광학 발광 분광법 시장 : 제품 유형별, 용도별, 최종사용자별, 지역별(2024-2031년)
Optical Emission Spectroscopy Market By Product Type, Application, End User, & Region for 2024-2031
상품코드 : 1622894
리서치사 : Verified Market Research
발행일 : 2024년 08월
페이지 정보 : 영문 202 Pages
 라이선스 & 가격 (부가세 별도)
US $ 3,950 ₩ 5,703,000
PDF (Single User License) help
PDF 보고서를 1명만 이용할 수 있는 라이선스입니다. 보고서의 다운로드와 인쇄가 가능합니다.
US $ 4,850 ₩ 7,002,000
PDF & Excel (5 User License) help
PDF 및 Excel 보고서를 동일 기업의 5명까지 이용할 수 있는 라이선스입니다. 보고서의 다운로드와 인쇄가 가능합니다.
US $ 7,550 ₩ 10,900,000
PDF & Excel (Enterprise User License) help
PDF 및 Excel 보고서를 동일기업내 모든 분들이 이용할 수 있는 라이선스입니다. 보고서의 다운로드와 인쇄가 가능합니다.


한글목차

광학 발광 분광법 시장 평가, 2024-2031년

광학 발광 분광법(OES) 시장의 성장 요인은 다양한 산업에서 재료 분석에 있어 중요한 역할을 하는 광학 발광 분광법(OES)은 금속 및 합금의 원소 분석을 신속하고 정확하게 수행할 수 있어 제품 품질 유지, 규제 준수 및 제조 공정 관리에 필수적입니다. 산업 자동화의 증가, 자동차, 항공우주, 전자 등의 산업에서 품질 관리 요구 사항의 증가, 정확한 원소 조성 데이터를 제공하는 고급 분석 기술에 대한 수요로 인해 시장이 확대되고 있습니다. 광학 발광 분광법 시장은 2024년 6억 7,690만 달러의 매출을 돌파하고 2031년에는 11억 9,917만 달러에 달할 것으로 추정됩니다.

최신 OES 시스템은 고해상도 광학, 다중 채널 감지, 데이터 분석을 위한 개선된 소프트웨어 알고리즘과 같은 고급 기능을 갖추고 있습니다. 이러한 개발은 재료 분석, 원소 조성 테스트 및 품질 관리 절차에서 분석 정확도, 정밀도 및 속도를 향상시킵니다. 또한 현장 검사 기능을 갖춘 소형 휴대용 OES 장비로의 전환이 두드러지게 나타나고 있으며, 이는 현장 응용 분야에서 운영의 유연성과 효율성을 향상시키고 있습니다. 이 시장은 2024년부터 2031년까지 7.41%의 연평균 성장률(CAGR)을 기록할 것으로 예상됩니다.

광학 발광 분광법 시장 정의/개요

광학 발광 분광법(OES)은 원자 방출 분광법(AES)이라고도 불리며, 물질의 원소 조성을 결정하는 기술로, 시료의 원자에 특정 파장의 빛을 발생시켜 이를 모니터링하고 분석하여 원소 조성을 파악하는 기술입니다. 시료를 고에너지 열원에 노출시켜 원자를 이온화시켜 빛을 발생시킵니다. 각 원소는 각각 다른 파장에서 빛을 발산하기 때문에 시료에 포함된 원소를 정량적, 정성적으로 조사할 수 있습니다. 광학 발광 분광법(OES)의 향후 전망은 기술 개발 및 정밀 분석에 대한 요구가 증가함에 따라 다양한 산업 분야에서 큰 기대를 모으고 있습니다. 여기된 원자의 발광을 기반으로 하는 원소 분석 기술인 OES는 비파괴, 고속, 고감도 및 정확한 결과를 제공합니다. 기업들이 품질 관리, 재료 특성화 및 공정 최적화를 우선시함에 따라 OES는 야금, 자동차, 항공우주, 전자 등의 산업에서 점점 더 중요한 역할을 할 것으로 예상됩니다.

산업화와 품질 관리 요구의 증가는 어떻게 광학 발광 분광법 시장을 확대할 것인가?

세계 산업화로 인한 제조 활동의 증가는 자동차, 항공우주, 전자, 야금 등의 산업을 주도하고 있으며, 제조 공정에 사용되는 금속, 합금 및 재료에 대한 정밀한 원소 분석을 제공하는 데 있어 광학 발광 분광법(OES)이 중요하게 작용하고 있습니다. 무결성 모니터링 및 제품 품질 유지에 사용되며, 그 결과 OES 시스템에 대한 수요가 증가하고 있습니다.

복잡한 제조 공정은 제품의 일관성과 규정 준수를 보장하기 위해 엄격한 관리와 최적화가 필요한데, OES는 실시간 원소 성분 분석을 가능하게 합니다. 제조업체는 OES 데이터를 사용하여 공정 매개 변수를 수정하고, 재료 활용을 최적화하고, 폐기물을 줄이고, 생산 효율성을 향상시킬 수 있습니다. 이는 재료 구성의 미세한 차이가 제품 성능과 품질에 영향을 미치는 산업에서 매우 중요합니다.

또한, 품질 관리는 제품의 신뢰성, 안전성 및 성능을 중시하는 비즈니스에서 중요하며, OES는 비파괴 검사 및 분석을 통해 미량 원소, 오염 물질 및 합금 원소를 감지하고 정량화할 수 있으며, OES는 미량 원소, 오염 물질 및 합금 원소를 비파괴 검사 및 정량화할 수 있습니다. 이 기능은 높은 품질 기준과 규제 요건 준수를 보장하여 자동차, 항공우주, 전자 등의 산업에 혜택을 제공합니다. 세계 규제 준수를 위해서는 정확하고 신뢰할 수 있는 분석 데이터가 필요하며, OES는 업계가 제품 품질, 안전 및 환경 영향 기준을 충족할 수 있도록 돕고 있습니다.

또한, 야금과 같은 산업에서 OES는 강도, 내구성 및 내식성 기준에 대한 강철 및 합금의 조성을 분석하고, 환경 모니터링에서는 대기, 물 및 토양 시료에서 오염 물질 및 유해 물질을 감지하여 환경 준수를 보장합니다. 분광 장비의 발전으로 OES의 감도, 정확도 및 속도가 향상되어 광범위한 농도 범위와 매트릭스에서 원소를 정확하게 검출하고 정량할 수 있게 되었습니다. 이러한 기술적 발전으로 인해 OES는 복잡한 재료와 까다로운 응용 분야에 대한 신뢰할 수 있는 분석 솔루션을 원하는 조직에 더욱 매력적으로 다가갈 수 있게 되었습니다.

OES를 자동화 기술, 데이터 분석 플랫폼, 디지털화 이니셔티브와 통합하면 산업 현장에서의 유용성을 높일 수 있습니다. 자동화된 OES 시스템은 최소한의 인력 개입으로 신속하고 반복적인 평가를 수행하여 처리량을 늘리고 운영 비용을 절감할 수 있습니다. 디지털 통합을 통해 산업 공정에서 실시간 데이터 처리, 분석 및 의사결정이 가능해져 사전 예방적 유지보수, 공정 최적화 및 예측 분석이 용이해집니다.

운영의 복잡성과 다른 분석 기술과의 통합은 어떻게 광학 발광 분광법 시장을 저해하는가?

OES 장비의 작동에는 전문 지식과 기술력이 필요합니다. 사용자는 분광 원리, 장비 작동 프로토콜 및 스펙트럼 데이터 해석을 이해해야 하기 때문입니다. 이러한 필요성은 숙련된 작업자의 OES에 대한 접근을 제한하고 분광학 전문 지식을 갖춘 전담 운영자 및 분석가가 자주 필요합니다.

OES 장비는 정확성과 신뢰성을 보장하기 위해 정기적으로 교정 및 유지보수를 수행해야 합니다. 신뢰할 수 있는 분석 결과를 얻으려면 특정 응용 분야와 시료 유형에 맞는 올바른 교정이 중요합니다. 교정은 참조 표준과 까다로운 조정이 필요할 수 있으며, 이는 복잡성과 운영 오버헤드를 증가시키며, OES를 이용한 정확한 분광 분석은 적절한 샘플 조제에 따라 달라집니다. 샘플 조제는 시료 유형(고체, 액체, 기체)에 따라 다르며, 결과의 균일성과 재현성을 보장하기 위해 특별한 절차가 필요합니다. 샘플 조제 작업은 시간이 오래 걸리며 위험물 취급 및 엄격한 오염 방지 프로토콜을 준수해야 할 수도 있습니다.

또한, OES 장비에서 얻은 스펙트럼 데이터를 해석하는 것은 특히 복잡한 시료와 미량 원소 분석의 경우 일반적으로 어렵습니다. 스펙트럼 선이 겹치거나 매트릭스의 영향을 받기 때문에 고급 데이터 분석 및 소프트웨어 도구가 필요합니다. 사용자는 원하는 스펙트럼 라인과 배경 잡음 및 간섭을 구별해야 하며, 이를 위해서는 광범위한 지식과 경험이 필요하며, OES는 형광 XRF(XRF), 원자 흡수 분석(AAS), 질량 분석(MS)과 같은 다른 분석 기법과 함께 널리 사용되어 분석 능력을 향상시키고 추가 정보를 제공합니다. 분석 능력을 향상시키거나 추가 정보를 제공합니다.

또한, 여러 접근법의 데이터를 통합하려면 샘플 조제, 데이터 형식 및 교정 표준의 일관성이 필요합니다. 많은 분석 시스템 간에 원활한 통합 및 데이터 상관관계를 달성하려는 시도는 기술적 장애물이 될 수 있으며, OES를 다른 분석 장비 및 시스템과 통합하려면 하드웨어 인터페이스, 소프트웨어 프로토콜 및 데이터 통신 표준을 준수해야 할 수 있습니다. 여러 제조업체가 독자적으로 개발한 기술과 데이터 형식은 상호 운용성을 어렵게 하고, 기기 간의 원활한 데이터 교환을 방해하며, 실험실 운영의 유연성을 제한할 수 있습니다. 이러한 복잡성은 데이터 관리의 어려움을 가중시킵니다.

통합 분석 기술을 효과적으로 사용하려면 작업자는 분광학, 화학 및 기기 작동에 대한 다학제적 능력을 갖추어야 합니다. 다양한 분석 장비의 데이터를 사용하고 해석하는 직원 개발은 운영 비용을 증가시키고 기술 발전을 따라잡기 위해 지속적인 전문성 개발이 필요할 수 있습니다.

목차

제1장 소개

제2장 주요 요약

제3장 시장 개요

제4장 광학 발광 분광법시장 : 제품 유형별

제5장 광학 발광 분광법시장 : 최종 이용 산업별

제6장 광학 발광 분광법시장 : 용도별

제7장 지역별 분석

제8장 시장 역학

제9장 경쟁 구도

제10장 기업 개요

제11장 시장 전망과 기회

제12장 부록

ksm
영문 목차

영문목차

Optical Emission Spectroscopy Market Valuation - 2024-2031

The rising factor of the Optical Emission Spectroscopy (OES) Market lies in its critical role in material analysis across various industries. OES offers rapid and precise elemental analysis of metals and alloys, which is critical for maintaining product quality, regulatory compliance, and process control during manufacturing. The market is growing because to increased industrial automation, demanding quality control requirements in industries such as automotive, aerospace, and electronics, and a demand for sophisticated analytical techniques that provide exact elemental composition data. The optical emission spectroscopy market is estimated to surpass a revenue of USD 676.9 Million in 2024 and reach USD 1199.17 Million by 2031.

Modern OES systems have advanced features like high-resolution optics, multi-channel detection, and improved software algorithms for data analysis. These developments have increased analytical precision, accuracy, and speed in material analysis, elemental composition testing, and quality control procedures. Furthermore, there has been a noticeable shift toward compact, portable OES equipment with on-site testing capabilities, which improves operational flexibility and efficiency in field applications. The market is expected to rise with a projectedCAGR of 7.41% from 2024 to 2031.

Optical Emission Spectroscopy Market: Definition/ Overview

Optical Emission Spectroscopy (OES), often called atomic emission spectroscopy (AES), is a technique for determining the elemental makeup of materials. It works by causing atoms in a sample to produce light with specific wavelengths, which are then monitored and analysed to identify the elemental makeup. OES entails exposing the sample to a high-energy heat source, such as a plasma or an electric arc, which ionizes atoms and causes them to produce light. Each element emits light at distinct wavelengths, enabling quantitative and qualitative examination of the elements contained in the sample. The future scope of Optical Emission Spectroscopy (OES) has tremendous promise across a wide range of industries, driven by technological developments and rising need for precise analysis. OES, an elemental analysis technique based on the emission of light from excited atoms, provides non-destructive, fast, and very sensitive and accurate results. As companies prioritize quality control, material characterisation, and process optimization, OES is predicted to play an increasingly important role in industries such as metallurgy, automotive, aerospace, and electronics.

What's inside a VMR industry report?

Our reports include actionable data and forward-looking analysis that help you craft pitches, create business plans, build presentations and write proposals.

How are the Increasing Industrialization and Quality Control Requirements Set to Magnify the Optical Emission Spectroscopy Market?

The increasing manufacturing activity due to global industrialization drives the industries such as automotive, aerospace, electronics, and metallurgy, among others, where Optical Emission Spectroscopy (OES) is critical for providing precise elemental analysis of metals, alloys, and materials used in manufacturing processes. OES is used to validate raw material compositions, monitor material integrity during processing, and maintain product quality, resulting in increased demand for OES systems.

Complex production processes demand strict control and optimization to ensure product consistency and regulatory compliance, and OES allows for real-time elemental composition analysis. Manufacturers use OES data to modify process parameters, optimize material utilization, reduce waste, and improve production efficiency, which is critical in industries were minor differences in material composition effect product performance and quality.

Furthermore, quality control is critical in businesses that value product reliability, safety, and performance, and OES enables non-destructive testing and analysis to detect and quantify trace elements, contaminants, and alloying elements. This capability assures compliance with high quality standards and regulatory requirements, which benefits industries such as automotive, aerospace, and electronics. Global regulatory compliance needs accurate and trustworthy analytical data, with OES aiding industries in satisfying product quality, safety, and environmental impact standards.

Additionally, in industries such as metallurgy, OES analyses steel and alloy compositions for strength, durability, and corrosion resistance criteria, whereas in environmental monitoring, it detects pollutants and harmful substances in air, water, and soil samples, assuring environmental compliance. Advances in spectroscopic apparatus have improved OES sensitivity, accuracy, and speed, allowing for the precise detection and quantification of elements across a wide range of concentrations and matrixes. These technological advancements make OES more appealing to organizations looking for reliable analytical solutions for complex materials and difficult applications.

The integration of OES with automation technologies, data analytics platforms, and digitalization initiatives increases its usefulness in industrial settings. Automated OES systems perform rapid, repetitive assessments with minimal human intervention, increasing throughput while lowering operational expenses. Digital integration enables real-time data processing, analysis, and decision-making in industrial processes, hence facilitating proactive maintenance, process optimization, and predictive analytics.

How do Complexity of Operation and Integration with Other Analytical Techniques Impede the Optical Emission Spectroscopy Market?

Operating OES instruments requires specialist knowledge and technical competence, as users must grasp spectroscopic principles, instrument operation protocols, and spectrum data interpretation. This need limits OES access to skilled workers, frequently necessitating dedicated operators or analysts with spectroscopy expertise.

OES instruments must be calibrated and maintained on a regular basis to ensure their accuracy and dependability. Correct calibration for specific applications and sample types is critical for producing reliable analytical findings. Calibration may need reference standards and painstaking adjustments, increasing complexity and operating overhead. Accurate spectroscopic analysis utilizing OES is dependent on proper sample preparation, which varies by sample type (solid, liquid, gas) and necessitates specialized procedures to assure result uniformity and reproducibility. Sample preparation operations can be time-consuming and may include handling hazardous items or adhering to strict contamination avoidance protocols.

Furthermore, interpreting spectrum data obtained by OES equipment is typically difficult, especially for complicated samples or trace element analysis. Spectral lines can overlap or be impacted by matrix effects, demanding advanced data analysis and software tools. Users must distinguish between spectral lines of interest and background noise or interferences, which requires extensive knowledge and experience. OES is widely used in conjunction with other analytical techniques such as X-ray fluorescence (XRF), atomic absorption spectroscopy (AAS), and mass spectrometry (MS) to improve analytical capabilities or offer additional information.

Additionally, integrating data from several approaches necessitates consistency in sample preparation, data formats, and calibration standards. Technical obstacles can arise when attempting to achieve seamless integration and data correlation across many analytical systems. Integrating OES with other analytical instruments or systems may need compliance with hardware interfaces, software protocols, and data communication standards. Proprietary technologies or data formats from multiple manufacturers can make interoperability difficult, preventing seamless data interchange between devices and limiting flexibility in laboratory operations. This intricacy can exacerbate the difficulty of data management.

To effectively use integrated analytical techniques, workers must have interdisciplinary abilities in spectroscopy, chemistry, and equipment operation. Training employees to use and interpret data from various analytical equipment increases operational costs and may necessitate continual professional development to keep up with technological advances.

Category-Wise Acumens

How does the Increasing Demand for Arc/Spark OES and Chemical Composition Analysis Bolt up the Growth of the Optical Emission Spectroscopy Market?

The increasing demand for Arc/Spark Optical Emission Spectroscopy (OES) and Chemical Composition Analysis plays a crucial role in bolstering the growth of the Optical Emission Spectroscopy market. Arc/Spark OES is well-known for its high precision and accuracy in elemental analysis of metals and alloys, allowing manufacturers to swiftly and correctly assess the elemental composition of materials while adhering to industry requirements.

It supports quality control processes by verifying raw materials, monitoring manufacturing processes, and inspecting finished products for elemental consistency and integrity. Advancements in Arc/Spark OES systems have resulted in improved automation capabilities, allowing for faster analysis and data processing, as well as streamlining operations, decreasing manual errors, and increasing overall productivity in industrial settings.

Furthermore, chemical Composition Analysis with OES is critical for verifying the quality and performance of materials in various sectors. For example, in metal production and manufacturing, OES verifies alloy compositions to ensure they fulfil certain mechanical characteristics, corrosion resistance, and durability standards. OES enables real-time monitoring of chemical compositions throughout manufacturing processes by providing fast feedback on elemental content, allowing operators to quickly modify process parameters, optimize material utilization, and reduce output variability.

Additionally, many industries, such as automotive, aerospace, and electronics, operate under stringent regulatory frameworks that require precise material specifications and quality standards, which OES assists companies in meeting by ensuring that manufactured products meet required chemical compositions and safety criteria. The growing manufacturing industry, propelled by global industrialization and technological improvements, is driving need for dependable and effective analytical tools such as OES.

As industries diversify and evolve, there is a greater demand for precise chemical analysis to assist product development and quality assurance. Arc/Spark OES is increasingly being used in developing applications like as additive manufacturing (3D printing), where accurate material composition management is essential for obtaining desired mechanical qualities and product performance. Continuous breakthroughs in OES technology, such as spectral resolution, detection limitations, and data integration capabilities, increase the usability and appeal of these systems across a wider range of sectors and applications.

Will the Rising Utilization of Laser Induced Breakdown Spectroscopy and Environmental Analysis Contribute to the Propulsion of the Optical Emission Spectroscopy Market?

The rising utilization of Laser Induced Breakdown Spectroscopy (LIBS) and its application in environmental analysis can indeed contribute significantly to the propulsion of the Optical Emission Spectroscopy (OES) market. LIBS is distinguished by the employment of a laser pulse to vaporize a tiny sample volume, resulting in a plasma plume from which distinctive light is released for elemental composition analysis.

This technique excels at rapid, on-site analysis without considerable sample preparation, making it useful in environmental study across a wide range of sample types, including soil, air, water, and forensic investigations requiring quick and accurate elemental analysis. While different approaches, LIBS and OES have similar goals in elemental analysis. LIBS offers quick, real-time elemental analysis that is ideal for on-site environmental monitoring. However, it may not be as sensitive or precise as OES in controlled laboratory circumstances.

Furthermore, OES specializes in exact quantitative analysis, particularly for trace elements, which are important in metallurgy, materials science, and quality control. Its precision and sensitivity enhance LIBS's quick screening capabilities in an integrated analytical approach. The collaboration between LIBS and OES enables integrated analysis strategies. LIBS is useful for preliminary field screening, whereas OES validates results through comprehensive, quantitative laboratory analysis. This strategy improves the overall analytical dependability and capabilities.

Additionally, increased environmental restrictions and a focus on sustainability are driving demand for robust analytical techniques such as LIBS and OES. Together, they provide comprehensive solutions for environmental compliance, pollution management, and monitoring across multiple industries. Continuous improvements in laser technology, detecting systems, and software algorithms enhance LIBS and OES performance. These innovations shorten analytical time, improve detection limits, and broaden analyte measurement options.

LIBS and OES capabilities aid industries such as mining, agriculture, pharmaceuticals, and aerospace in terms of quality assurance, process control, and environmental management. Their joint use promotes effective decision-making and regulatory compliance. These regulations mandate accurate, reliable methods, spurring market growth through increased adoption.

Optical Emission Spectroscopy Market Report Methodology

Country/Region-wise Acumens

Will the Increasing Market Demand and Strong Industrial Base in North America Advance the Optical Emission Spectroscopy Market Further?

The increasing demand of OES technology across North America's diversified industrial landscape, which includes automotive, aerospace, electronics, metallurgy, and other industries. OES is used to conduct crucial elemental analyses of metals, alloys, and materials used in manufacturing processes. As industrial activities grow and vary, the necessity for precise and dependable analytical tools such as OES becomes more apparent.

In North American industries, quality control and compliance are overseen by severe regulations and standards. OES systems are critical in ensuring that materials fulfil exacting standards for strength, durability, performance, and environmental compliance. Real-time chemical analysis capabilities help manufacturing operations by spotting irregularities and ensuring material consistency. The region's concentration on innovation drives technological advances in OES systems on a continuous basis.

Furthermore, North American corporations have made significant investments in research and development to improve OES technology, including accuracy, sensitivity, automation, and integration with digital platforms. These improvements address the rising industry demand for advanced analytical equipment capable of handling complex materials while fulfilling demanding performance criteria. The expanding use of OES in diverse industrial applications in North America demonstrates a growing appreciation for its benefits in improving product quality, streamlining production processes, and assuring regulatory compliance.

Additionally, as industries attempt to improve efficiency, lower costs, and maintain competitive advantages, demand for advanced OES solutions is expected to surge. Leading OES producers in North America have a strong global market presence and export capability. They enter worldwide markets in Europe, Asia-Pacific, and beyond, leveraging their technological knowledge and reputation for excellence. This global outreach broadens business potential while reinforcing North America's position as a key influencer in establishing industry standards and technology breakthroughs in OES.

North America has a well-developed infrastructure for the production, delivery, and use of high-tech equipment such as OES systems. This includes modern testing facilities, research institutes, a qualified workforce, and logistical networks that facilitate the development and deployment of OES technology across a wide range of industrial sectors.

Will the Rising Manufacturing Sectors and Adoption of Advanced Technologies in Asia Pacific Region Stimulate the Growth Optical Emission Spectroscopy Market?

The rising manufacturing sectors and adoption of advanced technologies in the Asia-Pacific region create a fertile ground for the growth of the Optical Emission Spectroscopy market. Asia-Pacific countries, including China, Japan, South Korea, India, and Southeast Asian nations, are experiencing strong expansion in manufacturing across a variety of industries, including automotive, electronics, aerospace, and metals. These businesses require precise elemental analysis to ensure product quality, adherence to standards, and operational efficiency.

OES is important in manufacturing because it provides accurate and dependable elemental composition analysis for metals, alloys, and materials. This analysis is critical for quality assurance, process optimization, and regulatory compliance, which drives demand for OES equipment. Asia-Pacific is rapidly embracing sophisticated manufacturing technology to improve productivity, efficiency, and product quality. OES is incorporated into various technologies to provide real-time elemental analysis, which ensures manufacturing process consistency and reliability.

Furthermore, continuous advances in OES equipment, such as increased sensitivity, faster analysis times, and expanded data processing capabilities, address the changing needs of manufacturing businesses. Asia-Pacific countries are strengthening regulatory frameworks for product quality, safety, and environmental protection. OES assists manufacturers in meeting these high criteria by conducting comprehensive elemental analysis, identifying contaminants, and assuring material integrity.

Additionally, the growing emphasis on quality control, particularly in industries such as automotive, aerospace, and electronics, drives the demand for advanced analytical techniques like OES. Manufacturers rely on OES to meet high requirements, cut manufacturing costs, and achieve operational excellence. Governments in Asia-Pacific encourage technical advancement and innovation through regulations, incentives, and funding. These programs encourage industries to use modern analytical approaches, such as OES, to boost competitiveness and sustainability.

Investments in research centres, testing laboratories, and industrial hubs increase the adoption and deployment of OES technology. Government-led infrastructure development promotes technical innovation and market growth in the region. Asia-Pacific economies are important exporters of manufactured goods, necessitating strict quality control procedures and adherence to international standards. OES enables accurate and extensive elemental analysis, guaranteeing that exported products match worldwide market and customer expectations.

Competitive Landscape

The competitive landscape of Optical Emission Spectroscopy (OES) is distinguished by a varied spectrum of enterprises that provide innovative analytical solutions and services. These firms concentrate on improving OES technology for a variety of applications, including metallurgy, environmental monitoring, and material analysis. Innovation is a key driver, with continuing improvements in equipment, software algorithms, and spectral analysis approaches aimed at increasing accuracy, sensitivity, and usability. Furthermore, strategic partnerships, collaborations with research institutes, and investments in R&D are critical in establishing competitive strategies and expanding market presence in the worldwide OES industry.

Some of the prominent players operating in the optical emission spectroscopy market include:

Thermo Fisher Scientific

Agilent Technologies

HORIBA, Ltd.

PerkinElmer, Inc.

Shimadzu Corporation

Oxford Instruments plc

Ametek, Inc.

Bruker Corporation

Spectronix Corporation

PlasmaTherm LLC

Latest Developments

In April 2024, Luxium Solutions, a provider of advanced engineered materials and solutions, has entered into a definitive agreement to acquire Inrad Optics, Inc., a provider of advanced optical components, assemblies, and systems. Following the merger, Inrad Optics CEO Amy Eskilson highlighted enhanced flexibility and increased financial resources to drive future growth. The company aims to accelerate investments in critical technologies such as next-generation bent X-ray crystal monochromators for spectroscopy and plasma fusion applications, alongside large-format, ultra-high precision optical components and assemblies.

In November 2022, Digital lidar company Ouster and lidar sensors and solutions developer Velodyne Lidar have entered into a definitive agreement to merge in an all-stock transaction. Velodyne is well known for its Puck lidar sensors, which support low-speed autonomy and driver assistance applications, recently acquired AI-focused software company Bluecity. Ouster, which serves industrial, robotics, and smart infrastructure markets, acquired Sense Photonics last year and established Ouster Automotive to promote digital lidar adoption in consumer and commercial vehicles.

TABLE OF CONTENTS

1. Introduction

2. Executive Summary

3. Market Overview

4. Optical Emission Spectroscopy Market, By Product Type

5. Optical Emission Spectroscopy Market, By End-User Industry

6. Optical Emission Spectroscopy Market, By Application

7. Regional Analysis

8. Market Dynamics

9. Competitive Landscape

10. Company Profiles

11. Market Outlook and Opportunities

12. Appendix

(주)글로벌인포메이션 02-2025-2992 kr-info@giikorea.co.kr
ⓒ Copyright Global Information, Inc. All rights reserved.
PC버전 보기