ž籤°ú dz·Â°ú °°Àº Àç»ýÇÑ ÀÚ¿øÀÇ µµÀÔÀÌ ±Þ¼ÓÈ÷ ÁøÇàµÇ°í ÀÖÀ¸¸ç Àü·Â °ü¸®¿¡ ´ëÇÑ »õ·Î¿î Çõ½ÅÀûÀÎ Á¢±Ù ¹æ½Ä°ú ÇÔ²² ºÐ»êÇü ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ ½ÃÀå ±Ô¸ð¸¦ °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ºÐ»ê ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛÀº ´Ù¾çÇÑ ¿ëµµ¿¡¼ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖÀ¸¸ç, ¹é¾÷ Àü¿ø ¹èÅ͸®ÀÇ À¯¿¬¼ºÀ» Ȱ¿ëÇÏ¿© ¸ð¹ÙÀÏ ³×Æ®¿öÅ©ÀÇ ¼öõ °³ÀÇ ±âÁö±¹ÀÇ Àü·Â °ø±ÞÀ» Á¾ÀÏ Á¦¾îÇϰí ÀÖ½À´Ï´Ù. DES ½Ã½ºÅÛÀº ¹èÅ͸® ÃæÀü ±â°£°ú ¹æÀü ±â°£À» ½ºÄÉÁÙ¸µÇÏ¿© Àü·Â ±¸¸Å ŸÀ̹ÖÀ» ÃÖÀûÈÇÕ´Ï´Ù. µû¶ó¼ Àü ¼¼°è¿¡¼ ¿¡³ÊÁö ȸº¹·Â¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç ºÐ»êÇü ¿¡³ÊÁö ÀúÀå(DES) ½Ã½ºÅÛ ½ÃÀå ±Ô¸ð°¡ È®´ëµÇ°í ÀÖ½À´Ï´Ù.
¿¡³ÊÁö¿ø¿¡ ±â¹ÝÇÏ¿© ½ÃÀåÀº Àü·Â¸Á°ú Àç»ý Àü¿øÀ¸·Î À̺е˴ϴÙ. ÀÌ Áß Àü·Â¸Á ºÎ¹®Àº ½ÃÀå¿¡¼ Å« Á¡À¯À²À» Â÷ÁöÇÕ´Ï´Ù. ¿¡³ÊÁö ÀúÀå ±â¼úÀº ¼ÛÀü¸ÁÀÇ ¾ÈÁ¤¼º°ú ȸº¹·ÂÀ» Çâ»ó½ÃÄÑ ¼ÛÀü¸ÁÀÇ ¼ö¿ä¿¡ ´ëÀÀÇÏ°í ¼ÛÀü¸ÁÀÇ Çö´ëȸ¦ ½ÇÇöÇÏ´Â Áß¿äÇÑ ¼ö´ÜÀÔ´Ï´Ù. ¶ÇÇÑ Àü ¼¼°è¿¡¼ Àü·Â ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¹Ç·Î Àü·Â¸ÁÀÇ À¯¿¬¼ºÀ» Çâ»ó½Ã۰í, º¯µ¿À̳ª Áõ´ëÇÏ´Â Àü·Â ¼ö¿ä¿¡ ´ëÀÀÇϰí, ÇÊ¿äÇÒ ¶§ ÇÊ¿äÇÑ Àå¼Ò¿¡¼ Àü·ÂÀ» ÀÌ¿ëÇÒ ¼ö ÀÖµµ·Ï Çϱâ À§ÇØ , ºñ¿ë È¿À²ÀûÀÎ ºÐ»ê ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ¿¡ ÅõÀÚÇÒ Çʿ伺ÀÌ Áõ°¡Çß½À´Ï´Ù.
¹èÅ͸® À¯Çü¿¡ µû¶ó ½ÃÀåÀº ¸®Æ¬ÀÌ¿Â, ´ÏÄÌ Ä«µå¹Å, ³³»ê µîÀ¸·Î ±¸ºÐµË´Ï´Ù. ÀÌ Áß ºÐ»êÇü ¿¡³ÊÁö ÀúÀå(DES) ½Ã½ºÅÛ¿¡¼´Â ¸®Æ¬À̿ ¹èÅ͸®°¡ Å« Á¡À¯À²À» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ÀÌ´Â ÁÖ·Î ¸®Æ¬À̿ ¹èÅ͸®(LIB)°¡ ³ôÀº ¿¡³ÊÁö È¿À², ±ä »çÀÌŬ ¼ö¸í ¹× »ó´ëÀûÀ¸·Î ³ôÀº ¿¡³ÊÁö ¹Ðµµ¸¦ ³ªÅ¸³»±â ¶§¹®ÀÔ´Ï´Ù. ¶ÇÇÑ ¹èÅ͸®´Â ½Å¼ÓÇÑ ÀÀ´ä, ¸ðµâÈ ¹× À¯¿¬ÇÑ ¼³Ä¡°¡ °¡´ÉÇϹǷΠ±×¸®µå ¼öÁØÀÇ ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ¿¡ ÀÀ¿ëÇÒ ¼ö ÀÖ´Â ÀáÀç·ÂÀÌ ¶Ù¾î³ª ºÐ»êÇü ¿¡³ÊÁö ÀúÀå(DES) ½Ã½ºÅÛÀÇ ¸®Æ¬À̿ ¹èÅ͸®ÀÇ µµÀÔÀ» °¡¼Ó½ÃŰ´Â °á°ú°¡ µÇ°í ÀÖ½À´Ï´Ù.
¿ë·®Àº ´Ü»ó°ú »ï»óÀ¸·Î ºÐ·ùµË´Ï´Ù. ºÐ»êÇü ¿¡³ÊÁö ÀúÀå(DES) ½Ã½ºÅÛ¿¡¼´Â »ï»ó ÃàÀü ½Ã½ºÅÛÀÌ »ó´çÇÑ Á¡À¯À²À» ¾ò°í ÀÖ½À´Ï´Ù. »ï»ó À¯ÇüÀÇ ÃàÀü ½Ã½ºÅÛÀº À°»ó, ÁöÇÏ, ÇØ»ó µî Àû¿ë ¹üÀ§°¡ ³Ð±â ¶§¹®¿¡ ³Î¸® äÅõǰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ »ï»ó ÄÉÀ̺íÀº º¯¾Ð±â·Î ¿¬°áµÇ¾î Àü¾ÐÀÌ ÀúÇÏµÇ°í ¼Õ½Ç(ÀúÀúÇ×) ¾øÀÌ ´õ ¸¹Àº ¿¡³ÊÁö¸¦ Àå°Å¸® Àü¼ÛÇÒ ¼ö ÀÖ½À´Ï´Ù.
¿ëµµ¿¡ µû¶ó ½ÃÀåÀº »ó¾÷¿ë ¹× ÁÖÅÿëÀ¸·Î ºÐ·ùµË´Ï´Ù. 2020³â DES(Distributed Energy Storage) ½Ã½ºÅÛ ½ÃÀå¿¡¼´Â »ó¾÷¿ëµµ°¡ Å« Á¡À¯À²À» Â÷ÁöÇϰí ÀÖÀ¸¸ç ¿¹Ãø ±â°£ Áß »ó´çÇÑ CAGR ¼ºÀåÀÌ ¿¹»óµË´Ï´Ù. »ó¾÷¿ë °Ç¹°Àº Àü·Â »ç¿ë·®À» ÆòÁØÈÇÏ°í ºÎÇϸ¦ À̵¿½ÃŰ°í ±ä±Þ ¹é¾÷ ¹× Á֯ļö Á¶Á¤À» Á¦°øÇÔÀ¸·Î½á ±×¸®µåÀÇ ¾ÈÁ¤¼º°ú Àü·Â ǰÁúÀ» º¸ÀåÇÏ´Â ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛÀÌ ÇÊ¿äÇÕ´Ï´Ù. µû¶ó¼ ºÐ»ê ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ°ú ÅëÇÕµÈ ´ë±Ô¸ð »ê¾÷¿¡¼´Â ž籤°ú dz·Â°ú °°Àº º¯µ¿ÇÏ´Â Àç»ý ¿¡³ÊÁö¿øÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÏ°í ½ÃÀå ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
ºÐ»êÇü ¿¡³ÊÁö ÀúÀå(DES, Distributed Energy Storage Systems) ½Ã½ºÅÛÀÇ ½ÃÀå µµÀÔ¿¡ ´ëÇÑ ÀÌÇØ¸¦ ³ôÀ̱â À§ÇØ ½ÃÀåÀº ºÏ¹Ì(¹Ì±¹, ij³ª´Ù, ±âŸ ºÏ¹Ì Áö¿ª), À¯·´(µ¶ÀÏ, ¿µ±¹, ÇÁ¶û½º, ½ºÆäÀÎ, ÀÌÅ»¸®¾Æ, ±âŸ À¯·´ Áö¿ª), ¾Æ½Ã¾Æ ÅÂÆò¾ç(Áß±¹, ÀϺ», Àεµ ¹× ±âŸ ¾Æ½Ã¾Æ ÅÂÆò¾ç) ¹× ±âŸ Áö¿ª¿¡¼ ¼¼°èÀÇ Á¸À縦 ±â¹ÝÀ¸·Î ºÐ¼®µË´Ï´Ù. 2021³â ºÐ»êÇü ¿¡³ÊÁö ÀúÀå(DES) ½Ã½ºÅÛ ½ÃÀåÀº ¾Æ½Ã¾Æ ÅÂÆò¾çÀÌ Áö¹èÀûÀ̾ú½À´Ï´Ù. ÀÌ´Â Áß±¹, Àεµ, ÀϺ» µî ±¹°¡¿¡¼ Àü·Â ¼ö¿ä¿Í ¼Òºñ°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, ÀÌ Áö¿ª¿¡¼ Àç»ý ¿¡³ÊÁö¿¡ ´ëÇÑ ÅõÀÚ°¡ ±ÞÁõÇϰí ÀÖ´Â °ÍÀÌ ÁÖ¿ä ¿äÀÎÀÔ´Ï´Ù. ¿¹¸¦ µé¾î 2030³â±îÁö ¾Æ½Ã¾Æ ÅÂÆò¾çÀÇ Àç»ý ¿¡³ÊÁö »ý»ê¿¡ ´ëÇÑ ÅõÀÚ´Â ¾à 1Á¶ 5,000¾ï ´Þ·¯ÀÇ ¾à 2¹è ÀÌ»óÀ¸·Î ÃßÁ¤µË´Ï´Ù. ¶ÇÇÑ Ã»Á¤¿¡³ÊÁö¿øÀÇ ½ÃÀ尳ô°ú ÅõÀÚ Áõ°¡, ±Þ¼ÓÇÑ µµ½ÃÈ¿Í Àα¸ºñÀ² Áõ°¡µµ ¿¹Ãø±â°£ Áß ½ÃÀå ¼ºÀåÀ» Áö¿øÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
A distributed energy storage (DES) system is a packaged solution for storing energy for use at a later time. The energy is usually stored in batteries for specific energy demands or to effectively optimize cost. Distributed Energy Storage (DES) has different applications in the distribution networks aiming to improve the quality and continuity of the power at optimal cost.
Factors such as the increasing deployment of renewable resources such as solar and wind are rapidly growing coupled with new and innovative approaches towards the management of electricity is accelerating the market size of distributed energy storage systems market. In addition, distributed energy storage system plays a vital role in various application and use the flexibility of backup power batteries to control the electricity supply in thousands of base stations in the mobile network throughout the day. The DES system optimizes the timing of electricity purchases by scheduling charging and discharging periods for the batteries. Therefore, growing energy resilience demand across the globe would accentuate the market size of distributed energy storage (DES) systems.
Based on the energy source, the market is bifurcated into the electricity grid, and renewable power sources. Amongst these, the electricity grid segment catered significant share of the market. Energy storage technologies are a key enabler of grid modernization, addressing the electric grid's needs by improving its stability and resiliency. In addition, the growing demand for electricity across the globe is escalating the need to invest in cost-effective distributed energy storage systems to improve flexibility in the electricity grid and respond to fluctuating and escalating electricity demands, ensuring that electricity is available when and where it is needed.
Based on battery, the market is segmented into lithium-ion, nickel-cadmium, lead acid, and others. Among these, lithium-ion batteries captured a significant share of the distributed energy storage (DES) systems. It is mainly due to the lithium-ion batteries (LIBs) exhibiting high energy efficiency, long cycle life, and relatively high energy density. Further, batteries have considerable potential for application to grid-level energy storage systems due to their rapid response, modularization, and flexible installation, which resulted in accelerating the adoption of lithium-ion batteries in distributed energy storage (DES) systems.
Based on capacity, the market is categorized into a single phase and three phases. Three-phase storage systems acquired a considerable share of the distributed energy storage (DES) systems. As three-phase type storage systems are widely adopted owing to their wide application areas such as land, underground, and offshore. In addition, three-phase cables are connected with transformers which reduce their voltage so that they can transmit more energy over longer distances without being lossy (low resistance).
On the basis of application, the market is classified into commercial and residential. The commercial application held a major share of the distributed energy storage (DES) systems market in 2020 and is expected to grow at a substantial CAGR during the forecasted period. Commercial buildings require an energy storage system that helps level out peaks in electricity use, shift loads and provide emergency backups and frequency regulation to ensure grid stability and power quality. Therefore, the growing adoption of variable renewable energy sources such as solar and wind for large-scale industries integrated with distributed energy storage systems is propelling its market demand.
For a better understanding of the market adoption of distributed energy storage (DES) systems, the market is analyzed based on its worldwide presence in the countries such as North America (U.S., Canada, and the Rest of North America), Europe (Germany, UK, France, Spain, Italy, Rest of Europe), Asia-Pacific (China, Japan, India, and Rest of Asia-Pacific), Rest of World. Asia Pacific dominated the distributed energy storage (DES) systems market in 2021. It is predominantly attributed due to the increasing demand and consumption of electricity in countries such as China, India, Japan, and so on, coupled with the massive surge in investments in renewable energy in the region. For instance, by 2030, Asia Pacific investments in renewable energy production are estimated to be more than double to nearly USD 1.5 trillion. Moreover, increasing development and investment in clean energy sources, along with the rapid urbanization and growing population ratio is also expected to boost the market growth during the forecast period.
Some of the major players operating in the market include: Johnson Controls International plc, ABB Ltd., Schneider Electric SE, Emerson Electric Co., Advanced Control Systems, LLC, Hitachi, Ltd., LG Energy Solution Ltd., NEC Corporation, The General Electric Company, and Jabil, Inc.