세계의 아세틸렌 시장 : 산업 규모, 점유율, 동향, 기회, 예측 - 형태별, 최종사용자별, 지역별, 경쟁(2019-2029년)
Acetylene Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Form (Gas, Liquid, Others), By End User (Automotive, Metal Fabrication, Aerospace, Pharmaceutical, Glass, Others), By Region & Competition, 2019-2029F
상품코드 : 1567678
리서치사 : TechSci Research
발행일 : 2024년 10월
페이지 정보 : 영문 186 Pages
 라이선스 & 가격 (부가세 별도)
US $ 4,500 ₩ 6,501,000
Unprintable PDF (Single User License) help
PDF 보고서를 1명만 이용할 수 있는 라이선스입니다. 인쇄 불가능하며, 텍스트의 Copy&Paste도 불가능합니다.
US $ 5,500 ₩ 7,946,000
PDF and Excel (Multi-User License) help
PDF 및 Excel 보고서를 기업의 팀이나 기관에서 이용할 수 있는 라이선스입니다. 인쇄 가능하며 인쇄물의 이용 범위는 PDF 및 Excel 이용 범위와 동일합니다.
US $ 8,000 ₩ 11,558,000
PDF and Excel (Custom Research License) help
PDF 및 Excel 보고서를 동일 기업의 모든 분이 이용할 수 있는 라이선스입니다. 인쇄 가능하며 인쇄물의 이용 범위는 PDF 및 Excel 이용 범위와 동일합니다. 80시간의 애널리스트 타임이 포함되어 있고 Copy & Paste 가능한 PPT 버전도 제공됩니다. 짧은 Bespoke 리서치 프로젝트 수행에 맞는 라이선스입니다.


ㅁ Add-on 가능: 고객의 요청에 따라 일정한 범위 내에서 Customization이 가능합니다. 자세한 사항은 문의해 주시기 바랍니다.

한글목차

세계의 아세틸렌 시장 규모는 2023년에 61억 5,000만 달러로, 예측 기간 중 CAGR은 3.48%로, 2029년에는 74억 6,000만 달러에 달할 것으로 예측됩니다.

연소성이 높은 탄화수소 가스인 아세틸렌은 다양한 화학 공정의 주요 원료로 사용되며, 독특한 특성으로 인해 중요한 산업용 가스로서의 입지를 굳건히 하고 있습니다. 특히 개발도상국 시장에서 새로운 용도와 기술 발전이 이루어짐에 따라 아세틸렌 시장의 성장 궤도는 앞으로도 계속될 것으로 예상됩니다.

시장 개요
예측 기간 2025-2029
시장 규모 : 2023년 61억 5,000만 달러
시장 규모 : 2029년 74억 6,000만 달러
CAGR : 2024-2029년 3.48%
급성장 부문 가스
최대 시장 북미

아세틸렌 시장을 촉진하는 주요 요인 중 하나는 화학 산업에서 아세틸렌의 보급입니다. 아세틸렌은 아세트알데히드, 염화비닐, 합성고무와 같은 화학 물질 생산의 기본 컴포넌트입니다. 이러한 화합물은 플라스틱, 접착제 및 기타 산업 제품 생산에 필수적입니다. 특히 포장, 자동차, 전자 분야의 플라스틱 수요 증가는 전 세계 아세틸렌 수요 증가를 견인하고 있습니다.

아세틸렌 생산 공정의 기술 발전은 시장 확대의 새로운 가능성을 열어주고 있습니다. 고효율 아세틸렌 생산 방법의 개발로 운영 비용이 절감되고 안전성이 향상되었습니다. 이를 통해 기존 생산 방식으로는 비용적으로 어려웠던 지역의 중소기업도 아세틸렌을 쉽게 이용할 수 있게 되었습니다.

전망은 밝지만, 세계 아세틸렌 시장은 몇 가지 문제에 직면해 있습니다. 그 중 하나는 아세틸렌 생산이 환경에 미치는 영향과 가연성으로 인한 안전 위험입니다. 탄화칼슘으로 아세틸렌을 생산하는 과정에서 이산화탄소 및 기타 오염 물질이 배출되므로 많은 지역에서 환경 규제가 강화되고 있습니다.

주요 시장 성장 촉진요인

자동차 산업에서 아세틸렌의 수요 확대

제약 업계에서 아세틸렌의 수요 확대

주요 시장이 해결해야 할 과제

원료 가격의 변동

주요 시장 동향

아세틸렌 생산에서의 기술 진보

목차

제1장 개요

제2장 조사 방법

제3장 개요

제4장 COVID-19가 세계의 아세틸렌 시장에 미치는 영향

제5장 세계의 아세틸렌 시장 전망

제6장 북미의 아세틸렌 시장 전망

제7장 유럽의 아세틸렌 시장 전망

제8장 아시아태평양의 아세틸렌 시장 전망

제9장 남미의 아세틸렌 시장 전망

제10장 중동 및 아프리카의 아세틸렌 시장 전망

제11장 시장 역학

제12장 시장 동향과 발전

제13장 세계의 아세틸렌 시장 : SWOT 분석

제14장 Porter's Five Forces 분석

제15장 경쟁 구도

제16장 전략적 제안

제17장 조사회사 소개·면책사항

KSA
영문 목차

영문목차

Global Acetylene Market was valued at USD 6.15 Billion in 2023 and is expected to reach USD 7.46 Billion by 2029 with a CAGR of 3.48% during the forecast period. Acetylene, a hydrocarbon gas with high flammability, serves as a key raw material for various chemical processes, and its unique properties have cemented its position as a crucial industrial gas. The market's growth trajectory is expected to continue as new applications and technological advancements emerge, particularly in developing regions.

Market Overview
Forecast Period2025-2029
Market Size 2023USD 6.15 Billion
Market Size 2029USD 7.46 Billion
CAGR 2024-20293.48%
Fastest Growing SegmentGas
Largest MarketNorth America

One of the primary factors driving the acetylene market is its widespread use in the chemical industry. Acetylene is a fundamental building block in the production of chemicals such as acetaldehyde, vinyl chloride, and synthetic rubber. These compounds are essential for manufacturing plastics, adhesives, and other industrial products. The rising demand for plastics, especially in the packaging, automotive, and electronics sectors, is fueling the growth of acetylene demand worldwide.

Technological advancements in acetylene production processes have opened up new possibilities for market expansion. The development of highly efficient acetylene production methods has reduced operational costs and improved safety. This has made acetylene more accessible for small and medium-sized enterprises in regions where traditional production methods were cost-prohibitive.

Despite the positive outlook, the global acetylene market faces several challenges. One of the key concerns is the environmental impact of acetylene production and its flammability, which raises safety risks. The process of producing acetylene from calcium carbide involves the release of carbon dioxide and other pollutants, which has led to stricter environmental regulations in many regions.

Key Market Drivers

Growing Demand of Acetylene in Automotive Industry

The automotive industry heavily depends on acetylene for critical processes like metal fabrication, which plays a key role in vehicle manufacturing. Acetylene's exceptionally high flame temperature makes it the ideal fuel for oxy-acetylene welding and cutting, facilitating precise and efficient work on vehicle frames, chassis, and body structures. Its unique properties are particularly beneficial in supporting the lightweight and compact designs of modern vehicles. This demand is further accelerated by the shift towards electric and hybrid vehicles, which require more advanced and specialized metalworking techniques.

In a recent development, mechanical engineering students from Priyadarshini Bhagwati College of Engineering successfully modified a Maruti 800 to operate on acetylene gas produced by combining water with limestone. By mixing calcium carbide (limestone) with water in a cylinder housed in the trunk, the car can run on acetylene gas while maintaining the option to switch to petrol. The researchers claim that this modification nearly doubles the mileage, minimizes emissions, and reduces fuel costs by increasing the distance covered per kilogram of carbide.

Beyond welding, acetylene is also integral to the production of plastics and synthetic rubbers, which are vital for components like tires, interior parts, and vehicle insulation. This wide-ranging use highlights acetylene's importance as a versatile resource within the automotive manufacturing landscape.

The rapid expansion of the automotive sector, especially in emerging markets, presents significant opportunities for the acetylene market. Countries such as China, India, and Brazil are experiencing increased vehicle production to meet the growing demand driven by an expanding middle class, urbanization, and rising disposable incomes. Consequently, this surge in automobile sales has directly amplified the need for acetylene in automotive manufacturing.

In developed markets, technological advancements in automotive design, such as autonomous driving systems and electric vehicles, are also boosting demand for acetylene. These innovations necessitate precise engineering and premium materials, further fueling the need for acetylene-based welding and cutting processes. As automakers strive to optimize production efficiency and uphold stringent quality standards, the demand for high-performance acetylene continues to rise.

Additionally, the push for more sustainable and environmentally conscious manufacturing processes is another key factor driving acetylene demand within the automotive industry. Global regulatory bodies are enforcing stricter emission standards, compelling automakers to adopt cleaner production practices. Acetylene's use in welding, which is both energy-efficient and low-impact on the environment, aligns well with these sustainability objectives.

Growing Demand of Acetylene in Pharmaceutical Industry

Acetylene plays a crucial role in the pharmaceutical industry as a fundamental component in organic synthesis. It acts as a precursor in the creation of complex organic molecules, which are critical for the development of a wide range of pharmaceutical compounds. Its ability to introduce alkynes and other functional groups into molecules makes it indispensable for producing unique chemical structures, many of which are essential for the therapeutic efficacy of drugs such as antivirals, antibacterial, and anticancer medications.

The demand for acetylene-based chemical reactions has been rising in the pharmaceutical sector, driven by the need for more efficient and cost-effective production processes. The development of innovative drug formulations and the synthesis of complex compounds rely heavily on acetylene, particularly in the manufacturing of pharmaceutical intermediates. Acetylene derivatives are often used to synthesize essential drugs, including vitamins and hormones.

Furthermore, the growth of biopharmaceuticals and the increasing focus on personalized medicine have broadened the scope of pharmaceutical research, further elevating the demand for acetylene. As drug manufacturers work to improve production efficiencies and shorten lead times, acetylene's role in accelerating chemical reactions has become increasingly valuable. This trend is expected to continue as companies invest in advanced technologies to optimize their manufacturing processes.

With the expansion of the pharmaceutical industry, particularly in emerging markets, the demand for acetylene is projected to increase. Major pharmaceutical manufacturing hubs, such as China and India, are experiencing significant growth in generic drug production, which has led to a higher consumption of acetylene for various chemical applications.

Key Market Challenges

Volatility in Price of Feedstock

Acetylene is a vital industrial gas widely utilized in chemical synthesis, welding, and various applications across multiple sectors. It is primarily produced from feedstocks such as calcium carbide and natural gas. The fluctuations in feedstock prices stem from various factors, including geopolitical tensions, supply chain disruptions, and shifts in market demand. For example, geopolitical events like conflicts or trade disputes can lead to sudden changes in the availability and pricing of feedstocks. Additionally, natural disasters, pandemics, and regulatory changes can disrupt supply chains, further intensifying price volatility.

Natural gas prices, a key feedstock for acetylene production, are particularly sensitive to market dynamics. Seasonal demand variations, shifts in production levels, and fluctuations in energy policies can result in significant price changes. Similarly, the market for calcium carbide, sourced from limestone and petroleum, is affected by mining regulations, environmental policies, and production capacity, making it susceptible to price instability.

The unpredictability of feedstock prices presents significant challenges for acetylene manufacturers. Firstly, it complicates cost management. When feedstock prices surge, manufacturers may encounter increased production costs, which can erode profit margins. Consequently, companies often find it necessary to raise acetylene prices, potentially leading to a decline in demand from end-users who may explore alternative products or suppliers.

Moreover, the volatility in feedstock prices can disrupt long-term contracts and pricing agreements. Many manufacturers depend on fixed-price contracts to stabilize their costs; however, abrupt spikes in feedstock prices can create disputes over pricing terms and compel manufacturers to renegotiate contracts. This instability not only impacts the financial health of manufacturers but also complicates their relationships with suppliers and customers.

Key Market Trends

Technological Advancements in Production of Acetylene

Traditionally, acetylene has been produced via the thermal decomposition of hydrocarbons or through the reaction of calcium carbide with water. However, recent technological advancements are introducing innovative methods that improve production efficiency while reducing environmental impact.

One of the most promising developments in acetylene production is the electrochemical method, which leverages electricity to drive chemical reactions. This approach not only decreases reliance on fossil fuels but also significantly reduces greenhouse gas emissions. By harnessing renewable energy sources such as solar or wind power, manufacturers can produce acetylene more sustainably, addressing the rising demand for eco-friendly solutions in the chemical industry.

To further enhance acetylene selectivity and reduce energy consumption, companies are exploring processes that decompose methane into acetylene and hydrogen using microwave (MW) plasma reactors. These processes can be conducted with or without catalysts, and non-catalytic methods have achieved methane conversions exceeding 90%. While catalysts can increase methane conversion in microwave plasma processes, they also lead to the formation of unsaturated compounds like soot. However, the potential benefits, including hydrogen byproduct credits and reduced soot generation, may incentivize further development and commercialization of methane pyrolysis using microwave plasma reactors.

The development of advanced catalysts has greatly improved the efficiency of acetylene production. Researchers are focusing on optimizing catalytic processes that allow acetylene synthesis from various feedstocks, including biomass and natural gas. These innovations not only boost yields but also lower energy consumption, making acetylene production more cost-effective.

The adoption of integrated production systems, which combine multiple chemical processes, is also gaining momentum in the acetylene market. These systems streamline production, reduce waste, and optimize resource utilization for improved overall efficiency. For instance, integrating acetylene production with downstream processes can enhance energy management and generate cost savings.

Another notable trend is the integration of automation and digital technologies in acetylene production facilities. Advanced control systems, data analytics, and machine learning algorithms allow manufacturers to monitor and optimize production in real-time. These technologies improve operational efficiency, minimize downtime, and enhance product quality. Additionally, predictive maintenance enabled by digital tools ensures smooth operation of production equipment, reducing interruptions and associated costs.

Segmental Insights

Form Insights

Based on Form, Gas have emerged as the fastest growing segment in the Global Acetylene Market in 2023. Natural gas, one of the primary feedstocks for acetylene production, is often more cost-effective compared to other sources such as calcium carbide. With the global availability of natural gas improving, especially in regions rich in shale gas reserves like the United States and certain parts of Asia, many manufacturers are shifting towards gas-based acetylene production to take advantage of its lower price. This trend is particularly strong in regions where access to natural gas is abundant, ensuring a steady and affordable supply.

The use of natural gas in acetylene production is often viewed as a more environmentally friendly alternative. Natural gas emits fewer pollutants compared to coal or oil-based processes. In light of growing environmental regulations and the increasing focus on sustainable industrial practices, gas-based production methods offer a way for acetylene manufacturers to reduce their carbon footprint. This has become a significant factor as more companies seek to meet stricter environmental standards and demonstrate their commitment to sustainability.

Gas-based acetylene production is gaining popularity due to the rising demand from various industries that require acetylene for welding, cutting, and chemical synthesis. The automotive, construction, and metalworking sectors, in particular, have seen significant growth, driving the need for reliable and cost-efficient acetylene supply. The versatility of gas-based acetylene, along with its consistent quality, makes it a preferred choice for these industries, where production efficiency is critical.

End User Insights

Based on End User, Metal Fabrication have emerged as the fastest growing segment in the Global Acetylene Market during the forecast period. Acetylene is widely recognized for its high flame temperature, which makes it ideal for metal cutting and welding. The oxy-acetylene welding process, which combines oxygen with acetylene, produces a concentrated and intense flame capable of reaching temperatures up to 3,500°C (6,332°F). This high-temperature flame allows for precision cutting and welding of metals, ensuring accuracy and efficiency, which are critical in metal fabrication.

As industries such as automotive and aerospace demand more lightweight, durable, and precision-engineered components, acetylene's ability to enable intricate welding and cutting operations enhances its relevance. The global shift towards lightweight materials, such as aluminum and advanced steel alloys, in automotive and aerospace applications further fuels the need for efficient and precise metal fabrication processes.

Rapid infrastructure development, especially in emerging economies, is a key factor driving the growth of metal fabrication and the acetylene market. Governments and private sectors are investing heavily in the construction of commercial buildings, residential complexes, transportation systems, and industrial facilities. Metal fabrication plays a central role in these projects, as it is essential for creating structural components, metal frameworks, pipelines, and other metal-based products required in large-scale construction.

Acetylene's effectiveness in both welding and cutting metal components during these construction processes makes it indispensable to the metal fabrication sector. The growing demand for steel and other metals in infrastructure projects is directly contributing to the expansion of the acetylene market, as acetylene-based welding processes are critical to the assembly of these materials.

Regional Insights

Based on Region, North America have emerged as the dominating region in the Global Acetylene Market in 2023. North America, particularly the United States, boasts vast reserves of natural gas, which is a primary feedstock for acetylene production. The region's well-developed energy infrastructure and advanced extraction techniques, such as hydraulic fracturing, have led to an increase in the availability of natural gas. This not only supports large-scale acetylene production but also reduces production costs, giving North American manufacturers a competitive edge in the global market.

The industrial landscape in North America, especially in the U.S. and Canada, is highly developed, with strong sectors such as chemicals, automotive, and pharmaceuticals all of which have significant demand for acetylene. The use of acetylene in chemical synthesis, metal fabrication, and other industrial applications creates a steady and growing demand. North America's diverse industrial base ensures that acetylene consumption remains high, further contributing to its market dominance.

North American companies are at the forefront of technological innovations in acetylene production. Cutting-edge technologies, such as electrochemical production methods and microwave plasma reactors, have improved production efficiency, reduced environmental impact, and lowered costs. These advancements allow North American producers to meet rising global demand for acetylene in a more sustainable and cost-effective manner, enhancing the region's leadership position.

Key Market Players

Report Scope

In this report, the Global Acetylene Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Acetylene Market, By Form:

Acetylene Market, By End User:

Acetylene Market, By Region:

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Acetylene Market.

Available Customizations:

Global Acetylene Market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

Table of Contents

1. Product Overview

2. Research Methodology

3. Executive Summary

4. Impact of COVID-19 on Global Acetylene Market

5. Global Acetylene Market Outlook

6. North America Acetylene Market Outlook

7. Europe Acetylene Market Outlook

8. Asia Pacific Acetylene Market Outlook

9. South America Acetylene Market Outlook

10. Middle East and Africa Acetylene Market Outlook

11. Market Dynamics

12. Market Trends & Developments

13. Global Acetylene Market: SWOT Analysis

14. Porters Five Forces Analysis

15. Competitive Landscape

16. Strategic Recommendations

17. About Us & Disclaimer

(주)글로벌인포메이션 02-2025-2992 kr-info@giikorea.co.kr
ⓒ Copyright Global Information, Inc. All rights reserved.
PC버전 보기