Çö¹Ì°æ ½ÃÀå ±Ô¸ð´Â 2024³â 26¾ï 5,000¸¸ ´Þ·¯¿¡¼ 2031³â¿¡´Â 40¾ï 3,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. 2025-2031³â CAGRÀº 6.20%·Î ÃßÁ¤µË´Ï´Ù. ½ÃÀå °³¹ßÀÇ ÁÖ¿ä ¿äÀÎÀ¸·Î´Â ¿¬±¸ ¹× ÇコÄÉ¾î ¿ëµµ Áõ°¡, ¿¬±¸°³¹ß ÀÚ±Ý Áõ°¡ µîÀ» µé ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ Çö¹Ì°æ¿¡ AI ¹× ¿ø°Ý ±â¼úÀ» ÅëÇÕÇÏ´Â ¿òÁ÷ÀÓÀÌ È°¹ßÇØÁö¸é¼ ¿¹Ãø ±â°£ Áß ½ÃÀåÀ» ÃËÁøÇÒ °¡´É¼ºÀÌ ³ô½À´Ï´Ù. ±×·¯³ª ³ôÀº Ãʱ⠺ñ¿ë°ú À¯Áöº¸¼ö ºñ¿ëÀÌ ½ÃÀå ÀúÇØ ¿äÀÎ Áß Çϳª·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù.
ÀΰøÁö´É(AI)°ú ¿ø°Ý ±â¼úÀÇ ÅëÇÕÀº À̹Ì¡, µ¥ÀÌÅÍ ºÐ¼®, Á¢±Ù¼º Çâ»óÀ¸·Î À̾îÁö´Â Çö¹Ì°æ ½ÃÀå¿¡ Çõ¸íÀ» ºÒ·¯ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. AI ±â¹Ý Çö¹Ì°æ ½Ã½ºÅÛÀº À̹ÌÁö ÇØ¼®ÀÇ Á¤È®¼º, ¼Óµµ, ±íÀ̸¦ Çâ»ó½ÃÄÑ ¿¬±¸ÀÚ¿Í ÀÓ»óÀǰ¡ º¹ÀâÇÑ »ùÇÿ¡¼ ÀÇ¹Ì ÀÖ´Â ÀλçÀÌÆ®¸¦ º¸´Ù È¿À²ÀûÀ¸·Î µµÃâÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. AI ¾Ë°í¸®ÁòÀº ¼¼Æ÷¸¦ ÀÚµ¿À¸·Î ½Äº° ¹× ºÐ·ùÇϰí, Á¶Á÷ »ùÇÃÀÇ ÀÌ»óÀ» °¨ÁöÇϰí, ºÐÀÚ »óÈ£ ÀÛ¿ëÀ» ½Ç½Ã°£À¸·Î Á¤·®ÈÇÒ ¼ö ÀÖÀ¸¹Ç·Î ÀÎÀ§ÀûÀÎ ½Ç¼ö¸¦ Å©°Ô ÁÙÀ̰í Áø´Ü °úÁ¤À» °¡¼ÓÈÇÒ ¼ö ÀÖ½À´Ï´Ù. µðÁöÅÐ ¹× Ŭ¶ó¿ìµå ±â¼ú·Î °¡´ÉÇØÁø ¿ø°Ý Çö¹Ì°æ °Ë»ç´Â Àü¹®°¡°¡ ¿ø°ÝÀ¸·Î °íÇØ»óµµ À̹Ì¡ ¹× ºÐ¼®À» ÇÒ ¼ö ÀÖ°Ô ÇØÁÖ¸ç, AIÀÇ ÅëÇÕÀ» º¸¿ÏÇÕ´Ï´Ù. ÀÌ ±â´ÉÀº ƯÈ÷ ¿ø°ÝÀÇ·á¿¡ Å« º¯È¸¦ °¡Á®¿ÔÀ¸¸ç, ¿ø°Ý Áø´ÜÀ» ÅëÇØ ÀÇ·á ¼ºñ½º¸¦ Á¦´ë·Î ¹ÞÁö ¸øÇϰųª Áö¿ªÀûÀ¸·Î °í¸³µÈ »ç¶÷µé¿¡°Ô Àû½Ã¿¡ Á¤È®ÇÑ ÀÇ·á ¼ºñ½º¸¦ Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¿ø°Ý Çö¹Ì°æÀ» »ç¿ëÇϸé Àü ¼¼°è ¿©·¯ Àü¹®°¡°¡ µ¿½Ã¿¡ Çö¹Ì°æ À̹ÌÁö¸¦ ½Ç½Ã°£À¸·Î ¿¶÷Çϰí Á¶ÀÛÇÒ ¼ö ÀÖÀ¸¸ç, °øµ¿ ¿¬±¸¸¦ Áö¿øÇϰí Á¶Á÷ Àü¹ÝÀÇ Çõ½Å°ú Áö½Ä °øÀ¯¸¦ ÃËÁøÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î ÀÚÀ̽ºÀÇ AI ±â¹Ý µðÁöÅÐ Çö¹Ì°æ Ç÷§ÆûÀº ÀÚµ¿ À̹ÌÁö ºÐ¼®°ú Ŭ¶ó¿ìµå ±â¹Ý µ¥ÀÌÅÍ °øÀ¯¸¦ °áÇÕÇÏ¿© º´¸®°ú Àǻ簡 ½½¶óÀ̵带 º¸´Ù Á¤È®ÇÏ°Ô °ËÅäÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ¸¶Âù°¡Áö·Î ¶óÀÌÄ« ¸¶ÀÌÅ©·Î½Ã½ºÅÛÁî´Â Çö¹Ì°æ°ú ¿øÈ°ÇÏ°Ô ÅëÇյǴ AI Áö¿ø ¼ÒÇÁÆ®¿þ¾î ÅøÀ» °³¹ßÇÏ¿© ±âÁ¸ÀÇ ¼öÀÛ¾÷ ºÐ¼®º¸´Ù ´õ ºü¸£°Ô ¾Ï¼¼Æ÷ ¹× ±âŸ º´¸®ÇÐÀû Ư¡À» °¨ÁöÇÒ ¼ö ÀÖµµ·Ï Çß½À´Ï´Ù. ¶ÇÇÑ AI ÀÏüÇü Çö¹Ì°æÀÇ Ãâ½Ã°¡ Àü ¼¼°è¿¡¼ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î 2024³â 9¿ù MedPrime Technologies´Â ÀεµÀÇ µðÁöÅÐ º´¸®Çп¡ Çõ¸íÀ» ÀÏÀ¸Å³ Çõ½ÅÀûÀÎ AI ÅëÇÕ µðÁöÅÐ Çö¹Ì°æ Ç÷§ÆûÀÎ MICALYS¸¦ Ãâ½ÃÇß½À´Ï´Ù. Áø´Ü Á¤È®µµ¸¦ ³ôÀ̰í, ¿öÅ©Ç÷ο츦 °£¼ÒÈÇϸç, Àü¹ÝÀûÀÎ »ý»ê¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº Áø´Ü °á°ú¸¦ °³¼±ÇÒ »Ó¸¸ ¾Æ´Ï¶ó ÀÓ»ó ½ÇÇè½Ç ¹× ¿¬±¸¼ÒÀÇ ¿öÅ©Ç÷οì È¿À²¼ºÀ» ÃÖÀûÈÇÕ´Ï´Ù. µû¶ó¼ Çö¹Ì°æ¿¡¼ AI¿Í ¿ø°Ý ±â¼úÀÇ ÅëÇÕÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ÇâÈÄ ¼ö³â°£ ½ÃÀå ¼ºÀå¿¡ ±â¿©ÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
Çö¹Ì°æ °Ë»ç´Â ÀÇÇÐ ±³À° ¹× ÈÆ·Ã¿¡¼ ¸Å¿ì Áß¿äÇϸç, Çлý°ú Àü¹®°¡°¡ ½Ç¿ëÀûÀÎ ±â¼úÀ» ½ÀµæÇϰí ÀÎü ÇØºÎÇÐ ¹× º´¸®ÇÐÀ» ´õ ±íÀÌ ÀÌÇØÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù. ±³À° ±â°üÀº °¡»ó Çö¹Ì°æ ¹× ¿ø°Ý ÇнÀÀ» °¡´ÉÇÏ°Ô ÇÏ´Â ÀÎÅÍ·¢Æ¼ºê µðÁöÅÐ Çö¹Ì°æ Ç÷§Æû¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ µ¿¹°ÀÇ °Ç° »óŸ¦ ¸ð´ÏÅ͸µÇϰí, ȯ°æ ¿À¿° ¹°ÁúÀ» °¨ÁöÇϰí, ³óÀÛ¹° ¼öÈ®·®À» Çâ»ó½Ã۱â À§ÇØ ¼öÀÇÇÐ, ȯ°æ °úÇÐ, ³ó¾÷ ¿¬±¸¿¡¼ Çö¹Ì°æÀº ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ¿¹¸¦ µé¾î ÀüÀÚÇö¹Ì°æÀº ½Ä¹° º´¸®Çп¡¼ ³Î¸® »ç¿ëµÇ¾î ÀÛ¹°¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ¹ÙÀÌ·¯½º¿Í °õÆÎÀ̸¦ ¿¬±¸Çϰí Áúº´¿¡ °ÇÑ ½Ä¹° ǰÁ¾ÀÇ °³¹ßÀ» ÃËÁøÇÕ´Ï´Ù. µû¶ó¼ Çö¹Ì°æÀÇ ±â¼ú ¹ßÀü°ú ÇÔ²² ¿¬±¸ ¹× ÀÇ·á¿ë Çö¹Ì°æÀÇ »ç¿ë È®´ë°¡ Çö¹Ì°æ ½ÃÀåÀÇ ¼ºÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù.
¶ÇÇÑ Á¤ºÎ, ¹Î°£ ±â°ü ¹× Á¶Á÷Àº ÇコÄɾî, »ý¸í°øÇÐ, ³ª³ëÅ×Å©³î·¯Áö, Àç·á°úÇÐ µî °úÇÐ ¿¬±¸ ¹× °³¹ß¿¡ ´õ ¸¹Àº ÀÚ¿øÀ» ÇÒ´çÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀÚ±ÝÀÇ ±ÞÁõÀ¸·Î ¿¬±¸±â°ü°ú ´ëÇÐÀº ÃÖ÷´Ü Çö¹Ì°æ Àåºñ¸¦ Á¶´ÞÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¿¹¸¦ µé¾î ¹Ì±¹ ±¹¸³º¸°Ç¿ø(NIH)Àº Áö¼ÓÀûÀ¸·Î ¿¹»êÀ» ´Ã¸®°í ÀÖÀ¸¸ç, 2025³â¿¡´Â 480¾ï ´Þ·¯ ÀÌ»ó¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¿¹»êÀÇ ´ëºÎºÐÀº ¾Ï »ý¹°Çп¡¼ °¨¿°º´ ¿¬±¸¿¡ À̸£±â±îÁö Çö¹Ì°æ À̹Ì¡ ±â¼ú¿¡ Å©°Ô ÀÇÁ¸ÇÏ´Â ¿¬±¸¸¦ Áö¿øÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀÚ±ÝÀÇ À¯ÀÔÀ¸·Î ¿¬±¸½ÇÀº ±âÁ¸ Çö¹Ì°æ¿¡¼ °øÃÊÁ¡ Çö¹Ì°æ, ÀüÀÚÇö¹Ì°æ, ÃÊÇØ»óµµ Çö¹Ì°æ µî º¸´Ù Á¤¹ÐÇÏ°í ¼¼¹ÐÇÑ À̹Ì¡ ±â´ÉÀ» Á¦°øÇÏ´Â °í±Þ ¸ðµ¨·Î ¾÷±×·¹À̵åÇϰí ÀÖ½À´Ï´Ù.
°æÀï»çº° ºÐ¼®¿¡¼´Â Á¦Ç° Æ÷Æ®Æú¸®¿À(Á¦Ç° ¸¸Á·µµ, Á¦Ç° Ư¡, °¡¿ë¼º), ÃÖ±Ù ½ÃÀå µ¿Çâ(ÀμöÇÕº´, ½ÅÁ¦Ç° Ãâ½Ã ¹× °È, ÅõÀÚ ¹× ÀÚ±Ý Á¶´Þ, ¼ö»ó, °è¾à, Á¦ÈÞ ¹× Çù·Â, ÀÎÁöµµ, È®Àå), °æÀï ±¸µµÀÇ ´õ ³ªÀº ÀÇ»ç°áÁ¤°ú ÀÌÇØ¸¦ µ½±â À§ÇÑ Áö¿ªÀû ÀÔÁö¸¦ ±â¹ÝÀ¸·Î ½ÃÇè°ü³» Æó ¸ðµ¨ ½ÃÀåÀ» Æò°¡ ¹× ºÐ·ùÇϰí ÀÖ½À´Ï´Ù. ÀÌ º¸°í¼´Â ¼¼°è ½ÃÇè°ü³» Æó ¸ðµ¨ ½ÃÀåÀÇ ÁÖ¿ä ¾÷üµéÀÇ ÃÖ±Ù ÁÖ¿ä µ¿Çâ°ú Çõ½Å¿¡ ´ëÇØ ½ÉÃþÀûÀ¸·Î Á¶»çÇß½À´Ï´Ù. ÁÖ¿ä ½ÃÀå ±â¾÷Àº CARL ZEISS AG, Bruker Corporation, Leica Microsystems, Nikon Corporation, Thermo Fischer Scientific Inc., Olympus Corporation, ACCU-SCOPE, Oxford Instruments Plc, Euromex Microscopen BV, Coxem Co. µîÀÔ´Ï´Ù.
Çö¹Ì°æ ½ÃÀåÀº ±â¼úº°·Î ±¤ÇÐ Çö¹Ì°æ, ÀüÀÚÇö¹Ì°æ, ÁÖ»çÇü ÇÁ·Îºê Çö¹Ì°æ, ±âŸ·Î ±¸ºÐµË´Ï´Ù. ±¤ÇÐ Çö¹Ì°æ ºÎ¹®Àº 2024³â Çö¹Ì°æ ½ÃÀå¿¡¼ °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2025-2031³â ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
ÃÖÁ¾»ç¿ëÀÚ Ãø¸é¿¡¼ Çö¹Ì°æ ½ÃÀåÀº Çмú ¹× ¿¬±¸ ±â°ü, Á¦¾à ¹× ¹ÙÀÌ¿À Á¦¾à ±â¾÷, Áø´Ü¼¾ÅÍ, ±âŸ·Î ºÐ·ùµË´Ï´Ù. Á¦¾à ¹× ¹ÙÀÌ¿À Á¦¾à ±â¾÷ ºÎ¹®Àº 2024³â Çö¹Ì°æ ½ÃÀå¿¡¼ °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2025-2031³â ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ´ëÇÐ, ´ëÇÐ, Àü¹®¿¬±¸¼¾ÅÍ´Â »ý¹°ÇÐ, ÈÇÐ, Àç·á°úÇÐ, ³ª³ëÅ×Å©³î·¯Áö µîÀÇ ±³À°, ±âÃÊ¿¬±¸, ½ÇÇ迬±¸¿¡ Çö¹Ì°æÀ» Æø³Ð°Ô Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. Áö¼ÓÀûÀÎ ÀÚ±Ý Áö¿ø°ú º¸Á¶±ÝÀ» ÅëÇØ °úÇÐÀû Áö½Ä°ú ±â¼ú Çõ½ÅÀ» ÃËÁøÇÒ ¼ö ÀÖ½À´Ï´Ù. ±³½Ç¿¡¼ »ç¿ëµÇ´Â ±âº» ±¤ÇÐ ¸ðµ¨ºÎÅÍ ÃÖ÷´Ü ¿¬±¸½Ç¿¡¼ »ç¿ëµÇ´Â °í±Þ ÀüÀÚÇö¹Ì°æ ¹× ½ºÄ³´× ÇÁ·Îºê Çö¹Ì°æ¿¡ À̸£±â±îÁö Çмú ȯ°æ¿¡¼ »ç¿ëµÇ´Â Çö¹Ì°æÀº ¸Å¿ì ´Ù¾çÇÕ´Ï´Ù. ±¤ÇÐ Çö¹Ì°æÀº ÇлýµéÀÌ ¼¼Æ÷ ±¸Á¶, ¹Ì»ý¹°, Á¶Á÷ »ùÇÃÀ» ޱ¸ÇÒ ¼ö ÀÖµµ·Ï ÇÏ´Â ±³À°¿ë Åø·Î ¿©ÀüÈ÷ °¡Àå º¸ÆíÀûÀÎ ÅøÀÔ´Ï´Ù. ¿¹¸¦ µé¾î µðÁöÅÐ ±¤ÇÐ Çö¹Ì°æÀº ÀÎÅÍ·¢Æ¼ºêÇÑ ÇнÀ °æÇèÀ» °ÈÇϱâ À§ÇØ Ä¿¸®Å§·³¿¡ ÅëÇյǴ °æ¿ì°¡ ¸¹½À´Ï´Ù. ÇÑÆí, ¿¬±¸±â°ü¿¡¼´Â Åõ°úÇü ÀüÀÚÇö¹Ì°æ(TEM), ÁÖ»çÇü ÀüÀÚÇö¹Ì°æ(SEM), ¿øÀÚ°£·Â Çö¹Ì°æ(AFM), °øÃÊÁ¡ Çö¹Ì°æ µî ÇÏÀÌ¿£µå ±â¼ú¿¡ ÅõÀÚÇÏ¿© ¸¶ÀÌÅ©·Î ¹× ³ª³ë ½ºÄÉÀÏ¿¡¼ »ó¼¼ÇÑ ±¸Á¶, ÈÇÐ, ¹°¸® ºÐ¼®À» ¼öÇàÇÏ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ¶ÇÇÑ Á¤ºÎ¿Í ¹Î°£´Üü´Â °úÇÐ ÀÎÇÁ¶ó¸¦ Áö¿øÇϱâ À§ÇØ Áö¼ÓÀûÀ¸·Î ¸¹Àº ¿¹»êÀ» ¹èÁ¤Çϰí ÷´Ü Çö¹Ì°æ ½Ã½ºÅÛÀÇ ¾÷±×·¹ÀÌµå ¹× ±¸¸Å¸¦ ÃßÁøÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î ¹Ì±¹ ±¹¸³º¸°Ç¿ø(NIH), À¯·´¿¬±¸À§¿øÈ¸(ERC) µîÀÇ ±¸»óÀº Çö¹Ì°æ °ü·Ã ÇÁ·ÎÁ§Æ®¿¡ Àû±ØÀûÀ¸·Î ÀÚ±ÝÀ» Áö¿øÇÏ¿© ÃÖ÷´Ü Àåºñ¿¡ ´ëÇÑ Á¢±ÙÀ» ¿ëÀÌÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù.
½ÃÇè°ü³» Æó ¸ðµ¨ ½ÃÀå¿¡¼ »ç¾÷À» ¿î¿µÇÏ´Â ±â¾÷Àº ´Ù¾çÇÑ À¯±âÀû, ¹«±âÀû Àü·«À» äÅÃÇϰí ÀÖ½À´Ï´Ù. À¯±âÀû Àü·«¿¡´Â ÁÖ·Î Á¦Ç° Ãâ½Ã¿Í Á¦Ç° ½ÂÀÎÀÌ Æ÷ÇԵ˴ϴÙ. ½ÃÀå¿¡¼ º¼ ¼ö ÀÖ´Â ¹«±âÀû ¼ºÀå Àü·«À¸·Î´Â Àμö, Á¦ÈÞ, ÆÄÆ®³Ê½Ê µîÀÌ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼ºÀå Àü·«À» ÅëÇØ ½ÃÀå ÁøÃâ±â¾÷Àº »ç¾÷À» È®ÀåÇϰí, Áö¿ªÀû ÀÔÁö¸¦ °ÈÇϸç, Àüü ½ÃÀå ¼ºÀå¿¡ ±â¿©ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ Àμö ¹× Á¦ÈÞ¿Í °°Àº Àü·«Àº °í°´ ±â¹ÝÀ» °ÈÇϰí Á¦Ç° Æ÷Æ®Æú¸®¿À¸¦ È®ÀåÇÏ´Â µ¥ µµ¿òÀÌ µÇ¾ú½À´Ï´Ù. ´ÙÀ½Àº ½ÃÇè°ü³» Æó ¸ðµ¨ ½ÃÀå ÁÖ¿ä ±â¾÷ÀÇ ÁÖ¿ä ¹ßÀü Áß ÀϺÎÀÔ´Ï´Ù.
2024³â 10¿ù, ÀÚÀ̽º´Â Åõ°úÇü ÀüÀÚÇö¹Ì°æ(TEM) ½Ã·áÀÇ ¿ÏÀü ÀÚµ¿ Áغñ¿¡ ÃÖÀûÈµÈ Áý¼ÓÇü À̿ºö ÁÖ»ç ÀüÀÚÇö¹Ì°æ(FIB-SEM) ½ÅÁ¦Ç° ZEISS Crossbeam 550 SamplefabÀ» Ãâ½ÃÇß½À´Ï´Ù.
2024³â 6¿ù, ¶óÀÌÄ«¸¶ÀÌÅ©·Î½Ã½ºÅÛÁî´Â ½Å°æ¿Ü°ú¿ë µðÁöÅÐ ½Ã°¢È Çö¹Ì°æ ARveo 8ÀÇ ÁøÈÇÑ ¹öÀüÀÎ ARveo 8À» ¹ßÇ¥Çß½À´Ï´Ù. ARveo 8Àº 3D ºä¿Í Áõ°Çö½Ç Çü±¤À» Àû¿ëÇÏ¿© ¼ö¼úÀÇ °¡½Ã¼ºÀ» °ÈÇÕ´Ï´Ù.
The microscope market size is projected to reach US$ 4.03 billion by 2031 from US$ 2.65 billion in 2024. The market is estimated to register a CAGR of 6.20% during 2025-2031. Major factors driving the market growth include an increasing applications of research and healthcare, and the growing funding in research and development. Further, increasing integration of AI and remote technologies in the microscope is likely to boost the market during the forecast period. However, high initial and maintenance costs are among the market deterrents.
The integration of Artificial Intelligence (AI) and remote technologies is revolutionizing the microscope market leading to advancements in imaging, data analysis, and accessibility. AI-powered microscopy systems enhance the precision, speed, and depth of image interpretation, enabling researchers and clinicians to extract meaningful insights from complex samples with greater efficiency. AI algorithms can automatically identify and classify cells, detect abnormalities in tissue samples, and quantify molecular interactions in real time, which significantly reduces human error and accelerates diagnostic processes. Remote microscopy, enabled by digital and cloud technologies, complements AI integration by allowing specialists to conduct high-resolution imaging and analysis remotely. This capability is particularly transformative in telemedicine, where remote diagnostics can provide timely and accurate healthcare services to underserved or geographically isolated populations. The use of remote microscopy also supports collaborative research by enabling multiple experts across the globe to simultaneously view and manipulate microscopic images in real time, fostering cross-institutional innovation and knowledge sharing. For instance, Zeiss's AI-driven digital microscopy platform combines automated image analysis with cloud-based data sharing, allowing pathologists to review slides with enhanced accuracy. Similarly, Leica Microsystems has developed AI-assisted software tools that integrate seamlessly with their microscopes to detect cancer cells and other pathological features more rapidly than traditional manual analysis. Moreover, the launch of AI-integrated microscopes is increasing across the world. For instance, in September 2024, MedPrime Technologies launched MICALYS, which is an innovative AI-integrated digital microscopy platform that is set to revolutionize digital pathology in India. It elevates diagnostic precision, streamlines workflows, and boosts overall productivity. These systems not only improve diagnostic outcomes but also optimize workflow efficiencies in clinical and research laboratories. Therefore, increasing integration of AI and remote technologies in the microscope is expected to contribute the market growth in the coming years.
Microscopy is critical in medical education and training, enabling students and professionals to develop practical skills and a deeper understanding of human anatomy and pathology. Educational institutions are investing in interactive and digital microscopy platforms that allow virtual microscopy and remote learning. Moreover, microscopes are crucial in veterinary medicine, environmental science, and agricultural research to monitor animal health, detect environmental contaminants, and improve crop yields. For instance, electron microscopy is widely used in plant pathology to study viruses and fungi affecting crops, facilitating the development of disease-resistant plant varieties. Therefore, the expanding scope of research and healthcare applications, coupled with technological advancements in microscopy, drives the growth of the microscope market.
Moreover, governments, private institutions, and organizations are allocating more resources toward scientific research and development in healthcare, biotechnology, nanotechnology, and materials science, among others. This surge in funding enables research institutions and universities to procure state-of-the-art microscopy equipment. For instance, the National Institutes of Health (NIH) in the US has consistently increased its budget, reaching over US$ 48 billion in 2025. A significant portion of this budget supports research that relies heavily on microscopic imaging technologies, from cancer biology to infectious disease studies. This influx of funds encourages laboratories to upgrade from conventional microscopes to advanced models such as confocal, electron, and super-resolution microscopes that offer higher precision and more detailed imaging capabilities
The comparative company analysis evaluates and categorizes the in vitro lung models market based on product portfolio (product satisfaction, product features, and availability), recent market developments (merger & acquisition, new product launch & enhancement, investment & funding, award, agreement, collaboration, & partnership, recognition, and expansion), and geographic presence that aids better decision-making and understanding of the competitive landscape. The report profoundly explores the recent significant developments and innovations by the leading vendors in the global in vitro lung models market. The key market players are CARL ZEISS AG; Bruker Corporation; Leica Microsystems; Nikon Corporation; Thermo Fischer Scientific Inc.; Olympus Corporation; ACCU-SCOPE; Oxford Instruments Plc; Euromex Microscopen BV; Coxem Co.,Ltd; and Hitachi High-Tech Corp.
Based on technology, the microscope market is segmented into optical microscope, electron microscope, scanning probe microscope, and others. The optical microscope segment held the largest share of the microscope market in 2024, and it is expected to register a significant CAGR during 2025-2031.
In terms of end user, the microscope market is segmented into academics and research institutes, pharmaceuticals and biopharmaceutical companies, diagnostic centers, and others. The pharmaceuticals and biopharmaceutical companies segment held the largest share of the microscope market in 2024, and it is expected to register a significant CAGR during 2025-2031. Universities, colleges, and dedicated research centers utilize microscopes extensively for education, fundamental research, and experimental studies in biology, chemistry, materials science, nanotechnology, and others. Continuous funding and grants enhance scientific knowledge and innovations. Microscopes in academic settings range from basic optical models used in classrooms to sophisticated electron and scanning probe microscopes employed in cutting-edge research labs. Optical microscopes remain the most common tool for teaching purposes, enabling students to explore cell structures, microorganisms, and tissue samples. For instance, digital optical microscopes are increasingly integrated into curricula to enhance interactive learning experiences. Meanwhile, research institutes often invest in high-end technologies such as transmission electron microscopes (TEM), scanning electron microscopes (SEM), atomic force microscopes (AFM), and confocal microscopes to conduct detailed structural, chemical, and physical analyses at the micro and nanoscale. Additionally, governments and private organizations continue to allocate significant budgets to support scientific infrastructure, driving upgrades and purchases of advanced microscopy systems. For example, initiatives such as the US National Institutes of Health (NIH) and the European Research Council (ERC) actively fund microscopy-related projects, facilitating access to state-of-the-art equipment.
Various organic and inorganic strategies are adopted by companies operating in the in vitro lung models market. The organic strategies mainly include product launches and product approvals. Inorganic growth strategies witnessed in the market are acquisitions, collaboration, and partnerships. These growth strategies allow the market players to expand their businesses and enhance their geographic presence, along with contributing to the overall market growth. Furthermore, strategies such as acquisitions and partnerships helped strengthen their customer base and extend their product portfolios. A few of the significant developments by key players in the in vitro lung models market are listed below.
In October 2024, ZEISS launched new ZEISS Crossbeam 550 Samplefab, a focused ion beam scanning electron microscope (FIB-SEM) optimized for fully automated preparation of transmission electron microscopy (TEM) samples.
In June 2024, Leica Microsystems introduced an evolved version of its ARveo 8 digital visualization microscope for neurosurgery. The ARveo 8 enhances surgical visualization by applying a 3D view and augmented reality fluorescence.