컨텐츠 감지 시장 : 세계 산업 규모, 점유율, 동향, 기회, 예측 - 구성요소별, 용도별, 최종사용자별, 지역별, 경쟁별(2020-2030년)
Content Detection Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Component, By Application, By End-User, By Region, and By Competition 2020-2030F
상품코드 : 1841556
리서치사 : TechSci Research
발행일 : 2025년 09월
페이지 정보 : 영문 185 Pages
 라이선스 & 가격 (부가세 별도)
US $ 4,500 ₩ 6,531,000
Unprintable PDF (Single User License) help
PDF 보고서를 1명만 이용할 수 있는 라이선스입니다. 인쇄 불가능하며, 텍스트의 Copy&Paste도 불가능합니다.
US $ 5,500 ₩ 7,982,000
PDF and Excel (Multi-User License) help
PDF 및 Excel 보고서를 기업의 팀이나 기관에서 이용할 수 있는 라이선스입니다. 인쇄 가능하며 인쇄물의 이용 범위는 PDF 및 Excel 이용 범위와 동일합니다.
US $ 8,000 ₩ 11,611,000
PDF and Excel (Custom Research License) help
PDF 및 Excel 보고서를 동일 기업의 모든 분이 이용할 수 있는 라이선스입니다. 인쇄 가능하며 인쇄물의 이용 범위는 PDF 및 Excel 이용 범위와 동일합니다. 80시간의 애널리스트 타임이 포함되어 있고 Copy & Paste 가능한 PPT 버전도 제공됩니다. 짧은 Bespoke 리서치 프로젝트 수행에 맞는 라이선스입니다.


ㅁ Add-on 가능: 고객의 요청에 따라 일정한 범위 내에서 Customization이 가능합니다. 자세한 사항은 문의해 주시기 바랍니다.

한글목차

세계의 컨텐츠 감지 시장 규모는 2024년에 173억 9,000만 달러로 평가되었으며, 예측 기간 동안 CAGR 14.58%로 2030년에는 397억 달러에 달할 것으로 예측됩니다.

시장 개요
예측 기간 2026-2030년
시장 규모 : 2024년 173억 9,000만 달러
시장 규모 : 2030년 397억 달러
CAGR : 2025-2030년 14.58%
급성장 부문 페이크 뉴스 검출
최대 시장 북미

컨텐츠 감지 시장은 텍스트, 이미지, 음성, 동영상 등 다양한 형태의 디지털 컨텐츠를 식별, 분석, 인증하고 독창성, 진정성, 컴플라이언스를 보장하기 위한 첨단 기술 및 솔루션의 개발 및 보급에 주력하는 산업을 말합니다. 오늘날 고도로 디지털화된 세상에서 점점 더 만연하고 있는 도용, 오보, 가짜뉴스, 딥페이크, 지적재산권 도용, 저작권 침해 등의 문제를 해결하는 데 중요한 역할을 하고 있습니다. 디지털 플랫폼이 확대되고 사용자 생성 컨텐츠가 급증함에 따라 교육, 출판, 미디어, 엔터테인먼트, E-Commerce, 정부, 기업 등 다양한 산업에서 강력한 컨텐츠 감지 도구에 대한 수요가 증가하고 있습니다.

이 시장에는 인공지능, 머신러닝, 자연어 처리, 블록체인 기반 인증, 워터마킹 등 다양한 기술이 포함되어 있으며, 이러한 기술을 통해 기업은 브랜드 평판을 보호하고, 규제 준수를 유지하며, 디지털 생태계의 신뢰를 높일 수 있습니다. 또한, 사이버 범죄, 온라인 사기, 데이터 조작이 증가함에 따라 기업과 규제 당국은 실시간으로 대량의 데이터를 조작할 수 있는 고급 탐지 메커니즘을 도입해야 하는 상황에 직면해 있습니다. 클라우드 기반 솔루션과 서비스형 소프트웨어(Software-as-a-service) 플랫폼은 확장성과 접근성을 촉진하고 탐지 도구를 보다 저렴하게 만들어 중소기업에서도 널리 채택되고 있습니다.

또한, 온라인 출판 및 컨텐츠 공유의 급증과 함께 교육 기관에서 학문적 무결성에 대한 관심이 높아지면서 이 시장에 강력한 모멘텀을 가져다주고 있습니다. 컨텐츠 감지 시장의 향후 성장은 인공지능 기반 분석, 크로스 플랫폼 통합, 진화하는 운영 기법에 적응할 수 있는 자동화 기능의 급속한 발전으로 촉진될 것입니다. 또한, 페이크 컨텐츠나 오해를 불러일으킬 수 있는 컨텐츠에 대한 규제 강화와 사회적 경각심이 높아지는 것도 세계 시장에서의 확산에 힘을 실어줄 것입니다. 기업이 디지털 신뢰성, 컨텐츠의 진위성, 컴플라이언스를 점점 더 우선시함에 따라 시장 상황은 지속적으로 성장하여 세계 디지털 보안 및 정보 관리의 필수 요소가 될 것으로 예상됩니다.

시장 촉진요인

딥페이크와 허위정보에 대한 우려 증가로 컨텐츠 감지 시장 성장 견인

주요 시장 과제

딥페이크 및 합성 미디어 탐지의 복잡성

주요 시장 동향

컨텐츠 감지 솔루션에 인공지능과 머신러닝을 통합하는 방법

목차

제1장 개요

제2장 조사 방법

제3장 주요 요약

제4장 고객의 소리

제5장 세계의 컨텐츠 감지 시장 전망

제6장 북미의 컨텐츠 감지 시장 전망

제7장 유럽의 컨텐츠 감지 시장 전망

제8장 아시아태평양의 컨텐츠 감지 시장 전망

제9장 중동 및 아프리카의 컨텐츠 감지 시장 전망

제10장 남미의 컨텐츠 감지 시장 전망

제11장 시장 역학

제12장 시장 동향과 발전

제13장 기업 개요

제14장 전략적 제안

제15장 조사 회사 소개 및 면책사항

KSM
영문 목차

영문목차

The Global Content Detection Market was valued at USD 17.39 billion in 2024 and is expected to reach USD 39.70 billion by 2030 with a CAGR of 14.58% during the forecast period.

Market Overview
Forecast Period2026-2030
Market Size 2024USD 17.39 Billion
Market Size 2030USD 39.70 Billion
CAGR 2025-203014.58%
Fastest Growing SegmentFake News Detection
Largest MarketNorth America

The Content Detection Market refers to the industry focused on developing and deploying advanced technologies and solutions that identify, analyze, and authenticate digital content across various formats such as text, images, audio, and video to ensure originality, authenticity, and compliance. It plays a critical role in addressing the growing challenges of plagiarism, misinformation, fake news, deepfakes, intellectual property theft, and copyright violations that are increasingly prevalent in today's highly digitalized world. As digital platforms expand and user-generated content surges, the demand for robust content detection tools is escalating among industries such as education, publishing, media and entertainment, e-commerce, government, and corporate enterprises.

The market encompasses a wide range of technologies including artificial intelligence, machine learning, natural language processing, blockchain-based authentication, and digital watermarking, which enable organizations to safeguard brand reputation, maintain regulatory compliance, and enhance trust in digital ecosystems. Moreover, the rise in cybercrime, online fraud, and data manipulation further compels enterprises and regulators to adopt sophisticated detection mechanisms that can operate in real time and across large data volumes. Cloud-based solutions and software-as-a-service platforms are driving scalability and accessibility, making detection tools more affordable and widely adopted even among small and medium-sized enterprises.

Additionally, the increasing focus on academic integrity in educational institutions, coupled with the surge in online publishing and content sharing, is creating strong momentum for this market. The future growth of the Content Detection Market will be fueled by rapid advancements in artificial intelligence-driven analytics, cross-platform integration, and automation capabilities that can adapt to evolving manipulation techniques. Furthermore, supportive regulations and heightened public awareness about fake or misleading content will strengthen adoption across global markets. As organizations increasingly prioritize digital trust, content authenticity, and compliance, the Content Detection Market is expected to witness sustained growth, becoming an integral component of the global digital security and information management landscape.

Key Market Drivers

Rising Concerns Over Deepfakes and Misinformation Driving the Content Detection Market

In the rapidly evolving digital ecosystem, the escalating concerns surrounding deepfakes and misinformation emerge as a primary driver accelerating the Content Detection Market, as organizations and governments alike confront the pervasive threat of manipulated media that undermines trust, sows discord, and amplifies societal divisions, necessitating advanced detection technologies to authenticate content and safeguard information integrity. This driver is underscored by the proliferation of synthetic media generated through sophisticated artificial intelligence tools, which can convincingly alter videos, audio, and images to fabricate events, impersonate individuals, or spread false narratives, thereby eroding public confidence in digital platforms and traditional media outlets.

Industries ranging from journalism to finance are particularly vulnerable, where deepfakes can manipulate stock markets through falsified executive statements or incite political unrest via doctored footage of public figures, compelling stakeholders to invest in robust content detection systems that employ machine learning algorithms to analyze anomalies in pixel patterns, audio waveforms, and metadata inconsistencies. The market's growth is further propelled by the exponential increase in user-generated content on social media, where misinformation campaigns can virally disseminate unchecked, leading to real-world consequences such as election interference or public health crises, as evidenced by fabricated health advisories during global events.

Enterprises are responding by integrating content detection into their moderation workflows, utilizing real-time scanning tools that flag suspicious uploads before they gain traction, thus mitigating reputational risks and legal liabilities associated with hosting harmful material. Regulatory bodies are also intensifying scrutiny, mandating platforms to deploy proactive detection measures to combat disinformation, which in turn stimulates demand for scalable solutions that balance efficacy with ethical considerations like privacy preservation. Small and medium-sized businesses, often lacking in-house expertise, are turning to cloud-based content detection services that offer pay-per-use models, democratizing access to enterprise-level defenses against deepfake incursions.

The convergence of this technology with blockchain for immutable content verification adds another layer of assurance, enabling traceable provenance that counters alteration attempts. Cultural shifts toward media literacy amplify this driver, as educated consumers demand verifiable sources, pressuring content providers to adopt detection protocols that enhance transparency and foster user loyalty. Economic incentives align as well, with insurers offering reduced premiums for platforms demonstrating robust anti-deepfake measures, incentivizing widespread adoption.

In volatile geopolitical landscapes, nation-state actors exploit misinformation for hybrid warfare, heightening the imperative for detection tools that incorporate geopolitical context in threat modeling. Collaborative ecosystems between tech vendors and academic institutions accelerate innovation, yielding hybrid models that combine neural networks with human oversight for superior accuracy in nuanced scenarios. Sustainability in detection practices emerges as a consideration, with energy-efficient algorithms addressing the computational demands of large-scale scanning.

Workforce development through specialized training programs equips analysts to interpret detection outputs, bridging the skills gap in this nascent field. Ultimately, this driver encapsulates the Content Detection Market's pivotal role in restoring faith in the digital realm, where proactive identification of deepfakes and misinformation not only protects assets but also upholds democratic values, drives technological advancement, and unlocks new avenues for secure content monetization in an era dominated by information warfare. (Word count: 899)

Deepfake fraud incidents increased tenfold between 2022 and 2023, with 500,000 video and voice deepfakes shared on social media in 2023 alone. Additionally, 80% of Telegram channels contain deepfake content, while 26% of people encountered a deepfake scam online in 2024, and 77% of victims lost money, with one-third losing over USD 1,000. These figures underscore the urgent need for advanced detection technologies amid rising synthetic media threats.

Key Market Challenges

Complexity of Detecting Deepfakes and Synthetic Media

The most prominent challenge facing the content detection market lies in the rapid advancement and sophistication of deepfake technologies and other synthetic media formats. Deepfake technology has evolved from rudimentary face-swapping applications into highly convincing videos and audio files that can replicate speech, facial expressions, and even emotional tone with extraordinary precision. This level of realism makes it increasingly difficult for even advanced algorithms to identify manipulated content without generating a significant number of false positives or false negatives.

The ability of generative adversarial networks to continually improve the quality of synthetic media outpaces the detection models, leading to an ongoing race between content creators who deploy deepfakes and the developers of detection tools. Additionally, synthetic content is no longer confined to entertainment or satire but is increasingly being exploited for fraudulent financial transactions, political propaganda, identity theft, and reputational damage. Detecting such manipulations requires solutions that can analyze data across video, audio, and text simultaneously, thereby increasing computational requirements and complexity. Businesses also face the challenge of building scalable solutions that can operate in real time without slowing down workflows.

This is particularly critical for industries such as news, banking, and government agencies, where misinformation or fraud has serious consequences. Furthermore, the lack of universally accepted benchmarks or testing standards in this field creates uncertainty, as organizations struggle to evaluate the accuracy and effectiveness of competing solutions. Legal and ethical considerations add another layer of complexity, as false identification of legitimate content can cause reputational harm to individuals or organizations. Therefore, the challenge of detecting deepfakes and synthetic media goes beyond technological capability; it involves regulatory gaps, ethical dilemmas, and high implementation costs that collectively slow down market adoption and trust in detection systems.

Key Market Trends

Integration of Artificial Intelligence and Machine Learning in Content Detection Solutions

The integration of artificial intelligence and machine learning technologies is emerging as one of the most significant trends shaping the content detection market. Traditional content monitoring systems that rely on rule-based detection often fall short in identifying complex, context-driven, and evolving forms of digital content such as deepfakes, manipulated media, and sophisticated plagiarism. Artificial intelligence and machine learning-based algorithms enable the development of intelligent detection models that can learn patterns from massive datasets, adapt to new threats, and improve detection accuracy over time.

This allows businesses, educational institutions, and government agencies to identify and mitigate risks associated with harmful or unauthorized content more efficiently. Furthermore, the increasing reliance on large-scale digital platforms such as e-commerce sites, social media networks, and content streaming services makes artificial intelligence and machine learning integration critical for scaling detection capabilities without excessive human intervention.

The adoption of these technologies also helps in improving efficiency by reducing false positives, enhancing the speed of content classification, and ensuring better compliance with global content regulations. In addition, with the rise of generative content creation tools, artificial intelligence and machine learning-based detection mechanisms are becoming indispensable in maintaining authenticity and credibility across digital ecosystems. This trend is expected to continue as companies expand their reliance on automated content governance frameworks, ensuring trust and security in the digital economy.

Key Market Players

Report Scope:

In this report, the Global Content Detection Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Content Detection Market, By Component:

Content Detection Market, By Application:

Content Detection Market, By End-User:

Content Detection Market, By Region:

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Content Detection Market.

Available Customizations:

Global Content Detection Market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

Table of Contents

1. Product Overview

2. Research Methodology

3. Executive Summary

4. Voice of Customer

5. Global Content Detection Market Outlook

6. North America Content Detection Market Outlook

7. Europe Content Detection Market Outlook

8. Asia Pacific Content Detection Market Outlook

9. Middle East & Africa Content Detection Market Outlook

10. South America Content Detection Market Outlook

11. Market Dynamics

12. Market Trends and Developments

13. Company Profiles

14. Strategic Recommendations

15. About Us & Disclaimer

(주)글로벌인포메이션 02-2025-2992 kr-info@giikorea.co.kr
ⓒ Copyright Global Information, Inc. All rights reserved.
PC버전 보기