¼¼°èÀÇ µ¥ÀÌÅÍ ¾î³ëÅ×ÀÌ¼Ç Åø ½ÃÀåÀº 2024-2028³âÀÇ ¿¹Ãø ±â°£ Áß ¹øÃ¢ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
µ¥ÀÌÅÍ ¾î³ëÅ×ÀÌ¼Ç Åø ½ÃÀåÀº ´Ù¾çÇÑ µ¥ÀÌÅͺ£À̽º ¿ëµµ¿¡¼ ÀÚµ¿ µ¥ÀÌÅÍ ¾î³ëÅ×ÀÌ¼Ç Åø¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, ÀÌ´Â ÀÚµ¿ µ¥ÀÌÅÍ ºÐ¼®¿¡¼ ¸Ó½Å·¯´×¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À̹ÌÁö ¾î³ëÅ×À̼ǿ¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó ÀÚµ¿Â÷, ¼Ò¸Å, ÇコÄÉ¾î ºÐ¾ßÀÇ ¾÷¹« °³¼±ÀÌ ¿¹»óµÊ¿¡ µû¶ó µ¥ÀÌÅÍ ¾î³ëÅ×ÀÌ¼Ç Åø¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ µ¥ÀÌÅÍ¿¡ ¶óº§À» ºÙÀÌ°í ¼Ó¼º ű׸¦ Ãß°¡ÇÔÀ¸·Î½á »ç¿ëÀÚ´Â Á¤º¸ÀÇ °¡Ä¡¸¦ ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. ÁÖ¼® Åø äÅÃÀÇ °¡Àå Å« ÀåÁ¡Àº µ¥ÀÌÅÍ ¼Ó¼ºÀÇ Á¶ÇÕÀ» ÅëÇØ »ç¿ëÀÚ°¡ ÇϳªÀÇ »çÀÌÆ®¿¡¼ µ¥ÀÌÅÍ Á¤ÀǸ¦ °ü¸®ÇÒ ¼ö ÀÖ°í, ¿©·¯ °÷¿¡¼ À¯»çÇÑ ±ÔÄ¢À» º¹Á¦ÇÒ Çʿ䰡 ¾ø½À´Ï´Ù´Â Á¡ÀÔ´Ï´Ù. ºòµ¥ÀÌÅÍ Áõ°¡¿Í ¹æ´ëÇÑ µ¥ÀÌÅÍ ¼¼Æ®ÀÇ ¾çÀ¸·Î ÀÎÇØ µ¥ÀÌÅÍ ¾î³ëÅ×ÀÌ¼Ç ºÐ¾ß¿¡¼ ÀΰøÁö´É ±â¼úÀÇ µµÀÔÀÌ ÇÊ¿äÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Á¤ÀÇ
µ¥ÀÌÅÍ ¾î³ëÅ×À̼ÇÀº ÇнÀ µ¥ÀÌÅÍ(ÅØ½ºÆ®, »çÁø, À½¼º, µ¿¿µ»ó µî)ÀÇ Æ¯Á¤ ºÎºÐ¿¡ ¶óº§À» ºÙ¿©¼ ±â°è°¡ ±× ¾È¿¡ ¹«¾ùÀÌ Æ÷ÇԵǾî ÀÖ°í ¹«¾ùÀÌ Áß¿äÇÑÁö ÀÌÇØÇÒ ¼ö ÀÖµµ·Ï ÇÏ´Â °ÍÀ» ¸»ÇÕ´Ï´Ù. ÀÌÈÄ ÁÖ¼®ÀÌ ´Þ¸° µ¥ÀÌÅÍ·Î ¸ðµ¨À» ÈÆ·ÃÇÏ´Â µ¥ »ç¿ëµË´Ï´Ù. µ¥ÀÌÅÍ ¾î³ëÅ×À̼ÇÀº µ¥ÀÌÅÍ ¼öÁýÀÇ Àü¹ÝÀûÀΠǰÁú °ü¸®¿¡µµ ±â¿©ÇÕ´Ï´Ù. ÁÖ¼®ÀÌ ´Þ¸° µ¥ÀÌÅÍ ¼¼Æ®´Â ´Ù¸¥ µ¥ÀÌÅÍ ¼¼Æ®ÀÇ Á¤È®µµ¿Í ¸ðµ¨ÀÇ ¼º´ÉÀ» ÆÇ´ÜÇÏ´Â ±âÁØÀÌ µÇ±â ¶§¹®ÀÔ´Ï´Ù. µ¥ÀÌÅÍ ¾î³ëÅ×À̼ÇÀº ÅØ½ºÆ®, »çÁø, ºñµð¿À, ¿Àµð¿À¸¦ Æ÷ÇÔÇÑ ¹æ´ëÇÑ ¾çÀÇ ºñÁ¤Çü µ¥ÀÌÅÍ¿¡ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ºñÁ¤Çü µ¥ÀÌÅÍ´Â Àüü µ¥ÀÌÅÍÀÇ 80%¸¦ Â÷ÁöÇÏ´Â °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. ¿¹¸¦ µé¾î ÄÄÇ»ÅÍ ºñÀü, NLP(ÀÚ¿¬¾î ó¸®), ¼¾¼ µî ´Ù¾çÇÑ ±â¼ú ÄÄÆ÷³ÍÆ®¿¡¼ »ý¼ºµÈ µ¥ÀÌÅÍ¿¡ ÀüÀûÀ¸·Î ÀÇÁ¸ÇÏ´Â ÀÚÀ²ÁÖÇàÂ÷¸¦ ¿¹·Î µé¸é, µ¥ÀÌÅÍ ¾î³ëÅ×À̼ÇÀº ¾Ë°í¸®ÁòÀÌ ¸Å¹ø Á¤È®ÇÑ ¿îÀü ÆÇ´ÜÀ» ³»¸± ¼ö ÀÖµµ·Ï ÇÏ´Â ¿øµ¿·ÂÀÌ µË´Ï´Ù. ÀÌ ±â¼úÀÌ ¾øÀ¸¸é ¸ðµ¨Àº ÁøÀÔÇÏ´Â Àå¾Ö¹°°ú ´Ù¸¥ Â÷·®, »ç¶÷, µ¿¹°, ¹Ù¸®ÄÉÀ̵带 ±¸ºÐÇÒ ¼ö ¾ø½À´Ï´Ù. ±× °á°ú, AI ¸ðµ¨Àº ½ÇÆÐÇϰí, À¯ÀÏÇÑ ºÒ¸®ÇÑ °á°ú¸¦ ÃÊ·¡ÇÒ ¼ö ÀÖ½À´Ï´Ù.
½ÃÀå °³¿ä | |
---|---|
¿¹Ãø ±â°£ | 2024-2028 |
½ÃÀå ±Ô¸ð 2022³â | 15¾ï ´Þ·¯ |
2028³â ½ÃÀå ±Ô¸ð | 56¾ï 6,000¸¸ ´Þ·¯ |
CAGR 2023-2028 | 24.71% |
±Þ¼ºÀå ºÎ¹® | ¿µ»ó/ºñµð¿À |
ÃÖ´ë ½ÃÀå | ºÏ¹Ì |
»ç¹°ÀÎÅͳÝ(IoT), ¸Ó½Å·¯´×(ML), ·Îº¿, °í±Þ ¿¹Ãø ºÐ¼®, ÀΰøÁö´É(AI) µîÀÇ ±â¼úÀº ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅ͸¦ »ý¼ºÇÕ´Ï´Ù. 'µ¥ÀÌÅÍ È¿À²¼º'À̶ó´Â ¿ë¾î´Â ÀúÀå, ¾×¼¼½º, ÇÊÅ͸µ, °øÀ¯ µî µ¥ÀÌÅ͸¦ ó¸®ÇÏ´Â µ¥ »ç¿ëµÉ ¼ö ÀÖ´Â ¿©·¯ ÇÁ·Î¼¼½ºÀÇ È¿À²¼º°ú »ç¿ë °¡´ÉÇÑ ¸®¼Ò½º¸¦ »ç¿ëÇÏ¸é¼ ÇØ´ç ÀýÂ÷°¡ ÀǵµÇÑ °á°ú¸¦ Á¦°øÇÏ´ÂÁö ¿©ºÎ¸¦ ÀǹÌÇÕ´Ï´Ù. µ¥ÀÌÅÍÀÇ È¿À²¼ºÀº ±â¼úÀÌ ¹ßÀüÇÔ¿¡ µû¶ó »õ·Î¿î ºñÁî´Ï½º ¾ÆÀ̵ð¾î, ÀÎÇÁ¶ó ¹× °æÁ¦¼ºÀ» °³¹ßÇÏ´Â µ¥ ÀÖÀ¸¸ç, Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ä¼Ò´Â µ¥ÀÌÅÍ ÁÖ¼®¿¡ ´ëÇÑ ¼ö¿ä¸¦ Å©°Ô ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ º¹ÀâÇÑ »çÁø¿¡ ¼öµ¿À¸·Î ÁÖ¼®À» ´Þ¸é ºñ¿ëÀÌ ¸¹ÀÌ µé±â ¶§¹®¿¡ ½ÃÀå È®´ë¿¡ ´Ù¼Ò °É¸²µ¹ÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ƯÈ÷ ÀÌ·¯ÇÑ ÀÚµ¿ µ¥ÀÌÅÍ ¾î³ëÅ×ÀÌ¼Ç ÅøÀÇ Á¤È®µµ´Â °í±Þ ¾Ë°í¸®ÁòÀÇ µµÀÔÀ¸·Î ´õ¿í Çâ»óµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. µû¶ó¼ °¡±î¿î ¹Ì·¡¿¡ ¼öµ¿ ÁÖ¼®ÀÇ Çʿ伺ÀÌ ÁÙ¾îµé°í ÀåºñÀÇ °¡°Ýµµ Ç϶ôÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. ÀÚµ¿Â÷ ¾÷°è´Â ƯÈ÷ ÀÚÀ²ÁÖÇàÂ÷¸¦ À§ÇÑ µ¥ÀÌÅÍ ¾î³ëÅ×ÀÌ¼Ç ÅøÀ» ´õ¿í ¼±È£Çϰí ÀÖ½À´Ï´Ù. ÀÚÀ²ÁÖÇà ÀÚµ¿Â÷´Â ÄÄÇ»ÅͰ¡ ÀÚµ¿Â÷¸¦ ¿îÀüÇÏ´Â µ¥ µµ¿òÀ̵Ǵ ´Ù¾çÇÑ ³×Æ®¿öÅ© Àåºñ¿Í ¼¾¼ Àåºñ·Î ±¸¼ºµË´Ï´Ù. ÀÚÀ²ÁÖÇà ÀÚµ¿Â÷ÀÇ ÄÄÇ»ÅÍ ¸ðµ¨Àº ÁÖ¼®ÀÌ ´Þ¸° µ¥ÀÌÅ͸¦ ÀνÄÇϰí À̸¦ ÅëÇØ ÇнÀÇÒ ¼ö ÀÖ½À´Ï´Ù.
»ç¿ëÀÚ´Â µ¥ÀÌÅÍ ¾î³ëÅ×ÀÌ¼Ç ÅøÀ» »ç¿ëÇÏ¿© µ¥ÀÌÅÍ¿¡ ¼Ó¼º ű׸¦ Ãß°¡ÇÏ¿© µ¥ÀÌÅÍÀÇ °¡Ä¡¸¦ ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ ÁÖ¼® ±â´ÉÀÇ °¡Àå Å« ÀåÁ¡Àº µ¥ÀÌÅÍ ¼Ó¼ºÀÇ Á¶ÇÕÀ» ÅëÇØ »ç¿ëÀÚ°¡ ÇÑ »çÀÌÆ®¿¡¼ µ¥ÀÌÅÍ Á¤ÀǸ¦ °ü¸®ÇÒ ¼ö ÀÖ°í, ¿©·¯ °÷¿¡¼ À¯»çÇÑ ±ÔÄ¢À» º¹Á¦ÇÒ Çʿ䰡 ¾ø½À´Ï´Ù´Â °ÍÀÔ´Ï´Ù. ¸ðµ¨¸µ ¼Ó¼º, Ç¥½Ã ¼Ó¼º, °ËÁõ ¼Ó¼ºÀº ÀϹÝÀûÀ¸·Î µ¥ÀÌÅÍ ÁÖ¼® ¼Ó¼ºÀ» ¼¼ °¡Áö ¹üÁÖ·Î ³ª´«´Ù. ¸ðµ¨¸µ ¼Ó¼ºÀ» »ç¿ëÇÏ¿© Ŭ·¡½º °£ÀÇ °ü°è¿Í ¸â¹ö/Ŭ·¡½ºÀÇ ¸ñÀûÀ» ÁöÁ¤Çϰí, UI¿¡¼ ¸â¹ö ¶Ç´Â Ŭ·¡½ºÀÇ µ¥ÀÌÅ͸¦ Ç¥½ÃÇÏ´Â °ÍÀº µð½ºÇ÷¹ÀÌ ¼Ó¼º¿¡ ÀÇÇØ ºÎºÐÀûÀ¸·Î Á¤Àǵ˴ϴÙ. À¯È¿¼º °Ë»ç ¼Ó¼ºÀº À¯È¿¼º °Ë»ç ±ÔÁ¤À» ÁؼöÇÏ´Â µ¥ µµ¿òÀ» ÁÝ´Ï´Ù.
ºòµ¥ÀÌÅÍ´Â ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅÍ ±â·Ï, ÀúÀå ¹× ºÐ¼®À» Æ÷ÇÔÇϸç, ±× Áõ°¡·Î ÀÎÇØ ÀΰøÁö´É »ê¾÷ÀÌ È®´ëµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÃÖÁ¾»ç¿ëÀÚ´Â ºòµ¥ÀÌÅÍ¿Í °ü·ÃµÈ °è»ê ¸ðµ¨À» ¸ð´ÏÅ͸µÇÏ°í °ÈÇØ¾ß ÇÒ Çʿ伺À» ´õ¿í °Á¶Çϰí ÀÖÀ¸¸ç, ÀÌ·¯ÇÑ °Á¶´Â ÀΰøÁö´É ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀ» °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù. ÀΰøÁö´ÉÀÇ µµÀÔÀº µ¥ÀÌÅÍ ¾î³ëÅ×ÀÌ¼Ç Åø¿¡ ´ëÇÑ ¼ö¿ä¸¦ Å©°Ô Áõ°¡½Ãų °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÁÖ¼®ÀÌ ´Þ¸° µ¥ÀÌÅÍ´Â À½¼º ÀÎ½Ä ¹× À̹ÌÁö Àνİú °°Àº Áß¿äÇÑ ¿µ¿ª¿¡¼ AI ¸ðµ¨ ¹× ¸Ó½Å·¯´× ½Ã½ºÅÛ °³¹ßÀ» ÃËÁøÇÏ´Â µ¥ »ç¿ëµÇ±â ¶§¹®ÀÔ´Ï´Ù. µ¥ÀÌÅÍ ÁÖ¼®Àº ¹Ì·¡ ¹ß»ýÀ» ¿¹ÃøÇÏ´Â µ¥ Á÷Á¢ÀûÀ¸·Î °ü·ÃµÈ Á¤º¸¸¦ Á¦°øÇÔÀ¸·Î½á AI¿¡ °Á¡À» ºÎ¿©ÇÕ´Ï´Ù. ¶ÇÇÑ ±¹°¡ Á¤º¸, »ç±â ŽÁö, ¸¶ÄÉÆÃ, ÀÇ·á Á¤º¸ÇÐ, »çÀ̹ö º¸¾È µî ´Ù¾çÇÑ ¿ëµµÀÇ µ¥ÀÌÅ͸¦ Æ÷ÇÔÇÑ µµ¸ÞÀκ° µ¥ÀÌÅÍ´Â ¸¹Àº °ø°ø ±â°ü°ú ¹Î°£ ±â°ü¿¡¼ ¼öÁýÇϰí ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ ¾î³ëÅ×À̼ÇÀº °¢ µ¥ÀÌÅÍ ¼¼Æ®ÀÇ Á¤È®µµ¸¦ Áö¼ÓÀûÀ¸·Î Çâ»ó½ÃÅ´À¸·Î½á ÀÌ·¯ÇÑ ºñ±¸Á¶È, ºñÁöµµ µ¥ÀÌÅÍ¿¡ ¶óº§À» ºÙÀÏ ¼ö ÀÖ½À´Ï´Ù.
Çö´ë ÀÚµ¿Â÷ »ê¾÷Àº ²÷ÀÓ¾øÀÌ ±â¼ú ¹ßÀüÀ» °ÅµìÇϰí ÀÖ½À´Ï´Ù. Á¦³Ê·²¸ðÅͽº, Æø½º¹Ù°Õ, ¸Þ¸£¼¼µ¥½º, BMW¿Í °°Àº ½ÃÀå ÁøÃâ±â¾÷Àº ¸ÅÃâÀÇ »ó´ç ºÎºÐÀ» ½Å±â¼ú °³¹ß¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ ¾÷°è´Â ÇöÀç ÀÚÀ²ÁÖÇàÂ÷ »ý»êÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, ÀÌ·¯ÇÑ Â÷·® °³¹ß¿¡ ¸¹Àº ÁöÃâÀÌ ÁýÁߵǰí ÀÖ½À´Ï´Ù. ÀÚÀ²ÁÖÇà ÀÚµ¿Â÷´Â ÄÄÇ»ÅͰ¡ ÀÚµ¿Â÷¸¦ ¿îÀüÇÏ´Â µ¥ µµ¿òÀ̵Ǵ ´Ù¾çÇÑ ³×Æ®¿öÅ© Àåºñ¿Í ¼¾¼ Àåºñ·Î ±¸¼ºµË´Ï´Ù. ÀÚÀ²ÁÖÇà ÀÚµ¿Â÷ÀÇ ÄÄÇ»ÅÍ ¸ðµ¨Àº ÁÖ¼®ÀÌ ´Þ¸° µ¥ÀÌÅ͸¦ ÅëÇØ ÀνÄÇϰí ÇнÀÇÒ ¼ö ÀÖ½À´Ï´Ù. ±¸±Û, Å×½½¶ó ¸ðÅͽº, ¾ÖÇÃ, È¿þÀÌ Å×Å©³î·¯Áö½º µî ¸¹Àº ±â¼ú ±â¾÷µµ ÀÚÀ²ÁÖÇàÂ÷ ½ÃÀå¿¡ ÁøÃâÇØ ¿¬±¸°³¹ß¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.
µ¥ÀÌÅÍ ¾î³ëÅ×ÀÌ¼Ç ÅøÀÇ ³·Àº Á¤È®µµ°¡ ½ÃÀå È®´ë¸¦ Á¦ÇÑÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î ¾î¶² »çÁøÀÇ ÈÁúÀÌ ³·°í ¿©·¯ Ç׸ñÀÌ Æ÷ÇԵǾî ÀÖÀ¸¸ç, ¶óº§¸µ¿¡ ¾î·Á¿òÀ» °ÞÀ» ¼ö ÀÖ½À´Ï´Ù. ½ÃÀåÀÇ °¡Àå Å« ¹®Á¦´Â ºÎÁ¤È®ÇÏ°Ô ¶óº§¸µµÈ µ¥ÀÌÅÍÀÇ Ç°Áú ¹®Á¦ÀÔ´Ï´Ù. ¼öÀÛ¾÷À¸·Î ¶óº§¸µµÈ µ¥ÀÌÅÍ¿¡´Â ºÎÁ¤È®ÇÑ ¶óº§ÀÌ Æ÷Ç﵃ ¼ö ÀÖ°í, À̸¦ ã´Â µ¥ ½Ã°£ÀÌ ¿À·¡ °É¸®±â ¶§¹®¿¡ °æ¿ì¿¡ µû¶ó¼´Â Àüü ÁÖ¼® ÇÁ·Î¼¼½º ºñ¿ëÀÌ Áõ°¡ÇÕ´Ï´Ù. ±×·¯³ª ÀÚµ¿ µ¥ÀÌÅÍ ¾î³ëÅ×ÀÌ¼Ç ÅøÀÇ Á¤È®µµ´Â º¹ÀâÇÑ ¾Ë°í¸®ÁòÀÇ °³¹ß·Î Çâ»óµÇ°í ÀÖÀ¸¸ç, °¡±î¿î ½ÃÀÏ ³»¿¡ ¼öµ¿ ÁÖ¼®ÀÇ Çʿ伺°ú ÅøÀÇ ºñ¿ëÀÌ °¨¼ÒÇÒ °ÍÀÔ´Ï´Ù.
TechSci Research´Â ÁÖ¾îÁø ½ÃÀå µ¥ÀÌÅ͸¦ »ç¿ëÇÏ¿© ±â¾÷ÀÇ Æ¯Á¤ ¿ä±¸¿¡ µû¶ó ¸ÂÃãÇüÀ» Á¦°øÇÕ´Ï´Ù. º¸°í¼´Â ´ÙÀ½°ú °°Àº Ä¿½ºÅ͸¶ÀÌ¡ÀÌ °¡´ÉÇÕ´Ï´Ù.
(ÁÖ : ±â¾÷ ¸®½ºÆ®´Â °í°´ ¿ä¸Á¿¡ µû¶ó Ä¿½ºÅ͸¶ÀÌÁî °¡´ÉÇÕ´Ï´Ù.)
KSAGlobal Data Annotation Tools market is predicted to thrive during the forecast period 2024- 2028. The Data Annotation Tools market is being driven by the need for automatic data annotation tools in various data-driven applications, which is anticipated to increase with the rising demand for machine learning in automated data analytics. Increasing attention being paid to image annotation is predicted to improve operations in the automotive, retail, and healthcare sectors, which is projected to increase the demand for data annotation tools. Moreover, by labelling or adding attribute tags to data, users can increase the value of the information. The main advantage of employing annotation tools is that the combination of data attributes allows users to manage the data definition at a single site and removes the need to duplicate similar rules in different places. The employment of artificial intelligence technologies in the field of data annotations is projected to become necessary due to the growth of big data and the quantity of enormous datasets.
Definition
Data annotation is the practise of giving labels to specific pieces of training data (whether it be text, photos, audio, or video) to aid machines in understanding what is contained therein and what is significant. The training of the model is then done using the annotated data. Data annotation also contributes to the overall quality control of data collection, as annotated datasets serve as the gold standard against which other datasets are judged for their accuracy and model performance. Data annotation is highly critical with such vast amounts of unstructured data, which includes text, photos, videos, and audios out there. Most estimates place unstructured data at 80% of all created data. For instance, if we were to discuss self-driving cars, which entirely depend on the data produced by its various technological components, such as computer vision, NLP (Natural Language Processing), sensors, and more, data annotation is what drives the algorithms to make exact driving judgements each time. Without the technique, a model would not be able to distinguish between an incoming obstacle and another vehicle, a human, an animal, or a barricade. The AI model fails as a result, which is the only unfavourable outcome.
Market Overview | |
---|---|
Forecast Period | 2024-2028 |
Market Size 2022 | USD 1.5 Billion |
Market Size 2028 | USD 5.66 Billion |
CAGR 2023-2028 | 24.71% |
Fastest Growing Segment | Image/Video |
Largest Market | North America |
Technologies like the Internet of Things (IoT), Machine Learning (ML), robots, sophisticated predictive analytics, and Artificial Intelligence (AI) generate enormous volumes of data. The term "data efficiency" refers to the effectiveness of the many processes that may be used to handle data, including storage, access, filtering, sharing, etc., as well as, whether or not the procedures provide the intended results while using the available resources. Data efficiency is increasingly crucial for developing new business ideas, infrastructure, and economics, as a result of evolving technology. These elements have considerably fueled the demand for data annotation. Furthermore, the market's expansion may be slightly hampered by the high expenses involved with manual annotation of complicated photographs. The accuracy of automated data annotation tools, particularly with these automated data annotation tools, is anticipated to increase with the introduction of advanced algorithms. Hence, in the near future, the need for manual annotation will decline, as will the price of the instruments. The auto industry is more supportive of data annotation tools, particularly for self-driving cars. An autonomous vehicle consists of a variety of networking and sensor devices that help the computer drive the car. Computer models for autonomous vehicles can recognise and learn from the annotated data.
Users can add attribute tags to data using data annotation tools to increase the value of the data. The primary advantage of utilizing the data annotation feature is that the combination of data attributes allows a user to manage the data definition at a single site and removes the need to duplicate similar rules in several locations. Modeling attributes, display attributes, and validation attributes are the three categories into which the data annotation attributes are generally divided. The relationship between classes and the intended purpose of a member/class are specified using modelling attributes. The display of data from a member or class in the UI is defined in part by display attributes. Validation attributes aid in upholding validation regulations.
Big data involves the recording, storage, and analysis of a sizable quantity of data and its rise is expected to fuel the expansion of the artificial intelligence industry. End users are more focused on the need for monitoring and enhancing the computational models associated to big data, and this focus is causing them to adopt artificial intelligence solutions more quickly. Artificial intelligence adoption is anticipated to considerably increase the demand for data annotation tools because annotated data is used to catalyze the development of AI models and machine learning systems in crucial domains like speech and picture recognition. Data annotation gives AI its strength by supplying information that is directly pertinent to predicting future occurrences. Moreover, domain-specific data, including data from various applications like national intelligence, fraud detection, marketing, medical informatics, and cybersecurity, is collected by numerous public and private organizations. By continuously enhancing the accuracy of each set of data, data annotation enables labelling of such unstructured and unsupervised data.
Since the technology enables the extraction of high-level and sophisticated abstractions through a hierarchical learning process, artificial intelligence (AI) is increasingly important for large data. The expansion of AI is being driven by the need to mine and extract meaningful patterns from large amounts of data, which is anticipated to further enable an increase in the demand for data annotation tools. AI technology also aids in overcoming difficulties related to big data analytics, such as the reliability of the data analysis, different raw data formats, numerous input sources, and imbalanced input data. As data is gathered in enormous numbers and made accessible across many sectors, inefficient data storage and retrieval are among the additional difficulties. These issues are resolved by semantic indexing, which facilitates understanding and knowledge discovery.
The modern automotive sector has continuously experienced technological improvements. Big market participants, like General Motors, Volkswagen, Mercedes, and BMW, devote a sizeable portion of their earnings to the development of new technology. The production of autonomous vehicles is currently on the rise in the automotive sector, which is attracting greater expenditures for the development of these vehicles. An autonomous vehicle consists of a variety of networking and sensor devices that help the computer drive the car. Computer models in autonomous vehicles may recognize and learn from the annotated data. A number of technological companies, including Google Inc., Tesla Motors, Apple Inc., and Huawei Technologies Co., Ltd., have also entered the market for autonomous vehicles and made contributions to its research and development.
The inaccuracy of data annotation tools limits the market's expansion. For instance, a certain photograph can be of low quality and feature several items, which makes labelling it challenging. The market's biggest problem is problems connected to inaccurately labelled data quality concerns. The cost of the entire annotation process is increased in some circumstances since the data that was manually labelled may contain incorrect labels and it may take some time to find them. However, the accuracy of automated data annotation tools is increasing with the development of complex algorithms, which will soon reduce the need for manual annotation and the cost of the tools.
On the basis of type, the market is segmented into Type, Annotation Type, and Vertical. On the basis of type, the market is segmented into Text, Image/Video, and Audio. Based on annotation type, the market is further segmented into Manual, Semi-Supervised, and Automatic. Based on Vertical, the market is IT, Automotive, Government, Healthcare, Financial Services, Retail, and Others. The market analysis also studies the regional segmentation to devise regional market segmentation, divided among North America, Europe, Asia-Pacific, South America, and Middle East & Africa.
Annotate Software Limited, Appen Limited, CloudApp, Cogito Tech LLC, Deep Systems, LLC, Labelbox, Inc, LightTag, Lotus Quality Assurance, Playment Inc, Tagtog Sp. z o.o. are among the major players that are driving the growth of the global Data Annotation Tools market.
In this report, the Global Data Annotation Tools Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:
Company Profiles: Detailed analysis of the major companies present in the global Data Annotation Tools market.
With the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:
(Note: The companies list can be customized based on the client requirements.)