 전년 대비 3% 증가한 254억 달러로, NASA가 첨단 재료에 크게 의존하는 우주 기술에 지속적으로 예산을 투자할 것임을 보여줍니다. 우주 재단에 따르면 세계 우주 경제는 2020년 4,470억 달러에 달하며, Morgan Stanley에 따르면 2040년에는 1조 달러에 달할 것으로 예측됩니다. 이러한 확장으로 인해 우주에서 가혹한 조건을 견딜 수 있는 재료에 대한 수요가 증가할 것으로 예측됩니다. 또한 미국 국방부는 2023 회계연도에 극초음속 관련 연구에 47억 달러의 예산을 책정하는 등 극초음속 기술에 대한 투자를 강화하고 있으며, 가혹한 조건을 견딜 수 있는 혁신적인 소재의 필요성이 더욱 높아질 것으로 보입니다.
원자재 수급의 제한은 첨단 소재 비즈니스에 큰 걸림돌이 되기도 하지만, 혁신과 지속가능성 실천을 촉진할 수 있는 기회도 될 수 있습니다. 중요한 요인 중 하나는 첨단 기술 용도에서 희토류 원소(REE)에 대한 수요 증가입니다. 미국 지질조사국에 따르면 2023년 희토류 산화물의 세계 생산량은 28만 톤에 달할 것으로 예상되며, 그 중 70% 이상을 중국이 차지할 것으로 예측됩니다. 이러한 공급 집중으로 인해 병목현상이 발생하여 가격이 불안정해질 수 있습니다. 예를 들어 유럽연합 집행위원회는 EU의 희토류 수요가 2030년까지 5배 증가할 것으로 예상하고 있으며, 공급망의 다양성과 대체 자원의 개발이 매우 중요하다고 강조하고 있습니다.
또 다른 원동력은 지속가능하고 재활용 가능한 재료를 찾는 움직임입니다. 유엔환경계획(UNEP)에 따르면 전 세계 재료 사용량은 2011년 790억 톤에서 2060년 1,670억 톤으로 두 배로 증가할 것으로 예측됩니다. 이러한 추세는 바이오 대체 재료와 보다 효율적인 재활용 방법에 대한 연구를 촉진하고 있습니다. 예를 들어 미국 에너지부 첨단제조국은 친환경 제조 방법 및 재료 개발 프로그램에 4억 달러 이상을 투자하고 있습니다. 또한 유럽연합(EU)의 순환 경제 행동 계획은 2030년까지 EU 내에서 재활용 재료의 사용량을 늘리는 것을 목표로 하고 있으며, 이를 통해 원료 확보에 대한 압력을 완화할 수 있습니다.
Rapid technological advances and innovations across numerous industries are driving the demand for the advanced materials market. Advanced materials which include nanomaterials, biomaterials, smart materials, and composites have superior performance qualities such as increased strength, durability, lightweight, and functionality. These materials are crucial for building next-generation products and technologies by enabling the market to surpass a revenue of USD 78.04 Billion valued in 2024 and reach a valuation of around USD 153.16 Billion by 2032.
Another key element driving the increase in demand for sophisticated materials is the growing emphasis on sustainability and energy efficiency. Industries are increasingly looking for materials that can reduce environmental impact, increase energy efficiency, and promote sustainable development by enabling the market to grow at a CAGR of 9.70 % from 2026 to 2032.
Advanced Materials Market: Definition/ Overview
Advanced materials are engineered substances that have better qualities and performance characteristics than traditional materials. These materials are tailored to specific specifications and are frequently employed in cutting-edge technology and applications. They include nanomaterials, composites, biomaterials, and smart materials. Nanomaterials, for example, are materials with structures at the nanoscale (one billionth of a meter) that have distinct electrical, optical, and mechanical properties.
Because of their better qualities and performance characteristics, advanced materials are transforming many sectors. These materials are crucial in the aerospace and defense industries for producing lightweight, durable, and high-strength components. For example, carbon fiber composites are widely utilized in aircraft and spacecraft to reduce weight while maintaining strength resulting in greater fuel efficiency and performance.
The future application of advanced materials promises substantial transformations across numerous industries owing to their unique features and capabilities. Advanced materials will have a significant impact on the realm of energy. For example, graphene, perovskites, and advanced composites are poised to transform the energy industry.
The aerospace industry's expanding need is a primary driver of the advanced materials market. As airplane makers seek lighter, stronger, and more fuel-efficient designs, innovative materials such as composites, advanced alloys, and nanomaterials become increasingly important. According to the International Air Transport Association (IATA), global air passenger traffic is predicted to double by 2037, to 8.2 billion people per year. This increase in demand needs the manufacturing of more aircraft with Boeing estimating a requirement for 42,730 new commercial aircraft by 2037. The aerospace industry's effort for sustainability encourages the use of innovative materials that can lower aircraft weight and enhance fuel efficiency.
Furthermore, the space exploration industry is expanding rapidly increasing the demand for sophisticated materials. NASA's budget for fiscal year 2023 is USD 25.4 Billion, up 3% from the previous year indicating that the agency will continue to spend on space technologies that rely largely on sophisticated materials. The global space economy reached USD 447 Billion in 2020, according to the Space Foundation, and is expected to reach USD 1 Trillion by 2040, according to Morgan Stanley. This expansion will increase the demand for materials that can survive severe conditions in space. Furthermore, the US Department of Defense's increased focus on hypersonic technology with a budget commitment of USD 4.7 Billion for hypersonic-related research in fiscal year 2023 will further drive the need for innovative materials capable of withstanding harsh conditions.
The restricted availability of raw materials presents substantial hurdles for the advanced materials business but it also encourages innovation and sustainable practices. One significant factor is the growing demand for rare earth elements (REEs) in high-tech applications. According to the United States Geological Survey, global rare earth oxide production will reach 280,000 metric tons in 2023, with China accounting for over 70% of this total output. This concentration of supply leads to possible bottlenecks and price instability. For example, the European Commission forecasts that the EU's demand for rare earth elements is predicted to increase fivefold by 2030 emphasizing the critical need for supply chain diversity and the development of alternative resources.
Another motivator is the movement toward sustainable and recyclable materials. According to the United Nations Environment Programme, worldwide material use is expected to more than double from 79 billion tons in 2011 to 167 billion tons by 2060. This trend is driving research into bio-based alternatives and more efficient recycling methods. For example, the Advanced Manufacturing Office of the United States Department of Energy has invested more than USD 400 Million in programs to develop environmentally friendly manufacturing methods and materials. Furthermore, the European Union's Circular Economy Action Plan seeks to increase the usage of recycled materials in the EU by 2030, thus alleviating some of the pressure on raw material availability.
Polymer Matrix Composites (PMCs) dominate the advanced materials industry due to their broad application across industries and favorable features. PMCs, which are made of a polymer matrix reinforced with fibers like carbon, glass, or aramid, are popular because of their high strength-to-weight ratio, corrosion resistance, and design flexibility. These properties make PMCs particularly attractive in industries including aerospace, automotive, and sports equipment where weight reduction while retaining structural integrity is critical. For example, in the aerospace industry, PMCs are widely utilized in the manufacturing of aircraft components like fuselages, wings, and tail sections because they dramatically reduce overall aircraft weight resulting in improved fuel efficiency and performance.
PMCs' supremacy is due to their versatility and low cost of creating complicated forms and structures. The simplicity of molding and shaping PMCs allows for increased design flexibility allowing producers to make complicated pieces that would be difficult to create with standard materials. This adaptability is especially useful in the sports equipment market where personalized and ergonomically designed goods are critical for peak performance. PMCs' cost-effectiveness which stems from lower raw material costs and simpler production procedures than metal and ceramic composites, reinforces their market dominance.
Non-oxide ceramics are growing as the leading segment owing to their better mechanical qualities and high thermal resistance. Non-oxide ceramics including silicon carbide (SiC), silicon nitride (Si3N4), and boron nitride (BN) have excellent strength, hardness, and endurance making them perfect for demanding applications in a variety of high-performance sectors. These materials can tolerate severe temperatures with little deterioration, and their low thermal expansion coefficients provide dimensional stability under thermal stress. This makes non-oxide ceramics especially desirable in industries such as aircraft, automotive, and industrial manufacturing where components must work dependably in hostile environments.
Non-oxide ceramics are gaining traction in the electronics industry where their superior thermal and electrical qualities are critical. Silicon nitride and boron nitride, for example, are commonly utilized in semiconductor fabrication and advanced electrical equipment. Silicon nitride is an ideal material for electronic substrates and heat sinks due to its high thermal conductivity and electrical insulating qualities which help to regulate heat in high-power electronics while also boosting device performance and lifetime. Boron nitride which has a unique mix of thermal conductivity and electrical insulation is employed in thermal management applications such as heat spreaders and electronic device insulators.
The aerospace and defense sectors dominate the North American advanced materials market, with composites playing an important role in lightweight and high-performance applications. The region's dominance in these industries significantly drives up demand for advanced composites.
The aircraft industry is a significant driver of advanced composites in North America. The Aerospace Industries Association estimates that the U.S. aerospace and military industry will contribute $892 billion to the economy in 2022, accounting for 1.8% of total GDP. The Federal Aviation Administration (FAA) expects the total commercial aircraft fleet to rise from 7,690 in 2021 to 10,555 in 2042, showing a constant growth in demand for lightweight materials. Advanced composites, noted for their high strength-to-weight ratio, are critical to increasing fuel efficiency and lowering emissions.
The drive for efficiency is bolstered by the International Civil Aviation Organization's goal of achieving carbon-neutral expansion by 2020. In the defense sector, the US Department of Defense's USD 842 Billion budget request for fiscal year 2024 including a sizable amount dedicated to research and development demonstrates the sustained investment in advanced materials for military uses. The automotive industry also adds to the rising need for sophisticated composites. The US Environmental Protection Agency's Corporate Average Fuel Economy (CAFE) requirements which seek to attain an industry-wide objective of 49 mpg for passenger cars and light trucks by 2026 are encouraging manufacturers to use lightweight materials.
The Asia-Pacific region is expected to be the fastest-growing market for advanced materials driven mostly by rising demand for high-end automotive components. This expansion is likely to surpass other regions because of fast industrialization and rising disposable income in China, Japan, and South Korea. The need for high-end automotive products is a major driver of the Asia-Pacific advanced materials industry. This is supported by several important elements and statistics. First, the International Organization of Motor Vehicle Manufacturers (OICA) reports that China alone will generate over 27 million vehicles in 2021, accounting for around 32.5% of global vehicle production. The China Passenger Car Association estimated that the luxury car segment in China will grow by 80% in 2021.
According to the International Energy Agency, China sold half of the world's electric vehicles in 2021, with 3.3 million units sold. EVs necessitate sophisticated materials for lightweight construction and battery technology which further fuels the market. According to Japan's "Green Growth Strategy," the government aims to have all new automobile sales be electric by 2035. This strategy is designed to speed up the adoption of innovative materials in the automotive industry. In addition, the Asia Pacific region is seeing significant investment in advanced material research and development.
The advanced materials market is a dynamic and competitive space, characterized by a diverse range of players vying for market share. These players are on the run for solidifying their presence through the adoption of strategic plans such as collaborations, mergers, acquisitions, and political support. The organizations are focusing on innovating their product line to serve the vast population in diverse regions.
Some of the prominent players operating in the advanced materials market include:
Momentive Performance Materials, Inc.
BASF SE
DowDuPont, Inc.
Morgan Advanced Materials
Hanwha Group
PyroGenesis Canada, Inc.
Cytech Products, Inc.
Akzo Nobel N.V.
Hexcel Corporation
In February 2023, Covestro AG announced plans to establish a thermoplastic polyurethanes (TPU) facility in Zhuhai, China. This would be the company's largest investment in the TPU industry, costing in the low three-digit millions of Euros.
In February 2023, Covestro AG introduced Makrolon 3638 polycarbonate, an ultra-durable polymer for healthcare and life science applications.