ÆÄ¿öÆ®·¹ÀÎ µ¿·Â°è Å×½ºÆ® ÀÚµ¿È ½Ã½ºÅÛ ½ÃÀåÀº 2023³âºÎÅÍ 2030³â±îÁö ¾à 5%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù. ¹Ì±¹ NHTSA, Àεµ µµ·Î±³ÅëºÎ¿Í °°Àº ±â°üÀº ÀÚµ¿Â÷ ¾ÈÀü¿¡ ´ëÇÑ »õ·Î¿î °¡À̵å¶óÀÎÀ» ¼³Á¤Çϰí ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó, ÀÚµ¿Â÷ ȸ»çµéÀº º¸´Ù Á¤±³ÇÑ ÆÄ¿öÆ®·¹ÀÎ º¯Á¾¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¼¼°è ±ÔÁ¦ °È·Î ÀÎÇØ ±¤¹üÀ§ÇÏ°í º¹ÀâÇÑ Å×½ºÆ® »çÀÌŬÀ» Æ÷ÇÔÇÑ Å×½ºÆ® ¾çÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó ¹Ýº¹ÀûÀÌ°í º¹ÀâÇÑ Å×½ºÆ®¸¦ ¼öÇàÇϱâ À§ÇØ ÀÚµ¿ÈµÈ Å×½ºÆ® ½Ã½ºÅÛ µµÀÔÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀº ÃÖ÷´Ü ±â¼úÀ» µµÀÔÇÏ¿© Áö¼ÓÀûÀ¸·Î Â÷Á¾À» ¾÷µ¥ÀÌÆ®Çϰí ÀÖ½À´Ï´Ù. Çõ½ÅÀûÀÎ ÆÄ¿öÆ®·¹ÀÎÀ» žÀçÇÑ Â÷¼¼´ë ÀÚµ¿Â÷°¡ °è¼Ó °³¹ßµÊ¿¡ µû¶ó ½ÃÇè ¼ö¿ä´Â ´õ¿í Áõ°¡ÇÏ°í ½ÃÇèÀÇ º¹À⼺µµ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó ÀÚµ¿Â÷ ȸ»ç»Ó¸¸ ¾Æ´Ï¶ó ±ÔÁ¦ ±â°ü, Á¶»ç ±â°ü, ¼ºñ½º ½ºÅ×À̼ǵµ Áõ°¡ÇÏ´Â Â÷·® Å×½ºÆ®ÀÇ ¼ö¿Í º¹À⼺¿¡ ´ëÀÀÇϱâ À§ÇØ Å×½ºÆ® ÀÚµ¿È ½Ã½ºÅÛÀ» µµÀÔÇϰí ÀÖ½À´Ï´Ù. ±×·¯³ª Ãß°¡ ±¸¼º ¿ä¼Ò¸¦ À¯ÁöÇÏ´Â µ¥ µå´Â ºñ¿ë°ú º¹À⼺ Áõ°¡´Â Å×½ºÆ® ÀåºñÀÇ ºñ¿ëÀ» Áõ°¡½ÃÄÑ ÆÄ¿öÆ®·¹ÀÎ µ¿·Â°è Å×½ºÆ® ÀÚµ¿È ½Ã½ºÅÛ ¼¼°è ½ÃÀå ¼ºÀåÀ» ÀúÇØÇÒ °ÍÀÔ´Ï´Ù.
½ÃÀå ¼¼ºÐÈ´Â Â÷·® À¯Çüº°·Î ½Â¿ëÂ÷, ¼ÒÇü »ó¿ëÂ÷, ´ëÇü Æ®·°, ¹ö½º ¹× ÄÚÄ¡, ÀÌ·ûÂ÷, ¹ßÀü ¼¼Æ®, ¸ðÅͽºÆ÷Ã÷, ÆÄ¿ö ½ºÆ÷Ã÷, ³ó¾÷¿ë Â÷·®À¸·Î ³ª´¹´Ï´Ù. ¸ðÅͽºÆ÷Ã÷´Â ¿ÀÅäÅ©·Î½º, ÈúŬ¶óÀÓ, īƮ, ¼Å¶ ·¹À̽º, ·¤¸®Å©·Î½º, ±âŸ·Î ¼¼ºÐȵ˴ϴÙ. ÆÄ¿ö½ºÆ÷Ã÷´Â ½º³ë¿ì¸ðºô, ¼¼¹ßÀÚÀü°Å, ATV, UTV, Á¦Æ®½ºÅ° µîÀ¸·Î ¼¼ºÐȵ˴ϴÙ. ³ó¾÷¿ë Â÷·®Àº 30¸¶·Â ¹Ì¸¸, 30-100¸¶·Â, 101-200¸¶·Â, 200¸¶·Â ÀÌ»óÀ¸·Î ¼¼ºÐȵ˴ϴÙ. ½Â¿ëÂ÷ ºÎ¹®Àº ½Â¿ëÂ÷ ¼ö¿ä Áõ°¡·Î ÀÎÇØ »ó´çÇÑ ½ÃÀå Á¡À¯À²À» Â÷ÁöÇß½À´Ï´Ù. ½Â¿ëÂ÷ ½ÃÀåÀÇ ¼ºÀåÀ» µÞ¹ÞħÇÏ´Â ÁÖ¿ä ¿äÀÎÀº Áß»êÃþ Àα¸ Áõ°¡¿Í ½ÅÈï±¹ÀÇ »ýȰ¼öÁØ Çâ»óÀ¸·Î ÀÎÇÑ ÀÚµ¿Â÷ ¼ö¿ä Áõ°¡ÀÔ´Ï´Ù. ¶ÇÇÑ, ½Â¿ëÂ÷¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼ö¿ä¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ¿äÀÎÀ¸·Î´Â °¡°Ý °æÀï·ÂÀ» °®Ãá ´ëü Â÷·®ÀÇ Á¸Àç°¡ ÀÖ½À´Ï´Ù. ¿©°´ ¿î¼Û ¹× ¹°·ù ºÎ¹®ÀÇ ¼ºÀåÀº ½ÃÀå¿¡¼ ½Â¿ëÂ÷ ¼ö¿ä¸¦ Áõ°¡½Ãų °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¿¹¸¦ µé¾î, Àεµ ÀÚµ¿Â÷ »ê¾÷ ÇùȸÀÇ º¸°í¼¿¡ µû¸£¸é Àüü ½Â¿ëÂ÷ ÆÇ¸Å·®Àº 30,69,523´ë¿¡¼ 38,90,114´ë·Î Áõ°¡ÇßÀ¸¸ç, 2022-2023³â ½Â¿ëÂ÷ ÆÇ¸Å·®Àº 14,67,039´ë¿¡¼ 17,47,376´ë·Î, À¯Æ¿¸®Æ¼ Â÷·® ÆÇ¸Å·®Àº 14,89,219´ë¿¡¼ 2023³â 14,89,819´ë·Î Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óÇß½À´Ï´Ù. 219´ë¿¡¼ 20,03,718´ë·Î, ¹ê ÆÇ¸Å·®Àº 1,13,265´ë¿¡¼ 1,39,020´ë·Î Áõ°¡Çß½À´Ï´Ù.
Åë½ÅÀ» ±âÁØÀ¸·Î ÆÄ¿öÆ®·¹ÀÎ µ¿·Â°è Å×½ºÆ® ÀÚµ¿È ½Ã½ºÅÛ ¼¼°è ½ÃÀåÀº ¸ð¹ÙÀÏ, FlexRay, À¥, ÀÓº£µðµå ¼ÒÇÁÆ®¿þ¾î, CAN ¹ö½º, ±âŸ·Î ³ª´¹´Ï´Ù. ÀÓº£µðµå ¼ÒÇÁÆ®¿þ¾î´Â Modbus, Profibus, EtherCAT ¹× ±âŸ·Î ¼¼ºÐȵǸç, CAN ¹ö½º´Â µðÁöÅÐ IO ¸ðµâ, ¾Æ³¯·Î±× IO ¸ðµâ, ¿ø°Ý IO ¸ðµâ, ECU ¿¬°á(J1939), TCU ¿¬°á(Linux ±â¹Ý)·Î ¼¼ºÐȵ˴ϴÙ. CAN ¹ö½º ºÎ¹®Àº »ó´çÇÑ ½ÃÀå Á¡À¯À²À» Â÷ÁöÇϰí ÀÖÀ¸¸ç, ÀÚµ¿Â÷ ÀüÀÚ ÀåÄ¡ÀÇ »ç¿ëÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È »ó´çÇÑ CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, CAN ¹ö½º´Â ´Ù¾çÇÑ ÀüÀÚ Á¦¾î ÀåÄ¡(ECU) °£ÀÇ Åë½ÅÀ» Á¦°øÇϱâ À§ÇØ ÀÚµ¿Â÷ »ê¾÷¿¡¼ ±¤¹üÀ§ÇÏ°Ô »ç¿ëµË´Ï´Ù. Àü±âÀÚµ¿Â÷ÀÇ º¸±Þ°ú ÀÚµ¿Â÷ ÀüÀÚ ÀåÄ¡ÀÇ ¹ßÀüÀ¸·Î ÀÎÇØ CAN ¹ö½º ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
½ÃÇè À¯Çü¿¡ µû¶ó ÆÄ¿öÆ®·¹ÀÎ µ¿·Â°è ½ÃÇè ÀÚµ¿È ½Ã½ºÅÛÀº ³»±¸¼º ½ÃÇè, ¼º´É ½ÃÇè, Â÷·® ½Ã¹Ä·¹ÀÌ¼Ç ¹× ±âŸ·Î ±¸ºÐµË´Ï´Ù. ¼º´É ½ÃÇè ºÐ¾ß´Â »ó´çÇÑ ½ÃÀå Á¡À¯À²À» Â÷ÁöÇϰí ÀÖÀ¸¸ç, ÀÚµ¿Â÷ ±ÔÁ¦°¡ °ÈµÊ¿¡ µû¶ó ¿¹Ãø ±â°£ µ¿¾È ³ôÀº CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¿¹¸¦ µé¾î, È£¸®¹ÙÁ¦ÀÛ¼ÒÀÇ FQ ½Ã¸®Áî(¿¬·á À¯·® ÃøÁ¤ ½Ã½ºÅÛ)´Â Â÷·®ÀÇ ¿¬·á À¯·®À» Á¤¹ÐÇÏ°Ô ÃøÁ¤Çϰí, WLTP¸¦ Æ÷ÇÔÇÑ ½ÇÁ¦ ȯ°æ¿¡¼ÀÇ ³ôÀº ÀçÇö¼º°ú ·± »çÀÌŬ ÃøÁ¤ÀÌ °¡´ÉÇÕ´Ï´Ù.
ÃßÁø·Â¿¡ µû¶ó ÆÄ¿öÆ®·¹ÀÎ µ¿·Â°è Å×½ºÆ® ÀÚµ¿È ½Ã½ºÅÛÀº ³»¿¬±â°ü(IC)°ú Àü±â·Î ³ª´¹´Ï´Ù. Àü±â´Â ´Ù½Ã ¹èÅ͸® Àü±â, ÇÏÀ̺긮µå Àü±â, Ç÷¯±×ÀÎ ÇÏÀ̺긮µå Àü±â·Î ³ª´¹´Ï´Ù. Àü±â ºÎ¹®Àº ½Ã¿îÀü, ³»±¸¼º, °íºÎÇÏ, °úµµ, Á¤»ó »óÅ ¿Âµµ, ¼ÒÀ½, Áøµ¿ ¹× °¡È¤ÇÑ Á¶°ÇÀ» Å×½ºÆ®Çϱâ À§ÇØ Àü±â ºÎ¹®ÀÌ »ó´çÇÑ ½ÃÀå Á¡À¯À²À» Â÷ÁöÇϰí ÀÖÀ¸¸ç ¿¹Ãø ±â°£ µ¿¾È ³ôÀº CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ÆÄ¿öÆ®·¹ÀÎ µ¿·Â°è Å×½ºÆ® ÀÚµ¿È ½Ã½ºÅÛ ½ÃÀå µµÀÔ¿¡ ´ëÇÑ ÀÌÇØ¸¦ µ½±â À§ÇØ ºÏ¹Ì(¹Ì±¹, ij³ª´Ù, ±âŸ ºÏ¹Ì), À¯·´(µ¶ÀÏ, ÇÁ¶û½º, ÀÌÅ»¸®¾Æ, ½ºÆäÀÎ, ¿µ±¹, ±âŸ À¯·´), ¾Æ½Ã¾ÆÅÂÆò¾ç(Áß±¹, ÀϺ», Àεµ, È£ÁÖ, ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç ±¹°¡) ¹× ±âŸ Áö¿ªÀ¸·Î ½ÃÀåÀ» ºÐ¼®Çß½À´Ï´Ù, ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç ±¹°¡), ¼¼°è ±âŸ Áö¿ª¿¡¼ÀÇ ¼¼°è Á¸À縦 ±âÁØÀ¸·Î ºÐ¼®µË´Ï´Ù. À¯·´Àº ÀÚµ¿Â÷ Á¦Á¶¾÷üÀÇ Á¸Àç°¨ÀÌ Ä¿Áö°í, ÀÚµ¿Â÷ ¹è±â°¡½º ±ÔÁ¦¿Í ¾ÈÀü ±ÔÁ¦°¡ ¾ö°ÝÇϸç, R&D °ÅÁ¡ÀÌ ÀÌ Áö¿ª¿¡ Àֱ⠶§¹®¿¡ Å×½ºÆ® ÀÚµ¿È ½Ã½ºÅÛÀÇ ÁÖ¿ä ½ÃÀåÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¸ðÅͽºÆ÷Ã÷ »ê¾÷ÀÇ ¹ßÀü°ú ·¤¸®Å©·Î½º, ¼Å¶ °æÁÖ¿Í °°Àº ¸ðÅͽºÆ÷Ã÷ À̺¥Æ®°¡ ÀÌ Áö¿ªÀÇ ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¸ðÅͽºÆ÷Ã÷ À̺¥Æ®·Î ÀÎÇØ ÆÀº° Â÷·® Å×½ºÆ®°¡ Áõ°¡ÇÏ¿© ÆÄ¿öÆ®·¹ÀÎ µ¿·Â°è Å×½ºÆ® ÀÚµ¿È ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
Powertrain dynamometer test automation systems are integrated interfaces for performing, manipulating, recording, and analyzing various tests in test rigs. These technologies help technicians, engineers, and scientists run various experiments with more precision and in less time and offer safety, durability, long-life, and high performance. Continuous technical improvements in the automotive sector, which have resulted in the advent of new-age vehicles, along with constantly changing transportation rules have raised the necessity for rigorous testing. As a result, the volume of testing operations, workload, and complexity are growing, propelling the global test automation systems for the powertrain dynamometer market forward. The growing demand for powertrain dynamometer test automation systems market can be attributed to the increase in the frequency of accidents and rising emission levels, the global automobile industry is undergoing significant legislative alterations.
The Test Automation Systems for Powertrain Dynamometer Market is expected to register a CAGR of approx. 5% over the period of 2023-2030. Agencies like the U.S. NHTSA, India Ministry of Road Transport and Highways have set up new guidelines for vehicle safety. This has resulted in the rising demand for sophisticated powertrain variants by automotive companies. In addition, the test volumes that include extensive and complex test cycles have increased owing to the stringent global legislation. Thus, resulting in the adoption of automated test systems to perform repetitive and complex tests. Furthermore, automakers are constantly updating their vehicle models by incorporating cutting-edge technologies. The continuing development of new-generation automobiles with innovative powertrains adds to the testing demand and increases the test complexity. As a result, automotive firms, as well as regulatory agencies, research institutes, and service stations, are implementing test automation systems to keep up with the increase in the number and complexity of vehicle tests. However, the increasing cost and complexity to maintain extra components will add to the cost of test rigs and hamper the growth of the global test automation systems for the powertrain dynamometer market.
Based on vehicle type, the test automation systems for powertrain dynamometer market is segmented into passenger vehicles, light commercial vehicles, heavy-duty trucks, buses & coach, motorcycles, power generation sets, motorsports, Powersports, and agricultural vehicles. The motorsports are sub-divided into autocross, hill climb, karting, circuit racing, rallycross, and others. The Power sports are sub-divided into a snowmobile, trikes, ATVs, UTVs, jet skis, and others. The agriculture vehicle is sub-divided into less than 30HP, 30-100 HP, 101-200 HP, and more than 200 HP. The passenger vehicle segment grabbed a considerable market share due to increasing demand of passenger vehicles. The primary forces behind the growth of the passenger vehicle market are the rising demand for cars brought on by the increase in middle-class population and the rising standard of living in emerging economies. A further element influencing consumer demand for these vehicles is the presence of competitively priced alternatives. The growing passenger transportation and logistics sectors are predicted to increase demand for passenger automobiles on the market. For instance, The Society of Indian Automobile Manufacturers reports that overall passenger car sales increased to 38,90,114 from 30,69,523. Sales of passenger cars increased in FY-2022-2023 compared to the previous year, rising from 14,67,039 to 17,47,376, sales of utility vehicles from 14,89,219 to 20,03,718, and sales of vans from 1,13,265 to 1,39,020 units.
Based on communication, the global test automation systems for the powertrain dynamometer market are divided into Mobile, FlexRay, Web, Embedded Software, CAN Bus, and Others. The embedded software is sub-divided into Modbus, Profibus, EtherCAT, and Others. The CAN bus is sub-divided into Digital IO Module, Analog IO Module, Remote IO Module, ECU Connection (J1939), and TCU Connection (Linux Based). The CAN Bus segment grabbed a considerable market share and it is expected to grow at a significant CAGR during the forecast due to use of electronics for automobiles. The CAN bus is widely used in the automotive industry to provide communication between various electronic control units (ECUs). The popularity of electric vehicles and the increasing sophistication of automotive electronics are driving demand for CAN bus technology.
Based on testing type, the test automation systems for the powertrain dynamometer market are divided into durability tests, performance tests, vehicle simulations, and others. The performance testing segment grabbed a considerable market share and it is expected to grow at a significant CAGR during the forecast period owing to the increasing severity of vehicle regulations. For instance, the Horiba FQ series (Fuel Flow Measurement Systems) measures a vehicle's fuel flow via a precise system that can conduct stationary and transient tests. High reproducibility and run cycle measurements in real-world settings, including WLTP, are also possible.
Based on propulsion, the test automation system for the powertrain dynamometer market is bifurcated into internal combustion engine (IC) and electric. The electric is further divided into battery electric, hybrid electric, and plug-in hybrid electric. The electric segment grabbed a considerable market share and it is expected to grow at a significant CAGR during the forecast period as it tests break-in, durability, high load, transient, steady-state temperature, and noise, vibration, and harshness.
For a better understanding of the market adoption of the test automation systems for powertrain dynamometer, the market is analyzed based on its worldwide presence in the countries such as North America (United States, Canada, and Rest of North America), Europe (Germany, France, Italy, Spain, United Kingdom, and Rest of Europe), Asia-Pacific (China, Japan, India, Australia, and Rest of APAC), and Rest of World. Europe constitutes a major market for the test automation systems for test automation systems for powertrain dynamometer market owing to the rising presence of industry automakers, rigorous emission & safety regulations for vehicles, and their research and development laboratories in the region. Moreover, the development of the motorsports industry and motorsports events like rallycross and circuit racing will fuel the growth in the region. These motorsports events have led to increasing testing on vehicles by the teams, resulting in increased demand for test automation systems for powertrain dynamometers.
Some of the major players operating in market are HORIBA, Ltd.; Power Test, LLC; A&D Technology; SAKOR Technologies inc.; Integral Powertrain Limited; AVL; Unico, LLC; MAHLE Powertrain Limited; Taylor Dynamometer; Rototest AB among others. The market is diversified with a large number of global and regional market players.