2022³â ¼¼°è °è»ê»ý¹°ÇÐ ½ÃÀå ±Ô¸ð´Â 48¾ï 9,000¸¸ ´Þ·¯·Î 2028³â±îÁö ¿¬Æò±Õ ¼ºÀå·ü(CAGR)ÀÌ 7.49%·Î ¿¹ÃøµÇ¸ç ¿¹Ãø ±â°£ µ¿¾È Å« ¼ºÀåÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¼¼°è °è»ê»ý¹°ÇÐ ½ÃÀåÀº ¾Ë°í¸®Áò, µ¥ÀÌÅÍ ºÐ¼®, ¼öÇÐÀû ¸ðµ¨¸µÀ» Æ÷ÇÔÇÑ °è»ê ±â¼úÀ» Ȱ¿ëÇÏ¿© »ý¹°ÇÐÀû µ¥ÀÌÅ͸¦ ÀÌÇØÇÏ°í ºÐ¼®ÇÏ´Â °Í°ú °ü·ÃÀÌ ÀÖ½À´Ï´Ù. ÀÌ ºÐ¾ß´Â À¯ÀüüÇÐ, ÇÁ·ÎÅ׿À¹Í½º, ½Å¾à°³¹ß, ¸ÂÃãÀÇ·á µî ´Ù¾çÇÑ »ý¸í°úÇÐ ºÐ¾ß¿¡¼ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.
½ÃÀå °³¿ä | |
---|---|
¿¹Ãø ±â°£ | 2024-2028³â |
2022³â ½ÃÀå ±Ô¸ð | 48¾ï 9,000¸¸ ´Þ·¯ |
2028³â ½ÃÀå ±Ô¸ð | 75¾ï 1,000¸¸ ´Þ·¯ |
CAGR 2023-2028³â | 7.49% |
±Þ¼ºÀå ºÎ¹® | Drug Discovery ¹× Áúº´ ¸ðµ¨¸µ |
ÃÖ´ë ½ÃÀå | ºÏ¹Ì |
»ý¹°ÇÐ ºÐ¾ß´Â Àü·Ê ¾ø´Â »ý¹°ÇÐÀû µ¥ÀÌÅÍÀÇ Æø¹ßÀûÀÎ Áõ°¡¸¦ Ư¡À¸·Î ÇÏ´Â »õ·Î¿î ½Ã´ë¸¦ ¸ÂÀÌÇϰí ÀÖ½À´Ï´Ù. °Ô³ð ½ÃÄö½Ì¿¡¼ º¹ÀâÇÑ »ý¹°ÇÐÀû ½Ã½ºÅÛ ¿¬±¸±îÁö, »ý¼ºµÇ´Â µ¥ÀÌÅÍÀÇ ¾ç°ú º¹À⼺Àº ¾öû³ª´Ù. ÀÌ·¯ÇÑ µ¥ÀÌÅÍÀÇ È«¼ö ¼Ó¿¡¼ ÷´Ü ¾Ë°í¸®Áò°ú µ¥ÀÌÅÍ ºÐ¼® ±â¼úÀ» Ȱ¿ëÇØ ÀÌ Ç³ºÎÇÑ Á¤º¸¸¦ ÀÌÇØÇÏ´Â °è»ê»ý¹°ÇÐ ºÐ¾ß°¡ ź»ýÇß½À´Ï´Ù. °Ô³ð ½ÃÄö½ÌÀº »ý¹°ÇÐÀû µ¥ÀÌÅÍ ±ÞÁõÀÇ ¿øµ¿·ÂÀÌ µÇ¾úÀ¸¸ç, 2003³â¿¡ ¿Ï·áµÈ Àΰ£ °Ô³ð ÇÁ·ÎÁ§Æ®´Â °Ô³ðÇÐÀÇ Áß¿äÇÑ ÀÌÁ¤Ç¥°¡ µÇ¾úÁö¸¸, ÀÌ´Â ½ÃÀÛ¿¡ ºÒ°úÇÕ´Ï´Ù. ¿À´Ã³¯¿¡´Â ÇÏÀ̽º·çDz ½ÃÄö½Ì ±â¼úÀ» ÅëÇØ Àüü °Ô³ðÀ» ½Å¼ÓÇÏ°í ºñ¿ë È¿À²ÀûÀ¸·Î ½ÃÄö½ÌÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ±× °á°ú ¹æ´ëÇÑ ¾çÀÇ À¯Àüü µ¥ÀÌÅͰ¡ ÃàÀûµÇ¾î À¯Àü, ÁøÈ, Áúº´ °¨¼ö¼º¿¡ ´ëÇÑ Áß¿äÇÑ ÀλçÀÌÆ®¸¦ ¾òÀ» ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. À¯ÀüüÇÐÀº »ý¹°ÇÐÀû µ¥ÀÌÅÍÀÇ Æø¹ßÀûÀÎ Áõ°¡ÀÇ ÇÑ Ãø¸é¿¡ ºÒ°úÇÕ´Ï´Ù. À¯ÀüÀÚÀÇ ¹ßÇö ÆÐÅÏÀ» ¿¬±¸ÇÏ´Â Àü»çüÇÐ(transcriptomics)°ú ´Ü¹éÁú¿¡ ÁÖ¸ñÇÏ´Â ÇÁ·ÎÅ׿À¹Í½º(proteomics)µµ µ¥ÀÌÅÍ À¯ÀÔ¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¿¬±¸ÀÚµéÀº ÀÌÁ¦ »ý¹°ÀÇ Àüü Àü»çü ¹× ÇÁ·ÎÅ׿ÈÀ» Á¶»çÇÒ ¼ö ÀÖÀ¸¸ç, À¯ÀüÀÚ Á¶Àý, ´Ü¹éÁú ±â´É ¹× Áúº´ ¸ÞÄ¿´ÏÁò¿¡ ´ëÇÑ ÀλçÀÌÆ®¸¦ Á¦°øÇÕ´Ï´Ù. ´ÜÀÏ ¼¼Æ÷ ½ÃÄö½Ì ±â¼úÀº »ý¹°ÇÐ ¿¬±¸¸¦ ´õ¿í ¼¼¹ÐÇÏ°Ô ¼¼ºÐÈÇß½À´Ï´Ù. °úÇÐÀÚµéÀº Á¶Á÷À̳ª ¼¼Æ÷ Áý´ÜÀ» ¿¬±¸ÇÏ´Â ´ë½Å Á¶Á÷ ³» °³º° ¼¼Æ÷¸¦ ºÐ¼®ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ ±â¼úÀº ¼¼Æ÷ÀÇ ÀÌÁú¼º, Á¶Á÷ ¹ß´Þ ¹× Áúº´ ÁøÇà¿¡ ´ëÇÑ ¿ì¸®ÀÇ ÀÌÇØ¿¡ Çõ¸íÀ» ÀÏÀ¸Ä×½À´Ï´Ù. ±×·¯³ª ÀÌ ±â¼úÀº °íµµÀÇ ÄÄÇ»ÅÍ ºÐ¼®ÀÌ ÇÊ¿äÇÑ ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅ͸¦ »ý¼ºÇÕ´Ï´Ù. ¿©·¯ ¿À¹Í½º µ¥ÀÌÅÍ ¼Ò½º(À¯ÀüüÇÐ, Àü»çüÇÐ, ´Ü¹éüÇÐ, ´ë»çüÇÐ µî)ÀÇ ÅëÇÕÀº º¹ÀâÇÑ »ý¹°ÇÐÀû ½Ã½ºÅÛÀ» Æ÷°ýÀûÀ¸·Î ÀÌÇØÇϱâ À§ÇÑ °·ÂÇÑ Á¢±Ù¹ýÀÔ´Ï´Ù. ±×·¯³ª µ¥ÀÌÅÍ ¾çÀº ±âÇϱ޼öÀûÀ¸·Î Áõ°¡ÇÕ´Ï´Ù. °è»ê»ý¹°ÇÐÀº ÀÌ·¯ÇÑ ÅëÇÕµÈ µ¥ÀÌÅÍ ¼¼Æ®ÀÇ Á¶È¿Í ÇØ¼®¿¡ ÀÖ¾î ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϸç, »ý¹°ÇÐÀû Çö»ó¿¡ ´ëÇÑ ÀüüÀûÀÎ ÀλçÀÌÆ®¸¦ Á¦°øÇÕ´Ï´Ù. Á¦¾à¾÷°è´Â ½Å¾à°³¹ßÀ» °¡¼ÓÈÇϱâ À§ÇØ °è»ê»ý¹°Çп¡ ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ¿¬±¸ÀÚµéÀº ÈÇÕ¹° ¹× »ýü ºÐÀÚµé°úÀÇ »óÈ£ÀÛ¿ë¿¡ ´ëÇÑ ¹æ´ëÇÑ µ¥ÀÌÅÍ ¼¼Æ®¸¦ ºÐ¼®ÇÏ¿© ÀáÀçÀûÀÎ ¾à¹° È常¦ ½Äº°Çϰí, È¿´ÉÀ» ¿¹ÃøÇϰí, Ư¼ºÀ» ÃÖÀûÈÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¥ÀÌÅÍ ±â¹Ý Á¢±Ù ¹æ½ÄÀº ½Å¾à Ãâ½Ã¿¡ ¼Ò¿äµÇ´Â ½Ã°£°ú ºñ¿ëÀ» Å©°Ô ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù.
À¯ÀüüÇÐ ºÐ¾ß´Â Áö³ ¼ö½Ê ³â µ¿¾È ´«ºÎ½Å ¹ßÀüÀ» ÀÌ·ç¸ç À¯Àü, Áúº´, ±×¸®°í »ý¸í ÀÚüÀÇ º¹À⼺¿¡ ´ëÇÑ ÀÌÇØ¿¡ Çõ¸íÀ» ÀÏÀ¸Ä×½À´Ï´Ù. ÀÌ·¯ÇÑ º¯ÈÀÇ Á߽ɿ¡´Â À¯ÀüüÇаú °è»ê»ý¹°ÇÐÀÇ ½Ã³ÊÁö È¿°ú°¡ ÀÖÀ¸¸ç, 2003³â¿¡ ¿Ï·áµÈ Àΰ£ °Ô³ð ÇÁ·ÎÁ§Æ®´Â À¯ÀüüÇÐÀÇ ÀüȯÁ¡ÀÌ µÇ¾ú½À´Ï´Ù. Àΰ£ °Ô³ðÀÇ ¸ðµç À¯ÀüÀÚ¸¦ ¸ÅÇÎÇÏ°í ¿°±â¼¿À» °áÁ¤ÇÏ´Â ´ë±Ô¸ð °øµ¿ ÀÛ¾÷À̾ú½À´Ï´Ù. ÀÌ ±â³äºñÀûÀÎ ¼º°ú´Â À¯ÀüüÇÐ Çõ¸íÀÇ ¹ßÆÇÀÌ µÇ¾ú°í, °í󸮷® DNA ¿°±â¼¿ ºÐ¼® ±â¼úÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀ» ÃËÁøÇß½À´Ï´Ù. Â÷¼¼´ë ½ÃÄö½Ì(NGS) ±â¼úÀº À¯ÀüüÇÐÀÇ °ÔÀÓ Ã¼ÀÎÀú·Î µîÀåÇß½À´Ï´Ù. ÀÌ Àåºñ´Â ´Ü½Ã°£¿¡ ¹æ´ëÇÑ ¾çÀÇ DNA ¿°±â¼¿À» °áÁ¤Çϰí, ÇÑ ¹øÀÇ ½ÇÇàÀ¸·Î Å×¶ó¹ÙÀÌÆ® ´ÜÀ§ÀÇ µ¥ÀÌÅ͸¦ »ý¼ºÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌó·³ µ¥ÀÌÅÍ »ý»ê·®ÀÌ ºñ¾àÀûÀ¸·Î Áõ°¡ÇÔ¿¡ µû¶ó µ¥ÀÌÅ͸¦ È¿À²ÀûÀ¸·Î ó¸®ÇÏ°í ºÐ¼®ÇÒ ¼ö ÀÖ´Â °íµµÀÇ °è»ê µµ±¸¿Í Àü¹® Áö½ÄÀÌ ÇÊ¿äÇÏ°Ô µÇ¾ú½À´Ï´Ù. ÇÏÀ̽º·çDz ½ÃÄö½ÌÀÇ º¸±ÞÀº °Ô³ð µ¥ÀÌÅÍÀÇ Æø¹ßÀûÀÎ Áõ°¡¸¦ °¡Á®¿Ô½À´Ï´Ù. ¿¬±¸ÀÚµéÀº Àΰ£ °Ô³ð»Ó¸¸ ¾Æ´Ï¶ó ¼ö¸¹Àº »ý¹° Á¾ÀÇ °Ô³ðÀ» ½ÃÄö½ÌÇÏ¿© ÁøÈ, À¯ÀüÀû ´Ù¾ç¼º, Áúº´ÀÇ À¯ÀüÀû ±â¹Ý¿¡ ´ëÇÑ Áß¿äÇÑ ÀλçÀÌÆ®¸¦ ¾òÀ» ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ¹æ´ëÇÑ µ¥ÀÌÅÍ´Â ÀÇ¹Ì ÀÖ´Â Á¤º¸¸¦ ÃßÃâÇϱâ À§ÇÑ °è»ê »ý¹°ÇÐ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. Àú·ÅÇÑ °¡°ÝÀÇ DNA °Ë»ç°¡ µîÀåÇÏ¸é¼ À¯ÀüüÇÐÀº ´ëÁß¿¡°Ô Ä£¼÷ÇØÁö°í ÀÖ½À´Ï´Ù. °³ÀÎÀº ÀÚ½ÅÀÇ À¯Àü Á¤º¸¸¦ ÅëÇØ Á¶»óÀÇ Ç÷Åë, Áúº´ ¼ÒÀÎ, ±ÇÀåµÇ´Â »ýȰ ¹æ½Ä¿¡ ´ëÇÑ ÀλçÀÌÆ®¸¦ ¾òÀ» ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. °³ÀÎ °Ô³ð¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼ °³ÀÎÀÇ À¯ÀüÀÚ ÇÁ·ÎÇÊÀ» ºÐ¼® ¹× ÇØ¼®ÇÒ ¼ö ÀÖ´Â °è»ê µµ±¸¿¡ ´ëÇÑ Çʿ伺ÀÌ Ä¿Áö°í ÀÖ½À´Ï´Ù. À¯Àüü ÀÇÇÐÀº À¯Àüü µ¥ÀÌÅ͸¦ Ȱ¿ëÇÏ¿© ÀÓ»óÀû ÀÇ»ç°áÁ¤¿¡ Ȱ¿ëÇÕ´Ï´Ù. Áúº´°ú °ü·ÃµÈ À¯ÀüÀÚ º¯À̸¦ ½Äº°Çϰí, Á¶±â Áø´ÜÀ» ¿ëÀÌÇÏ°Ô Çϸç, °³º°ÈµÈ Ä¡·á °èȹÀ» Áö¿øÇÕ´Ï´Ù. À¯Àüü ÀÇÇÐÀÌ ÇコÄÉ¾î ½Ã½ºÅÛ¿¡ ÅëÇյǸé¼, °è»ê»ý¹°ÇÐ µµ±¸´Â À¯Àüü Á¤º¸¸¦ ½Ç¿ëÀûÀÎ Áö½ÄÀ¸·Î ÀüȯÇÏ´Â µ¥ ÀÖ¾î ÇÙ½ÉÀûÀÎ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ À¯Àüü ºÐ¼® ±â¼úÀº ¼¼Æ÷ Áý´ÜÀ» ºÐ¼®ÇÏ´Â °æ¿ì°¡ ¸¹¾Æ Á¶Á÷ ³» ´Ù¾ç¼ºÀÌ °¡·ÁÁ® ÀÖ¾ú½À´Ï´Ù. ´ÜÀÏ ¼¼Æ÷ À¯ÀüüÇÐ ±â¼úÀ» ÅëÇØ ¿¬±¸ÀÚµéÀº °³º° ¼¼Æ÷¸¦ Á¶»çÇÏ°í ¼¼Æ÷ÀÇ º¹ÀâÇÑ ÀÌÁú¼ºÀ» ¹àÈú ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº ¹æ´ëÇÑ µ¥ÀÌÅÍ ¼¼Æ®¸¦ »ý¼ºÇϱ⠶§¹®¿¡ º¹ÀâÇÑ ¼¼Æ÷ ȯ°æÀ» ÀÌÇØÇϱâ À§ÇÑ °è»ê ±â¹ýÀ» ÇÊ¿ä·Î ÇÕ´Ï´Ù.
¾à¹° ¹ß°ß°ú °è»ê»ý¹°ÇÐÀÇ ¿µ¿ªÀº Èï¹ÌÁøÁøÇÑ À¶ÇÕÀ» ÀÌ·ç°í ÀÖ½À´Ï´Ù. Á¦¾à¾÷°è°¡ Çõ½ÅÀûÀÎ ÀǾàǰ °³¹ß¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ´Â °¡¿îµ¥, °è»ê»ý¹°ÇÐÀº Çʼö ºÒ°¡°áÇÑ ÆÄÆ®³Ê·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ¾ÏºÎÅÍ Èñ±Í À¯Àü¼º Áúȯ¿¡ À̸£±â±îÁö ´Ù¾çÇÑ Áúº´À» Ä¡·áÇÒ ¼ö ÀÖ´Â »õ·Î¿î ÈÇÕ¹°¿¡ ´ëÇÑ ¼ö¿ä´Â °è¼Ó Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ½Å¾à °³¹ßÀº ¿À·£ ½Ã°£°ú ÀÚ¿øÀÌ ¼Ò¿äµÇ´Â °úÁ¤ÀÌÁö¸¸, ÀÇ·á ¼º°ú¿Í ȯÀÚÀÇ »îÀÇ ÁúÀ» Çâ»ó½ÃŰ´Â µ¥ ÇʼöÀûÀÎ °úÁ¤ÀÔ´Ï´Ù. °è»ê»ý¹°ÇÐÀº ÀǾàǰ °³¹ßÀÇ ¿©·¯ ´Ü°è¸¦ °¡¼ÓÈÇÔÀ¸·Î½á ¸Å¿ì Áß¿äÇÑ Áö¿øÀ» Á¦°øÇÕ´Ï´Ù. °è»ê»ý¹°ÇÐÀ» ÅëÇØ ¿¬±¸ÀÚµéÀº ÄÄÇ»ÅÍ ±â¹ÝÀÇ ÀνǸ®ÄÚ(in silico) ¾à¹° ½ºÅ©¸®´×À» ¼öÇàÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ Á¢±Ù¹ýÀº ÀáÀçÀû ¾à¹° ÈÇÕ¹°°ú ´Ü¹éÁú, È¿¼Ò µî Ç¥Àû ºÐÀÚ¿ÍÀÇ »óÈ£ÀÛ¿ëÀ» ½Ã¹Ä·¹À̼ÇÇÏ´Â ¹æ½ÄÀÔ´Ï´Ù. ¼öõ °³ÀÇ ÈÇÕ¹°À» °¡»óÀ¸·Î ½ºÅ©¸®´×ÇÔÀ¸·Î½á ¿¬±¸ÀÚµéÀº ´õ ºü¸£°í Àú·ÅÇÑ ºñ¿ëÀ¸·Î ÀáÀçÀûÀÎ ¾à¹° È常¦ ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÄÄÇ»ÅÍ »ý¹°ÇÐÀº ¾à¹°°ú Ç¥Àû ºÐÀÚÀÇ »óÈ£ ÀÛ¿ëÀ» ¿¹ÃøÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¾Ë°í¸®Áò°ú ±â°è ÇнÀ ¸ðµ¨Àº »ý¹°ÇÐÀû µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© ¾à¹° ºÐÀÚ°¡ ƯÁ¤ ¼¼Æ÷ Ç¥Àû°ú »óÈ£ ÀÛ¿ëÇÏ´Â ¹æ½ÄÀ» °áÁ¤ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¿¹Ãø ´É·ÂÀº ÀǾàǰ °³¹ß ±â°£À» Å©°Ô ´ÜÃàÇÏ°í ½ÇÇè ½ÇÆÐ¸¦ ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¾à¹° Èĺ¸ ¹°ÁúÀÌ È®ÀÎµÇ¸é °è»ê»ý¹°ÇÐÀº ±× Ư¼ºÀ» ÃÖÀûÈÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ¿¬±¸ÀÚµéÀº Èĺ¸¹°ÁúÀÇ ÈÇб¸Á¶¸¦ º¯°æÇÏ¿© È¿´ÉÀ» ³ôÀ̰í, µ¶¼ºÀ» ÁÙÀ̸ç, »ýü ÀÌ¿ë·üÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ¸®µå ÈÇÕ¹° ÃÖÀûÈ·Î ¾Ë·ÁÁø ÀÌ ¹Ýº¹ÀûÀÎ ÇÁ·Î¼¼½º´Â °è»ê ¸ðµ¨¸µ°ú ½Ã¹Ä·¹À̼ǿ¡ Å©°Ô ÀÇÁ¸ÇÕ´Ï´Ù. Áúº´¿¡ °ü¿©ÇÏ´Â ±Ùº»ÀûÀÎ »ý¹°ÇÐÀû °æ·Î¸¦ ÀÌÇØÇÏ´Â °ÍÀº ÀǾàǰ °³¹ß¿¡ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. °è»ê»ý¹°ÇÐ µµ±¸´Â º¹ÀâÇÑ ¿À¹Í½º µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© ÀÌ·¯ÇÑ °æ·Î¸¦ ÀÌÇØÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ Áö½ÄÀº ¿¬±¸ÀÚµéÀÌ Áß¿äÇÑ Ç¥ÀûÀ» ½Äº°ÇÏ°í Æ¯Á¤ »ý¹°ÇÐÀû °úÁ¤À» Á¶ÀýÇÏ´Â ¾à¹°À» °³¹ßÇÏ´Â µ¥ µµ¿òÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù.
¿À´Ã³¯ÀÇ »óÈ£ ¿¬°áµÈ ¼¼»ó¿¡¼ Çù¾÷°ú ÆÄÆ®³Ê½ÊÀº Çõ½Å°ú Áøº¸¸¦ À§ÇÑ °·ÂÇÑ Ã˸ÅÁ¦ÀÔ´Ï´Ù. ¼¼°è °è»ê»ý¹°ÇÐ ½ÃÀåµµ ¿¹¿Ü´Â ¾Æ´Ï¸ç, ÀÌÁ¾ »ê¾÷ °£ÀÇ Çù¾÷À¸·Î Å« ÇýÅÃÀ» ´©¸®°í ÀÖ½À´Ï´Ù. °è»ê»ý¹°ÇÐ ºÐ¾ß¿¡¼ÀÇ Çù¾÷Àº Áö½Ä°ú Àü¹® Áö½ÄÀÇ ±³È¯À» ÃËÁøÇÕ´Ï´Ù. Çаè¿Í ¿¬±¸±â°üÀº ÃÖ÷´Ü ¿¬±¸ ¼º°ú¸¦, Á¦¾àȸ»ç´Â ½Ç¹«ÀûÀÎ ¿¬±¸°³¹ß °æÇèÀ» Á¦°øÇÏ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ÀÌ·¯ÇÑ ÁÖüµéÀÌ ÇÑÀÚ¸®¿¡ ¸ðÀ̸é ÀÌ·ÐÀû ÀλçÀÌÆ®¿Í ½ÇÁ¦ Àû¿ëÀÌ °áÇյǾî ÀÌ ºÐ¾ßÀÇ Çõ½ÅÀ» ÃËÁøÇÒ ¼ö ÀÖ½À´Ï´Ù. °è»ê»ý¹°ÇÐÀÇ ÁÖ¿ä °úÁ¦ Áß Çϳª´Â ¾çÁúÀÇ »ý¹°ÇÐÀû µ¥ÀÌÅÍ¿¡ ´ëÇÑ Á¢±ÙÀÔ´Ï´Ù. ¿¬±¸ ±â°ü°ú ±â¼ú ±â¾÷ÀÌ Çù·ÂÇÏ¸é ±ÍÁßÇÑ µ¥ÀÌÅÍ ÀÚ¿øÀ» Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, °ø°ø-¹Î°£ ÆÄÆ®³Ê½ÊÀº ¿¬±¸ÀÚµéÀÌ ´ë±Ô¸ð µ¥ÀÌÅÍ ¼¼Æ®¿¡ Á¢±ÙÇÒ ¼ö ÀÖµµ·Ï ÇÏ¿© Á¾ÇÕÀûÀÎ ºÐ¼®°ú º¸´Ù Á¤È®ÇÑ ¸ðµ¨ °³¹ßÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. Çù·ÂÀû ³ë·ÂÀ» ÅëÇØ ÀÎÀû, ÀçÁ¤Àû ÀÚ¿øÀ» ÅëÇÕÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀÚ¿øÀÇ ½Ã³ÊÁö È¿°ú·Î ¿¬±¸°³¹ß °úÁ¤À» °¡¼ÓÈÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿©·¯ ±â°üÀÌ ÇÁ·ÎÁ§Æ®¿¡ ±â¿©ÇÔÀ¸·Î½á ´ë±Ô¸ð °Ô³ð ¿¬±¸³ª ½Å¾à °³¹ß ÀÌ´Ï¼ÅÆ¼ºê¿Í °°Àº ´õ ±¤¹üÀ§ÇÏ°í º¹ÀâÇÑ ¹®Á¦¸¦ ÇØ°áÇÒ ¼ö ÀÖ½À´Ï´Ù. °è»ê»ý¹°ÇÐÀº º»ÁúÀûÀ¸·Î »ý¹°ÇÐ, ÄÄÇ»ÅÍ °úÇÐ, Åë°èÇÐ µî ¿©·¯ Çй® ºÐ¾ß¿¡ °ÉÃÄ ÀÖ½À´Ï´Ù. °øµ¿ ÇÁ·ÎÁ§Æ®¿¡´Â ÀÌ·¯ÇÑ ´Ù¾çÇÑ ¹è°æÀ» °¡Áø ¿¬±¸ÀÚµéÀÌ Âü¿©ÇÏ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ÀÌ·¯ÇÑ ´ÙÇÐÁ¦Àû Á¢±ÙÀº »õ·Î¿î °üÁ¡°ú âÀÇÀûÀÎ ¹®Á¦ ÇØ°áÀ» ÃËÁøÇϰí, ´ÜÀÏ Á¶Á÷ ³»¿¡¼´Â ºÒ°¡´ÉÇßÀ» ¼öµµ ÀÖ´Â µ¹ÆÄ±¸¸¦ ¸¶·ÃÇÒ ¼ö ÀÖ½À´Ï´Ù. Á¦¾à¾÷°è¿¡¼´Â ½Å¾à°³¹ßÀ» À§ÇØ °è»ê»ý¹°ÇÐÀ» Ȱ¿ëÇÏ´Â »ç·Ê°¡ ´Ã°í ÀÖ½À´Ï´Ù. Á¦¾àȸ»ç¿Í °è»ê»ý¹°ÇÐ Àü¹®°¡µéÀÌ Çù·ÂÇϸé ÀáÀçÀûÀÎ ½Å¾à È常¦ ºü¸£°Ô ¹ß±¼ÇÒ ¼ö ÀÖ½À´Ï´Ù. »ê¾÷À» ÃÊ¿ùÇÑ ÆÄÆ®³Ê½ÊÀº ¾à¹°°ú Ç¥ÀûÀÇ »óÈ£ÀÛ¿ëÀ» ¿¹ÃøÇÏ°í ¼±µµ ÈÇÕ¹°À» ÃÖÀûÈÇϱâ À§ÇÑ °è»ê µµ±¸ÀÇ Àû¿ëÀ» ÃËÁøÇÕ´Ï´Ù.
»ý¹°ÇÐÀû µ¥ÀÌÅÍÀÇ ±Þ°ÝÇÑ Áõ°¡´Â ¾ç³¯ÀÇ °ËÀÔ´Ï´Ù. dzºÎÇÑ Á¤º¸¸¦ Á¦°øÇÏ´Â ¹Ý¸é, µ¥ÀÌÅÍÀÇ º¹À⼺°ú ¾çÀ̶ó´Â ½É°¢ÇÑ ¹®Á¦¸¦ ¾ß±âÇÕ´Ï´Ù. ¹æ´ëÇÑ µ¥ÀÌÅÍ ¼¼Æ®¸¦ ó¸®Çϰí, ÀúÀåÇϰí, ºÐ¼®Çϱâ À§Çؼ´Â źźÇÑ ÄÄÇ»ÆÃ ÀÎÇÁ¶ó¿Í È¿À²ÀûÀÎ ¾Ë°í¸®ÁòÀÌ ÇÊ¿äÇÕ´Ï´Ù.
»ý¹°ÇÐÀû µ¥ÀÌÅÍ, ƯÈ÷ À¯Àüü Á¤º¸´Â ±â¹Ð¼ºÀÌ ³ô¾Æ ¾ö°ÝÇÑ ÇÁ¶óÀ̹ö½Ã ±ÔÁ¦°¡ Àû¿ëµË´Ï´Ù. ÀÇ¹Ì ÀÖ´Â ºÐ¼®À» °¡´ÉÇÏ°Ô ÇÏ´Â µ¿½Ã¿¡ µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¸¦ º¸ÀåÇÏ´Â °ÍÀº ¹Ì¹¦ÇÑ ±ÕÇüÀ» À¯ÁöÇØ¾ß ÇÕ´Ï´Ù. °è»ê»ý¹°ÇÐ ½ÃÀåÀº »çȸÀÇ ½Å·Ú¸¦ ¾ò°í ÁøÈÇÏ´Â µ¥ÀÌÅÍ º¸È£¹ýÀ» ÁؼöÇϱâ À§ÇØ ÀÌ·¯ÇÑ ¿ì·Á¸¦ ÇØ°áÇØ¾ß ÇÕ´Ï´Ù.
°è»ê»ý¹°ÇÐ µµ±¸¿Í Ç÷§ÆûÀº µ¥ÀÌÅÍ Çü½Ä°ú ºÐ¼® ¹æ¹ýÀÌ ¼·Î ´Ù¸¥ °æ¿ì°¡ ¸¹½À´Ï´Ù. ÀÌ·¯ÇÑ Ç¥ÁØÈÀÇ ºÎÀç´Â µ¥ÀÌÅÍ °øÀ¯¿Í °øµ¿¿¬±¸¸¦ ¹æÇØÇÏ´Â ¿äÀÎÀÌ µË´Ï´Ù. À̸¦ ±Øº¹Çϱâ À§Çؼ´Â °øÅëÀÇ µ¥ÀÌÅÍ Ç¥Áذú »óÈ£ ¿î¿ë °¡´ÉÇÑ µµ±¸ÀÇ È®¸³ÀÌ ÇʼöÀûÀÔ´Ï´Ù.
°è»ê»ý¹°ÇÐ ºÐ¾ß´Â »ý¹°ÇÐ, ÄÄÇ»ÅͰúÇÐ, ¼öÇÐ, Åë°èÇÐ µî ´ÙÇÐÁ¦Àû ±â¼úÀ» ¿ä±¸ÇÕ´Ï´Ù. ÀÌ ºÐ¾ß¿¡ Á¤ÅëÇÑ Àü¹®°¡°¡ ºÎÁ·ÇØ ±â¾÷µéÀº À¯´ÉÇÑ ÀÎÀ縦 ã°í È®º¸ÇÏ´Â µ¥ ¾î·Á¿òÀ» °Þ°í ÀÖ½À´Ï´Ù.
´ÜÀϼ¼Æ÷ ½ÃÄö½Ì°ú ¿À¹Í½º ±â¼úÀÌ ºü¸£°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀ» ÅëÇØ ¿¬±¸ÀÚµéÀº º¹ÀâÇÑ Á¶Á÷ ³» °³º° ¼¼Æ÷ÀÇ ºÐÀÚ ÇÁ·ÎÆÄÀÏÀ» ºÐ¼®ÇÒ ¼ö ÀÖ½À´Ï´Ù. ´ÜÀÏ ¼¼Æ÷ µ¥ÀÌÅÍÀÇ ÇØ»óµµ°¡ Çâ»óµÊ¿¡ µû¶ó, °è»ê »ý¹°ÇÐÀº ÀÌ·¯ÇÑ º¹ÀâÇÑ µ¥ÀÌÅÍ ¼¼Æ®¸¦ ºÐ¼®Çϰí ÇØ¼®ÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ°Ô µÉ °ÍÀÔ´Ï´Ù. ´ÜÀÏ ¼¿¿À¹Í½º ºÐ¼®¿¡ Æ¯ÈµÈ ¾Ë°í¸®Áò°ú µµ±¸ÀÇ Çõ½ÅÀ» ±â´ëÇØº¾´Ï´Ù.
°ø°£ Àü»çüÇÐÀº À¯ÀüüÇаú °ø°£ Á¤º¸¸¦ °áÇÕÇÑ »õ·Î¿î ºÐ¾ßÀÔ´Ï´Ù. Á¶Á÷ ³» À¯ÀüÀÚ ¹ßÇöÀ» ¸ÅÇÎÇÏ¿© ¼¼Æ÷ÀÇ °ø°£Àû ±¸¼º¿¡ ´ëÇÑ ÀλçÀÌÆ®¸¦ ¾òÀ» ¼ö ÀÖ½À´Ï´Ù. °ø°£ µ¥ÀÌÅÍ ºÐ¼®À» À§ÇÑ °è»ê ±â¹ýÀº Á¶Á÷ ±¸Á¶¿Í Áúº´ ¸ÞÄ¿´ÏÁòÀ» ¿¬±¸ÇÒ ¼ö ÀÖ´Â »õ·Î¿î ¹æ¹ýÀ» Á¦°øÇϹǷΠ¼ö¿ä°¡ ³ôÀ» °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
À¯ÀüüÇÐ, Àü»çüÇÐ, ÇÁ·ÎÅ׿À¹Í½º, ´ë»çüÇÐ µî ´Ù¾çÇÑ ¿À¹Í½º µ¥ÀÌÅÍ ¼Ò½º¸¦ ÅëÇÕÇÏ¿© »ý¹°ÇÐÀû ½Ã½ºÅÛÀÇ Àüü ±×¸²À» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù. ¸ÖƼ¿À¹Í½º µ¥ÀÌÅÍÀÇ ÅëÇÕ°ú ºÐ¼®À» ¿ëÀÌÇÏ°Ô ÇÏ´Â °è»ê µµ±¸´Â ¿¬±¸ÀÚµéÀÌ º¹ÀâÇÑ »óÈ£ÀÛ¿ë°ú °æ·Î¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁֱ⠶§¹®¿¡ ¼ö¿ä°¡ ³ôÀ» °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ÄÄÇ»ÆÃ »ý¹°Çп¡¼ µ¥ÀÌÅÍ º¸¾È°ú ÇÁ¶óÀ̹ö½Ã´Â ƯÈ÷ ¹Î°¨ÇÑ À¯Àüü Á¤º¸¸¦ ´Ù·ê ¶§ °¡Àå Áß¿äÇÑ ¿ä¼ÒÀÔ´Ï´Ù. ºí·ÏüÀÎ ±â¼úÀº ¾ÈÀüÇϰí Åõ¸íÇÑ µ¥ÀÌÅÍ °ü¸®¿¡ À¯¸ÁÇϸç, »ý¹°ÇÐÀû µ¥ÀÌÅÍÀÇ ¹«°á¼º°ú ÇÁ¶óÀ̹ö½Ã¸¦ º¸ÀåÇÕ´Ï´Ù. µ¥ÀÌÅÍ º¸¾È°ú ÃßÀû¼ºÀ» À§ÇÑ ºí·ÏüÀÎ ±â¹Ý ¼Ö·ç¼ÇÀ» ±â´ëÇØ º¾´Ï´Ù.
¼ºñ½º ¹üÁÖ¿¡ µû¶ó 2022³â ¼¼°è °è»ê »ý¹°ÇÐ ½ÃÀå¿¡¼ °è¾à ºÎ¹®ÀÌ Áö¹èÀûÀÎ Ç÷¹À̾î·Î ºÎ»óÇß½À´Ï´Ù. ÀÌ´Â Àü ¼¼°èÀûÀ¸·Î Á¦°øµÇ´Â ÀÚü ¼ºñ½º¿Í ºñ±³ÇßÀ» ¶§ °è¾à ¼ºñ½ºÀÇ ºñ¿ë È¿À²¼ºÀÌ ³ô±â ¶§¹®ÀÔ´Ï´Ù. CRO(Contract Research Organization) ¼ºñ½º Á¦°ø ¾÷ü´Â °í°´°ú ±ä¹ÐÈ÷ Çù·ÂÇÏ¿© ¸ÂÃãÇü °èȹÀ» ¼ö¸³Çϱ⠶§¹®¿¡ ½ÃÀå ¼ºÀåÀÇ Ã˸ÅÁ¦ ¿ªÇÒÀ» ÇÒ °ÍÀÔ´Ï´Ù.
»ó¾÷ ºÎ¹®ÀÌ ½ÃÀå ¼öÀÍÀÇ ÁÖ¿ä ±â¿©ÀÚ°¡ µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Á¤ºÎ ±â°ü°ú ¹Î°£ ±â¾÷ÀÇ À¯Àü°øÇÐ ¿¬±¸°³¹ß(R&D) ¹× Çõ½ÅÀû ÀǾàǰ °³¹ß¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çϰí ÀÖ´Â °ÍÀÌ °è»ê»ý¹°Çп¡ ´ëÇÑ ¼ö¿ä¸¦ Áõ°¡½ÃŰ´Â ÁÖ¿ä ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù.
±× ¿¹·Î, 2021³â 5¿ù ¼¼°èº¸°Ç±â±¸(WHO)¿Í ½ºÀ§½º ¿¬¹æÀº WHO ¹ÙÀÌ¿ÀÇãºê ½Ã½ºÅÛÀÇ ÀÏȯÀ¸·Î Á¦1Â÷ WHO ¹ÙÀÌ¿ÀÇãºê ½Ã¼³ ¼³¸³À» À§ÇÑ ¾çÇØ°¢¼¿¡ ¼¸íÇß½À´Ï´Ù. ½ºÀ§½º ½´ÇÇÃ÷¿¡ À§Ä¡ÇÑ ÀÌ ½Ã¼³Àº »ý¹°ÇÐÀû ½Ã·áÀÇ ¾ÈÀüÇÑ ¼ö¿ë, ¿°±â¼¿ ºÐ¼®, º¸°ü ¹× ´Ù¸¥ ½ÇÇè½Ç·ÎÀÇ ¹èÆ÷ Áغñ¸¦ À§ÇÑ Çãºê ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¶ÇÇÑ À§Çè Æò°¡¿¡¼ Áß¿äÇÑ ¿ªÇÒÀ» ¼öÇàÇϸç Àü ¼¼°è°¡ º´¿ø±Õ¿¡ ´ëºñÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇϰí ÀÖ½À´Ï´Ù. ¸¶Âù°¡Áö·Î, À¯·´ À§¿øÈ¸°¡ Horizon 2020 ÇÁ·Î±×·¥¿¡ ´ëÇÑ ´ë±Ô¸ð ÅõÀÚ´Â Çõ½Å À庮À» Á¦°ÅÇϰí, ¹Î°ü Çù·Â °ü°è¸¦ °³¼±Çϰí, Çõ½ÅÀ» ÃËÁøÇÏ´Â °ÍÀ» ¸ñÇ¥·Î Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÅÈï ½ÃÀå °³Ã´Àº °è»ê»ý¹°Çп¡ ´ëÇÑ ¼ö¿ä Áõ°¡¸¦ ÃËÁøÇÏ°í °á°úÀûÀ¸·Î ÀÌ ½ÃÀå ºÎ¹®ÀÇ ¼öÀÍ ¼ºÀåÀ» ÃËÁøÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ºÏ¹Ì Áö¿ªÀº ÇöÀç °è»ê»ý¹°ÇÐ ½ÃÀå¿¡¼ ¾ÐµµÀûÀÎ À§Ä¡¸¦ Â÷ÁöÇϰí ÀÖÀ¸¸ç, ÇâÈÄ ¸î ³â µ¿¾È ±× ÁöÀ§¸¦ À¯ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ƯÈ÷ ¹Ì±¹Àº »ýü ½Ã½ºÅÛÀÇ ¼³°è, Á¶ÀÛ ¹× ÀçÇÁ·Î±×·¡¹Ö¿¡ ÃÊÁ¡À» ¸ÂÃá »õ·Î¿î Çй® ºÐ¾ßÀÎ ÇÕ¼º»ý¹°ÇÐ ºÐ¾ß¿¡¼ ¼±µÎÁÖÀÚ·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù. ¹Ì±¹ Á¤ºÎ´Â 2005³âºÎÅÍ °è»ê»ý¹°Çаú ÇÕ¼º»ý¹°ÇÐÀ» Àû±ØÀûÀ¸·Î Áö¿øÇϰí ÀÖÀ¸¸ç, ±× °³¹ß¿¡ 10¾ï ´Þ·¯ ÀÌ»óÀÇ ÀÚ±ÝÀ» ÅõÀÔÇϰí ÀÖ½À´Ï´Ù. ¹Ì±¹ Á¤ºÎÀÇ °è»ê»ý¹°ÇÐ ¹ßÀü¿¡ ´ëÇÑ ¿¬°£ Æò±Õ ÅõÀÚ¾×Àº ¾à 1¾ï 4,000¸¸ ´Þ·¯·Î Ãß»êµË´Ï´Ù.
°³ÀÎÈ ÀÇ·áÀÇ ºÎ»óÀº ÀÇ·á ±â°ü, Á¤ºÎ ±â°ü ¹× ¿¬±¸ÀÚµé »çÀÌ¿¡¼ È¿°úÀûÀÎ Ä¡·á¹ý °³¹ßÀ» ÃËÁøÇϱâ À§ÇÑ °øµ¿ ÀÌ´Ï¼ÅÆ¼ºê¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, 2020³â Summit Biolabs Inc.¿Í Colorado Center for Personalized Medicine(CCPM)Àº ¾Ï Á¶±â ¹ß°ß, COVID-19 Áø´Ü ¹× ±âŸ ¹ÙÀÌ·¯½º °¨¿°À» À§ÇÑ Å¸¾× »ý°Ë °Ë»çÀÇ ¿¬±¸ °³¹ß ¹× »ó¿ëȸ¦ À§ÇÑ Á¾ÇÕÀûÀÎ Àü·«Àû ÆÄÆ®³Ê½ÊÀ» ¸Î¾ú½À´Ï´Ù. ¸¶Âù°¡Áö·Î 2020³â 4¿ù, ÇコÄÉ¾î ¿ùµå ¿£ÅÍÇÁ¶óÀÌÁî¿Í ½ºÆ®·£µå ¶óÀÌÇÁ »çÀ̾𽺴 ȯÀÚÀÇ Á¾¾ç¿¡¼ ÃßÃâÇÑ DNA¿Í RNAÀÇ ¾Ï °ü·Ã À¯ÀüÀÚ º¯È¸¦ ÅëÇÕµÈ ¿öÅ©Ç÷οì·Î Æò°¡ÇÏ´Â Â÷¼¼´ë ¿°±â¼¿ ºÐ¼®(NGS) ±â¹Ý ºÐ¼®¹ýÀÎ StrandAdvantage 500À» ¹ßÇ¥Çß½À´Ï´Ù. ¶ÇÇÑ, 2021³â 7¿ù¿¡´Â Á¾¾çÇÐ ¹× Á¤¹ÐÀÇ·á ºÐ¾ß¸¦ À§ÇØ ¼³°èµÈ Çõ½ÅÀûÀÎ AI Ž»ö Ç÷§ÆûÀÎ '¿©Çà(travel)'À» ¹ßÇ¥Çß½À´Ï´Ù. ÀÌ Ç÷§ÆûÀº IndivuTypeÀÇ ±¤¹üÀ§ÇÑ ¸ÖƼ¿À¹Í½º µ¥ÀÌÅÍ¿Í Á¤±³ÇÑ Áúº´ ¸ðµ¨, °í±Þ ÀÚµ¿ ¸Ó½Å·¯´× µµ±¸ ¹× °í±Þ ºÐ¼® ±â´ÉÀÇ Á¾ÇÕÀûÀÎ Á¦Ç°±ºÀ» °áÇÕÇß½À´Ï´Ù.
¹Ì±¹ Àüü °è»ê»ý¹°ÇÐ ½ÃÀåÀº ÇâÈÄ ¸î ³â µ¿¾È Å©°Ô ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â ÁÖ·Î ÀǾàǰ °³¹ß¿¡ ´ëÇÑ ÅõÀÚ°¡ ¼¼°è ÃÖ°í ¼öÁØÀ̱⠶§¹®ÀÔ´Ï´Ù.
In 2022, the Global Computational Biology Market reached a valuation of USD 4.89 billion and is expected to experience significant growth in the projected period, with an anticipated Compound Annual Growth Rate (CAGR) of 7.49% through 2028. The Global Computational Biology Market pertains to the utilization of computational techniques, which encompass algorithms, data analysis, and mathematical modeling, to comprehend and scrutinize biological data. This field plays a pivotal role across various domains of life sciences, encompassing genomics, proteomics, drug discovery, and personalized medicine.
Market Overview | |
---|---|
Forecast Period | 2024-2028 |
Market Size 2022 | USD 4.89 Billion |
Market Size 2028 | USD 7.51 Billion |
CAGR 2023-2028 | 7.49% |
Fastest Growing Segment | Drug Discovery and Disease Modelling |
Largest Market | North America |
The field of biology has entered a new era, one characterized by an unprecedented explosion in biological data. From the sequencing of genomes to the study of complex biological systems, the volume and complexity of data being generated are staggering. This deluge of data has given rise to the field of computational biology, which utilizes advanced algorithms and data analysis techniques to make sense of this wealth of information. The sequencing of genomes has been a driving force behind the surge in biological data. The Human Genome Project, completed in 2003, marked a significant milestone in genomics, but it was just the beginning. Today, high-throughput sequencing technologies have made it possible to rapidly and cost-effectively sequence entire genomes. This has led to a vast repository of genomic data, providing critical insights into genetics, evolution, and disease susceptibility. Genomics is just one facet of the biological data explosion. Transcriptomics, which studies gene expression patterns, and proteomics, which focuses on proteins, have also contributed to the data influx. Researchers can now examine the entire transcriptome or proteome of an organism, offering insights into gene regulation, protein function, and disease mechanisms. Single-cell sequencing technologies have taken biological research to a finer level of granularity. Instead of studying tissues or populations of cells, scientists can now analyze individual cells within a tissue. This technology has revolutionized our understanding of cellular heterogeneity, tissue development, and disease progression. However, it generates massive amounts of data that require sophisticated computational analysis. The integration of multiple omics data sources (genomics, transcriptomics, proteomics, metabolomics, etc.) is a powerful approach for understanding complex biological systems comprehensively. However, it multiplies the volume of data exponentially. Computational biology plays a pivotal role in harmonizing and interpreting these integrated datasets, enabling holistic insights into biological phenomena. The pharmaceutical industry relies on computational biology to accelerate drug discovery. By analyzing vast datasets of chemical compounds and their interactions with biological molecules, researchers can identify potential drug candidates, predict their efficacy, and optimize their properties. This data-driven approach significantly reduces the time and cost of bringing new drugs to market.
The field of genomics has witnessed remarkable advancements over the past few decades, revolutionizing our understanding of genetics, diseases, and the intricacies of life itself. At the heart of this transformation is the synergy between genomics and computational biology. The Human Genome Project, completed in 2003, marked a turning point in genomics. It was a massive collaborative effort to map and sequence all the genes in the human genome. This monumental achievement set the stage for a genomics revolution, catalyzing the rapid development of high-throughput DNA sequencing technologies. Next-generation sequencing (NGS) technologies emerged as game-changers in genomics. These instruments can sequence vast quantities of DNA in a short time, generating terabytes of data in a single run. This exponential increase in data output necessitated advanced computational tools and expertise to process and analyze the data efficiently. The proliferation of high-throughput sequencing has led to an explosion of genomic data. Researchers can now sequence not only human genomes but also the genomes of countless other species, uncovering critical insights into evolution, genetic diversity, and the genetic basis of diseases. This abundance of data fuels the demand for computational biology solutions to extract meaningful information. The advent of affordable direct-to-consumer DNA testing has made genomics accessible to the masses. Individuals can now obtain their genetic information, which can provide insights into ancestry, disease predispositions, and lifestyle recommendations. This growing interest in personal genomics generates a significant need for computational tools that can analyze and interpret these individual genetic profiles. Genomic medicine leverages genomic data to guide clinical decision-making. It enables the identification of genetic mutations linked to diseases, facilitates early diagnosis, and supports personalized treatment plans. As genomic medicine becomes more integrated into healthcare systems, computational biology tools play a central role in translating genomic information into actionable insights. Traditional genomic techniques often analyze populations of cells, masking the diversity within tissues. Single-cell genomics technologies now allow researchers to study individual cells, unveiling intricate cellular heterogeneity. These techniques generate immense datasets, necessitating computational methods to unravel the complex cellular landscapes.
The realms of drug discovery and computational biology are experiencing an exciting convergence. As the pharmaceutical industry races to develop innovative drugs, computational biology has emerged as an indispensable ally. The need for novel pharmaceutical compounds to treat a wide range of diseases, from cancer to rare genetic disorders, continues to grow. Drug discovery is a lengthy and resource-intensive process, but it's essential for improving healthcare outcomes and patient quality of life. Computational biology provides crucial support by accelerating various stages of drug development. Computational biology allows researchers to conduct in-silico (computer-based) drug screening. This approach involves simulating the interaction between potential drug compounds and target molecules, such as proteins or enzymes. By virtually screening thousands of compounds, researchers can identify potential drug candidates faster and with lower costs. Computational biology plays a pivotal role in predicting drug-target interactions. Algorithms and machine learning models analyze biological data to determine how a drug molecule will interact with specific cellular targets. This predictive capability significantly shortens the drug development timeline and reduces experimental failures. Once potential drug candidates are identified, computational biology aids in optimizing their properties. Researchers can modify the chemical structure of lead compounds to enhance their efficacy, reduce toxicity, and improve bioavailability. This iterative process, known as lead optimization, relies heavily on computational modeling and simulations. Understanding the underlying biological pathways involved in diseases is critical for drug development. Computational biology tools help elucidate these pathways by analyzing complex omics data. This knowledge guides researchers in identifying key targets and developing drugs that modulate specific biological processes.
In today's interconnected world, collaboration and partnerships are powerful catalysts for innovation and progress. The Global Computational Biology Market is no exception, benefiting significantly from cross-industry collaborations. Collaborations in the field of computational biology facilitate the exchange of knowledge and expertise. Academic institutions and research organizations often possess cutting-edge research findings, while pharmaceutical companies bring practical drug development experience. When these entities come together, they combine theoretical insights with real-world applications, driving innovation in the field. One of the primary challenges in computational biology is access to high-quality biological data. Collaboration between research organizations and technology firms can provide valuable data resources. Public-private partnerships, for example, can make large datasets accessible to researchers, enabling them to conduct comprehensive analyses and develop more accurate models. Collaborative efforts allow for the pooling of resources, both human and financial. This resource synergy can accelerate research and development processes. When multiple entities contribute to a project, it becomes possible to tackle more extensive and complex tasks, such as large-scale genomic studies or drug discovery initiatives. Computational biology inherently involves multiple disciplines, including biology, computer science, and statistics. Collaborative projects often involve researchers from these diverse backgrounds. This interdisciplinary approach encourages fresh perspectives and creative problem-solving, leading to breakthroughs that might not have been possible within a single organization. The pharmaceutical industry is increasingly turning to computational biology for drug discovery. Collaborations between pharmaceutical companies and computational biology experts can expedite the identification of potential drug candidates. Cross-industry partnerships facilitate the application of computational tools to predict drug-target interactions and optimize lead compounds.
The exponential growth of biological data is a double-edged sword. While it provides a wealth of information, it also presents a significant challenge in terms of data complexity and volume. Handling, storing, and analyzing massive datasets require robust computational infrastructure and efficient algorithms.
Biological data, especially genomic information, is sensitive and subject to strict privacy regulations. Ensuring data privacy while allowing for meaningful analysis is a delicate balance. The computational biology market must address these concerns to gain public trust and comply with evolving data protection laws.
Computational biology tools and platforms often vary in their data formats and analysis methods. This lack of standardization hinders data sharing and collaboration. Establishing common data standards and interoperable tools is essential to overcome this challenge.
The field of computational biology requires a multidisciplinary skill set, encompassing biology, computer science, mathematics, and statistics. There is a shortage of professionals with expertise in these areas, making it challenging for organizations to find and retain qualified talent.
Single-cell sequencing and omics technologies are rapidly gaining momentum. These techniques allow researchers to dissect the molecular profiles of individual cells within complex tissues. As the resolution of single-cell data improves, computational biology will play a critical role in analyzing and interpreting these intricate datasets. Expect innovations in algorithms and tools tailored for single-cell omics analysis.
Spatial transcriptomics is an emerging field that combines genomics with spatial information. It enables researchers to map gene expression within tissues, providing insights into the spatial organization of cells. Computational methods for spatial data analysis will be in high demand, offering new ways to study tissue architecture and disease mechanisms.
Integrating multiple omics data sources, such as genomics, transcriptomics, proteomics, and metabolomics, provides a holistic view of biological systems. Computational tools that facilitate the integration and analysis of multi-omics data will be in high demand, enabling researchers to uncover intricate interactions and pathways.
Data security and privacy are paramount in computational biology, particularly when handling sensitive genomic information. Blockchain technology holds promise for secure and transparent data management, ensuring the integrity and privacy of biological data. Expect to see blockchain-based solutions for data security and traceability.
Based on the category of Service, the Contract segment emerged as the dominant player in the global market for computational biology in 2022. This can be attributed to the cost-effectiveness of contract services compared to the in-house services offered globally. Providers of Contract Research Organization (CRO) services collaborate closely with clients to create tailored plans, thereby acting as a catalyst for market growth.
On the other hand, the in-house segment is projected to experience the most rapid growth. In-house services grant companies' greater control over their internal operations, as they directly employ these services. This approach offers advantages such as cost savings and time efficiency, contributing to its accelerated growth.
The commercial sector is anticipated to be the primary contributor to market revenue. Increased investments in Research and Development (R&D) in genetic engineering and the development of innovative medicines by both government and commercial entities are significant factors contributing to the heightened demand for computational biology.
As an example, in May 2021, the World Health Organization (WHO) and the Swiss Confederation inked a Memorandum of Understanding (MoU) to establish the inaugural WHO BioHub Facility as part of the WHO BioHub System. Situated in Spiez, Switzerland, this facility serves as a hub for the secure reception, sequencing, storage, and preparation of biological materials for distribution to other laboratories. It also plays a crucial role in risk assessments and supports global preparedness against pathogens. Similarly, substantial investments from the European Commission into the Horizon 2020 program aim to eliminate innovation barriers and promote improved collaboration between the public and private sectors, fostering innovation. These developments are expected to bolster the rising demand for computational biology, consequently driving revenue growth in this market segment.
North America presently holds the dominant position in the computational biology market and is expected to maintain its leadership for several more years. The United States, in particular, stands as the frontrunner in the field of synthetic biology, which is an emerging discipline focused on the design, manipulation, and reprogramming of biological systems. The U.S. government has been a substantial supporter of computational biology and synthetic biology since 2005, channeling over USD 1 billion toward their development. The annual average investment by the U.S. government in advancing computational biology is estimated at approximately USD 140 million.
The rise of personalized medicine has fostered collaborative initiatives among medical institutions, government bodies, and researchers to expedite the creation of effective treatments. For instance, in 2020, Summit Biolabs Inc. and the Colorado Center for Personalized Medicine (CCPM) established a comprehensive strategic partnership to conduct research, development, and commercialization of saliva liquid-biopsy tests for the early detection of cancer, diagnosis of COVID-19, and other viral infections. Similarly, in April 2020, HealthCare Global Enterprises and Strand Life Sciences introduced the StrandAdvantage500, a Next-Generation Sequencing (NGS) based assay that assesses cancer-related genetic alterations in DNA and RNA extracted from a patient's tumor in a unified workflow. Furthermore, in July 2021, Indivumed GmbH launched "travel," an innovative AI discovery platform designed for oncology and precision medicine. This platform combines IndivuType's extensive multi-omics data with sophisticated disease models, highly advanced automated Machine Learning tools, and a comprehensive suite of advanced analytical capabilities.
The overall computational biology market in the United States is poised for substantial growth in the coming years, primarily due to the significant investments made in drug development, which are the highest worldwide.
In this report, the Global Computational Biology Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below: