¼¼°èÀÇ ¸»ÃÊ ¾×ü »öÀüÁ¦ ½ÃÀå ±Ô¸ð ¹× ¿¹Ãø, ¼¼°è ¹× Áö¿ªº° Á¡À¯À², µ¿Çâ, ¼ºÀå ±âȸ ºÐ¼® - À¯Çüº°, ¿ëµµº°, Áö¿ªº°
Peripheral Liquid Embolic Agents Market Size and Forecast, Global and Regional Share, Trend, and Growth Opportunity Analysis Report Coverage: By Type, Application, and Geography
»óǰÄÚµå : 1509785
¸®¼­Ä¡»ç : The Insight Partners
¹ßÇàÀÏ : 2024³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 233 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,450 £Ü 6,166,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù.
US $ 6,450 £Ü 8,938,000
PDF (Site License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷ÀåÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 8,450 £Ü 11,710,000
PDF (Enterprise License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°è ¸»ÃÊ ¾×ü »öÀüÁ¦ ½ÃÀå ±Ô¸ð´Â 2023³â 4,042¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2023-2031³â ¿¬Æò±Õ 9.1% ¼ºÀåÇÏ¿© 2031³â¿¡´Â 8,141¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸»ÃÊ ¾×ü »öÀüÁ¦´Â ÁßÀçÀû ¹æ»ç¼± ½Ã¼ú¿¡¼­ ´©ÃâµÈ Ç÷°üÀ̳ª ±âÇüÀ» ¸·´Â µ¥ »ç¿ëµÇ´Â ¹°ÁúÀÔ´Ï´Ù. ÀÌ ¾à¹°Àº ÁÖÀÔ ÈÄ ÀÀ°íµÇ¾î Ç÷ÀüÀ» Çü¼ºÇÏ¿© Ç¥Àû ºÎÀ§·ÎÀÇ Ç÷·ù¸¦ Â÷´ÜÇÕ´Ï´Ù.

¿Âµµ À¯µµ »óº¯È­ ½Ã½ºÅÛ°ú pH Æ®¸®°Å »öÀüÁ¦ ½ÃÀå °³Ã´ÀÌ ½ÃÀå ¼ºÀå Ãß¼¼·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù.

¾×ü»öÀü¼úÀº »ýü°øÇÐ, ƯÈ÷ ¸»ÃÊ ½Ã¼ú¿¡¼­ Å« °ü½ÉÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ¾×ü »öÀüÁ¦´Â ÄÚÀÏÀ̳ª Ä«Å×ÅͰ¡ µµ´ÞÇÒ ¼ö ¾ø´Â ¸»ÃÊ, º´º¯ ¶Ç´Â ¿øÀ§ºÎ±îÁö ħÅõÇÒ ¼ö ÀÖ½À´Ï´Ù. ÇöÀç »ç¿ëµÇ´Â ¾×ü »öÀüÁ¦´Â ´ëºÎºÐÀÇ ÀÓ»óÀû ¿ä±¸¸¦ ÃæÁ·½Ãų ¼ö ÀÖÁö¸¸ ¸î °¡Áö ´ÜÁ¡ÀÌ ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó ¿µ»ó Ư¼º °³¼±, ÇÕº´Áõ °¨¼Ò, À¯µ¿ °æ·Î ¼º´É ÃÖÀûÈ­, ¾à¹° ºÎÇÏ ½ÇÇö µîÀ» ¸ñÇ¥·Î ´Ù¾çÇÑ »õ·Î¿î ¾×ü »öÀüÁ¦°¡ °³¹ßµÇ°í ÀÖ½À´Ï´Ù. ÃÖ¼Òħ½ÀÀû ¿µ»óÈ­ ºÐ¾ß¿¡¼­ ÀÓ»óÀûÀ¸·Î Á¶Á¤µÈ »öÀüÁ¦¸¦ °³¹ßÇϱâ À§Çؼ­´Â °ü·Ã ºÎÀÛ¿ë(µ¶¼º, Á¢Âø·Â µî), »ýü ±â´É¼º(»ýü ÀûÇÕ¼º, »ýºÐÇØ¼º, »ý¿ªÇÐ, »ý¸®È°¼º), ¹æ»ç¼± Åõ°ú¼º µî ´õ Áß¿äÇÑ Àç·á Ư¼ºÀ» ü°èÀûÀ¸·Î Á¶»çÇÏ´Â °ÍÀÌ ÇʼöÀûÀÔ´Ï´Ù.

¿Âµµ¿¡ ¹Î°¨ÇÑ °íºÐÀÚ ¿ë¾×Àº ü³»¿¡¼­ ½Ç¿Â¿¡¼­ Á¹ ÁÖÀÔ °¡´ÉÇÑ »óÅ¿¡¼­ °Ö »óÅ·Πº¯ÇÕ´Ï´Ù. 2015³â Qian µîÀÌ Journal of Controlled Release¿¡ ¹ßÇ¥ÇÑ ¿¬±¸¿¡ µû¸£¸é, Æú¸®(N-À̼ÒÇÁ·ÎÇʾÆÅ©¸±¾Æ¹Ìµå)(PNIPAAm)´Â 32¡ÉÀÇ ÇÏÇÑ ÀÓ°è ¿ë¾× ¿Âµµ(LCST)¿¡ ¹ÝÀÀÇÏ¿© °¡¿ªÀûÀÎ »óÀüÀÌ Çö»óÀÌ ¹ß»ýÇÕ´Ï´Ù. ÀÌ¿ÀÇí¼Ö ºÐ»ê¾×À» »ç¿ëÇÑ Æú¸®(N-À̼ÒÇÁ·ÎÇʾÆÅ©¸±¾Æ¹Ìµå-ÄÚ-ºÎÆ¿¸ÞÆ¿¾ÆÅ©¸±·¹ÀÌÆ®) °ÖÀº Åä³¢¿¡¼­ ½ÅÀå µ¿¸ÆÀÇ È¿°úÀûÀÎ »öÀüÁõ°ú µ¶¼Ò·çºñ½ÅÀÇ ¼­¹æ¼ºÀ» º¸¿©ÁÖ¾ú½À´Ï´Ù. ¸¶Âù°¡Áö·Î, 2011³â Wang µîÀÌ National Library of Medicine¿¡ ¹ßÇ¥ÇÑ ¿¬±¸¿¡ µû¸£¸é ŰÅä»ê/B-±Û¸®¼¼·Ñ¸°»ê(C/GP)Àº Åä³¢ÀÇ ½ÅÀå µ¿¸ÆÀ» ¼º°øÀûÀ¸·Î Æó¼âÇÏ¿© »öÀüÁ¦·Î¼­ÀÇ °¡´É¼ºÀ» º¸¿©ÁÖ¾ú½À´Ï´Ù. ¸¶Âù°¡Áö·Î, 2011³â Wiley Online Library¿¡ °ÔÀçµÈ ¿¬±¸¿¡ µû¸£¸é, Zhao µîÀº »öÀüÁõ¿¡ ´ëÇÑ ¿Âµµ ¹Î°¨¼º PNIPAAm-iohexol ³ª³ë°ÖÀ» Á¶»çÇß½À´Ï´Ù. »óÀüÀÌ ¿Âµµ(36.5 ¡É) ÀÌ»óÀÇ ¼Ò¼ö¼º »óÈ£ ÀÛ¿ëÀ» ÅëÇØ in situ Ç÷°ü ÁÖÁ¶¸¦À§ÇÑ °èÃþ Àû 3D Á© ³×Æ®¿öÅ©°¡ Çü¼ºµÇ¾ú½À´Ï´Ù. ³ª³ë°ÖÀº ¸»ÃÊ»öÀüÁ¦ÀÎ ¸®ÇÇ¿Àµ¹°ú ºñ±³ÇÏ¿© Åä³¢ VX2 °£Á¾¾ç¿¡¼­ ´õ ¿ì¼öÇÑ ¸»ÃÊ»öÀü È¿°ú¸¦ º¸¿´½À´Ï´Ù.

¶ÇÇÑ, Æú·Ï»ç¸Ó407(Æú¸®¿¡Æ¿·»¿Á»çÀ̵åa-Æú¸®ÇÁ·ÎÇÊ·»¿Á»çÀ̵åb-Æú¸®¿¡Æ¿·»¿Á»çÀ̵åaÀÇ »ïÁß ºí·Ï °øÁßÇÕü)À» ÇÔÀ¯ÇÑ °¨¿Â¼º ¾×ü»öÀü ÇÏÀ̵å·Î°ÖÀÌ °£¾Ï Ä¡·á¸¦ À§ÇØ Á¦¾ÈµÇ°í ÀÖ½À´Ï´Ù. Æú·Ï»ç¸Ó 407, ÇÏÀ̵å·Ï½Ã¸ÞÆ¿¼¿·ê·Î¿À½º, ¾Ë±ä»ê³ªÆ®·ý, ¿ä¿Àµð¿Á»ç³î·Î ±¸¼ºµÈ º¹ÇÕ ÇÏÀ̵å·Î°Ö(PSHI)Àº ¿Âµµ »ó½Â¿¡ µû¶ó À¯µ¿¼º Á¹°ú ¼öÃà °ÖÀÇ 2»óÀ» º¸¿´½À´Ï´Ù. ƯÈ÷ PSHI-Ca2¸¦ »ç¿ëÇÑ VX2 °£¾Ï ¸ðµ¨¿¡¼­ »öÀü¼ú ÈÄ Á¾¾çÀÌ »ç¶óÁ® ¿ÏÀüÇÑ Æó»öÀ» ÀÔÁõÇß½À´Ï´Ù.

pH¿¡ ¹Î°¨ÇÑ È°¼º ¼ººÐÀº in vitro ȯ°æ°ú »ý¸®Àû ȯ°æ »çÀÌÀÇ pH º¯È­·Î ÀÎÇØ »óÀüÀÌ Çö»óÀÌ ÀϾ´Ï´Ù. ÀÌ·¯ÇÑ ÇÏÀ̵å·Î°ÖÀº pH¿¡ ¹ÝÀÀÇÏ¿© ºÎÇ®¾î ¿À¸£°Å³ª ºÐÇØµÇ¸ç, ÀÌ´Â ¾à¹° ¹æÃâÀ» Á¶ÀýÇÏ´Â µ¥ »ç¿ëµË´Ï´Ù.

Nguyen µîÀÌ 2016³â Royal Society of Chemistry¿¡ ¹ßÇ¥ÇÑ ¿¬±¸¿¡ µû¸£¸é, °£¼¼Æ÷¾ÏÀÇ TACE¸¦ À§ÇØ Æú¸®(È£¿À-Ä«ÇÁ·Î¶ôÅæ-ÄÚ¶ôƼµµ)(PCLA), PEG, Æú¸®(¿ì·¹Åº ¼³ÆÄÀÌµå ¼³ÆÄ¸ÞŸµò)(PUSSM)À¸·Î ±¸¼ºµÈ °øµ¿ ÁßÇÕüÀÎ PCLA-PUSSMÀÌ °³¹ßµÇ¾ú½À´Ï´Ù. ÁßÇÕüÀÎ PCLA-PUSSMÀÌ °³¹ßµÇ¾ú½À´Ï´Ù. ÀÌ »ýºÐÇØ¼º ¹°ÁúÀº µ¶¼Ò·çºñ½ÅÀ» ´ãÁöÇϰí pHÀÇ °¨¼Ò¿¡ ¹ÝÀÀÇÏ¿© »óÀüÀÌ Çö»óÀ» º¸¿´½À´Ï´Ù. ÀÌ ÇÏÀ̵å·Î°ÖÀº µ¶¼Ò·çºñ½ÅÀÇ ¼­¹æ¼ºÀ» ³ªÅ¸³»¸é¼­ VX2 Åä³¢ Á¾¾ç ¸ðµ¨¿¡¼­ °£Á¾¾çÀ» ¼º°øÀûÀ¸·Î »öÀü½ÃÄ×½À´Ï´Ù. Á㠸𵨿¡¼­ »öÀü¼úÀº Á¾¾ç¿¡ ´ëÇÑ Ç÷¾× °ø±ÞÀ» Â÷´ÜÇÏ¿© Àú»ê¼ÒÁõÀ¸·Î ÀÎÇÑ »ê¼º ȯ°æÀ» Çü¼ºÇϰí Á¥»êÁõÀ» À¯¹ßÇß½À´Ï´Ù. ³·Àº pH´Â ¾à¹° ¹æÃâÀ» À¯µµÇÏ¿© in vivo¿¡¼­ Á¾¾çÀÇ ¼ºÀåÀ» ¾ïÁ¦ÇÏ´Â µ¥ ¼º°øÇß½À´Ï´Ù.

¿Âµµ ¹Î°¨¼º ¹× pH Æ®¸®°Å·Î Å×½ºÆ®ÁßÀÎ ¾×ü »öÀüÁ¦ Áß ÀϺδ ´ÙÀ½°ú °°½À´Ï´Ù.

¾×ü »öÀüÁ¦ ¸ÞÄ¿´ÏÁòÀÇ ÀåÁ¡, °íÀüÀû »ç¿ë ½Ã³ª¸®¿À ¶Ç´Â Å×½ºÆ® Á¶°Ç

ŰÅä»ê/B-±Û¸®¼¼·Ñ¸°»ê(ŰÅä»ê/B-GP) ¿Âµµ ¹× pH Æ®¸®°Å °ÖÈ­ ¾à¹°Àü´Þ Åä³¢ÀÇ ½ÅÀå µ¿¸Æ

¿Âµµ Æ®¸®°Å °ÖÈ­ ¾à¹°Àü´Þ Åä³¢ÀÇ VX2 ¿ø¹ß¼º °£ Á¾¾ç

Æú¸®(N- ÀÌ¼Ò ÇÁ·ÎÇÊ ¾ÆÅ©¸± ¾Æ¹Ìµå-ÄÚ-ºÎÆ¿ ¸ÞÆ¿ ¾ÆÅ©¸± ·¹ÀÌÆ®) ³ª³ë °Ö(PIB ³ª³ë °Ö) ¿Âµµ À¯¹ß °ÖÈ­ ¸®ÇÇ¿Àµ¹º¸´Ù ¿ì¼öÇÑ »öÀü È¿°ú Åä³¢ÀÇ VX2 °£ Á¾¾ç ¿ø¹ß¼º ºÎÀ§

Poloxamer 407 ¿Âµµ À¯µµ °ÖÈ­ ÀϽÃÀû Ç÷°ü Æó»ö °³ ½ÅÀå µ¿¸Æ

Poloxamer407,¾Ë±ä»ê³ªÆ®·ý,È÷µå·Ï½Ã¸ÞÆ¿¼¿·ê·Î¿À½º,¿ä¿Àµð¿Á»ç³î,Ä®½·ÀÌ¿Â(PSHI-Ca2) ¿Âµµ À¯µµ °ÖÈ­ ¹æ»ç¼± Åõ°ú¼º Åä³¢ ¿ø¹ß¼º VX2 °£Á¾¾ç

¼³ÆÄ ¸ÞŸ Áø ±â¹Ý ÇÏÀ̵å·Î °Ö pH Æ®¸®°Å °ÖÈ­ ¾à¹°Àü´Þ Åä³¢ÀÇ VX2 °£¾Ï ¿ø¹ß¼º °£ Á¾¾ç ¿ø¹ß¼º ºÎÀ§

Æú¸®(¾Æ¹Ì³ë ¿¡½ºÅ׸£ ¿ì·¹Åº) ºí·Ï Æú¸®¸Ó(PEAU) ¿Âµµ ¹× pH Æ®¸®°Å °ÖÈ­ ¾à¹°Àü´Þ Åä³¢¿¡¼­ VX2 °£ Á¾¾çÀÇ ¿ø¹ß¼º ºÎÀ§

ÀÌ·¯ÇÑ ¿Âµµ À¯¹ß »óº¯È­ ½Ã½ºÅÛ°ú pH À¯¹ß »öÀüÁ¦¿¡ ´ëÇÑ °ü½É°ú ½ÅÈï±¹ ½ÃÀå °³Ã´Àº ÇâÈÄ ¸î ³â µ¿¾È ¸»ÃÊ ¾×ü »öÀüÁ¦ ½ÃÀå¿¡ »õ·Î¿î Æ®·»µå¸¦ °¡Á®¿Ã °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸»ÃÊ ¾×ü »öÀüÁ¦ ½ÃÀå ºÐ¼®Àº À¯Çü, ¿ëµµ, Áö¿ªº°·Î ¼¼ºÐÈ­ÇÏ¿© ºÐ¼®ÇÏ¿´½À´Ï´Ù. À¯Çüº°·Î ¸»ÃÊ ¾×ü »öÀüÁ¦ ½ÃÀåÀº ÁßÇÕÇü ¾×ü »öÀüÁ¦¿Í ħÀüÇü ¾×ü »öÀüÁ¦·Î ±¸ºÐµË´Ï´Ù. ¿ëµµº°·Î´Â ¸»ÃÊ ¾×ü »öÀüÁ¦ ½ÃÀåÀº ¿£µå¸®Å© IIÇü, ±âÇü, ÃâÇ÷ ¹× ¿Ü»ó, Á¤¸Æ·ù, Á¾¾ç, ³»Àå µ¿¸Æ·ù·Î ºÐ·ùµË´Ï´Ù.

¸»ÃÊ ¾×ü »öÀüÁ¦ ½ÃÀå Á¶»ç ¹üÀ§´Â ºÏ¹Ì(¹Ì±¹, ij³ª´Ù, ¸ß½ÃÄÚ), À¯·´(½ºÆäÀÎ, ¿µ±¹, µ¶ÀÏ, ÇÁ¶û½º, ÀÌÅ»¸®¾Æ, ±âŸ À¯·´), ¾Æ½Ã¾ÆÅÂÆò¾ç(Çѱ¹, Áß±¹, ÀϺ», Àεµ, È£ÁÖ, ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç), Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«(³²¾ÆÇÁ¸®Ä«°øÈ­±¹, »ç¿ìµð¾Æ¶óºñ¾Æ, ¾Æ¶ø¿¡¹Ì¸®Æ®, ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«), Áß³²¹Ì(ºê¶óÁú, ¾Æ¸£ÇîÆ¼³ª, ±âŸ Áß³²¹Ì) µîÀÔ´Ï´Ù. ºÏ¹Ì´Â Àü ¼¼°è ¸»ÃÊ ¾×ü »öÀüÁ¦ ½ÃÀå¿¡¼­ °¡Àå Å« ±â¿©¸¦ Çϰí ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀº 2023-2031³â µ¿¾È ½ÃÀå¿¡¼­ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ºÏ¹ÌÀÇ ½ÃÀå ¼ºÀåÀº µ¿¸Æ·ù, ¿Ü»ó ¹× ±âŸ »ç·ÊÀÇ Áõ°¡¿¡ ±âÀÎÇÕ´Ï´Ù. ij³ª´Ù ½ÃÀåÀº ¸»ÃÊ Àå¾Ö¿¡ ´ëÇÑ ¿ì·Á Áõ°¡¿¡ ´ëÀÀÇϱâ À§ÇÑ Á¤ºÎ Áö¿ø Áõ°¡·Î ÀÎÇØ ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¸ß½ÃÄÚ ½ÃÀåÀº Á¦¾à »ê¾÷°ú ÀÇ·á °ü±¤ÀÇ ¼ºÀåÀ¸·Î ÀÎÇØ ¼ºÀåÇÒ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾ç ¸»ÃÊ ¾×ü »öÀüÁ¦ ½ÃÀåÀº Áß±¹, ÀϺ», Àεµ, È£ÁÖ, Çѱ¹ ¹× ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾çÀ¸·Î ±¸ºÐµË´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ½ÃÀå ¼ºÀåÀº ¸»Ãʵ¿¸ÆÁúȯ(PAD) À¯º´·ü Áõ°¡, ÃÖ¼Òħ½À ¼ö¼ú¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, º´¿ø ¹× ¿Ü·¡ ¼ö¼ú ¼¾ÅÍ ¼ö Áõ°¡, ½ÃÀå ±â¾÷ÀÇ ½ÅÈï ±¹°¡¿¡ ´ëÇÑ °ü½É Áõ°¡, ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ÀÇ·á ÀÎÇÁ¶ó °³¹ß µî ´Ù¾çÇÑ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù.

¹Ì±¹ Áúº´ÅëÁ¦¿¹¹æ¼¾ÅÍ(CDC), À¯·´ÀǾàǰû(EMA), ¹ü¹Ìº¸°Ç±â±¸(PAHO), ¼¼°èº¸°Ç±â±¸(WHO)´Â ¸»ÃÊ ¾×ü »öÀüÁ¦ ½ÃÀå¿¡ ´ëÇÑ º¸°í¼­¸¦ ÀÛ¼ºÇÒ ¶§ Âü°íÇÑ 1Â÷ ¹× 2Â÷ Á¤º¸ Áß ÀϺÎÀÔ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼Ò°³

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå Á¶»ç ¹æ¹ý

Á¦4Àå ¸»ÃÊ ¾×ü »öÀüÁ¦ ½ÃÀå »óȲ

Á¦5Àå ¸»ÃÊ ¾×ü »öÀüÁ¦ ½ÃÀå - ÁÖ¿ä ½ÃÀå ¿ªÇÐ

Á¦6Àå ¸»ÃÊ ¾×ü »öÀüÁ¦ ½ÃÀå : ¼¼°è ½ÃÀå ºÐ¼®

Á¦7Àå ¸»ÃÊ ¾×ü »öÀüÁ¦ ½ÃÀå ºÐ¼® : À¯Çüº°

Á¦8Àå ¸»ÃÊ ¾×ü »öÀüÁ¦ ½ÃÀå ºÐ¼® : ¿ëµµº°

Á¦9Àå ¸»ÃÊ ¾×ü »öÀüÁ¦ ½ÃÀå : Áö¿ªº° ºÐ¼®

Á¦10Àå »ê¾÷ »óȲ

Á¦11Àå ±â¾÷ °³¿ä

Á¦12Àå ºÎ·Ï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

The peripheral liquid embolic agents market is expected to grow from US$ 40.42 million in 2023 to US$ 81.41 million by 2031; it is anticipated to record a CAGR of 9.1% from 2023 to 2031.

Peripheral liquid embolic agents are substances used in interventional radiology procedures to block leaking blood vessel and malformations. These agents solidify after injecting which forms plug and block the blood flow to the targeted area.

Developments in Temperature-Induced Phase Change Systems and pH-Triggered Embolic Agents Acts as a Trend for Market Growth

Liquid embolism is a topic of great interest in bioengineering, particularly in peripheral procedures. Liquid embolic agents can penetrate peripheral, nidus, or distal areas where coils or catheters cannot reach. Although currently used liquid embolic agents can meet most clinical needs, they have some shortcomings. Therefore, various novel liquid embolic agents have been developed to improve imaging characteristics, reduce complications, optimize flow performance, and achieve drug loading capability. The systematic investigation of additional important material characteristics such as associated side effects (e.g., toxicity and adhesion), biofunctional (biocompatibility, biodegradability, biomechanics, and bioactivity), and radiopacity is essential for the development of clinically tailored embolic agents in the field of minimally invasive imaging procedures.

Temperature-sensitive polymer solutions can change from a sol-injectable state to a gel state at room temperature in the body. Poly(N-isopropyl acrylamide) (PNIPAAm) exhibits a reversible phase transition in response to a lower critical solution temperature (LCST) of 32 °C. According to a study published in the Journal of Controlled Release by Qian et al. in 2015, poly(N-isopropylacrylamide-co-butylmethyl acrylate) gels with iohexol dispersions for TACE of liver cancer demonstrated effective embolization of renal arteries in rabbits and sustained release of doxorubicin. Similarly, as per a study published in the National Library of Medicine by Wang et al. in 2011, chitosan/B-glycerophosphate (C/GP) successfully closed renal arteries in rabbits, indicating to be a potential embolization agent. Likewise, Zhao et al. also investigated temperature-sensitive PNIPAAm-iohexol nano gels for embolization, according to a research study published Wiley Online Library in 2011. The hydrophobic interactions above the phase transition temperature (36.5 °C) lead to a hierarchical 3D gel network for in situ vessel casting. Compared to Lipiodol, a peripheral embolic agent, the nanogel provided better peripheral embolization in VX2 liver tumors in rabbits.

Furthermore, a poloxamer 407 (a triblock copolymer of polyethylene oxide a-polypropylene oxide b-polyethylene oxide a) containing a thermosensitive liquid embolic hydrogel has been proposed for liver cancer therapy. This composite hydrogel composed of poloxamer 407, hydroxymethyl cellulose, sodium alginate, and iodixanol (PSHI) presented two phases with increasing temperature: a flowing sol and a shrunken gel. Notably, complete occlusion of the VX2 liver cancer model was demonstrated with PSHI-Ca2+ as the tumor disappeared after embolization.

pH-sensitive active ingredients undergo a phase transition due to the pH change between the in vitro and physiological environments. These hydrogels swell and collapse in response to pH, which is used to control drug release.

As per a study published in the Royal Society of Chemistry by Nguyen et al. in 2016, PCLA-PUSSM, a copolymer consisting of poly(¥å-caprolactone-co-lactide) (PCLA), PEG, and poly(urethane sulfide sulfamethazine) (PUSSM) was developed, for TACE of HCC. This biodegradable material was loaded with doxorubicin and exhibited a phase transition in response to decreasing pH. The hydrogel successfully embolized a liver tumor from a VX2 rabbit tumor model while providing a sustained release of doxorubicin. In a rat model, embolization stopped blood supply to the tumor, creating an acidic environment through hypoxia and inducing lactic acidosis. The low pH triggered drug release and successfully inhibited tumor growth in vivo.

Some of the liquid embolic agents under trial for temperature-sensitive and pH-triggered are given below:

Liquid Embolic Agents Mechanism Advantage Classical Usage Scenarios or Trial Conditions

Chitosan/B- glycerophosphate (chitosan/B-GP) Temperature- and pH-triggered gelation Drug delivery Renal arteries in rabbits

Silk-Elastin-Like proteins (SELPs) Temperature- triggered gelation Drug delivery Primary VX2 liver tumors in rabbit

Poly(N-isopropylacrylamide-co-butyl methylacrylate) nanogel (PIB nanogel) Temperature- triggered gelation A better embolization than lipiodol Primary VX2 liver tumors in rabbit

Poloxamer 407 Temperature- triggered gelation Temporary vascular occlusion Renal arteries in canines

poloxamer 407, sodium alginate, hydroxymethyl cellulose, iodixanol, and calcium ions (PSHI-Ca2+) Temperature- triggered gelation Radiopacity Primary VX2 liver tumors in rabbit

Sulfamethazine-based hydrogel pH-triggered gelation Drug delivery Primary VX2 liver tumors in rabbit

Poly(Amino Ester Urethane) block polymer (PEAU) Temperature- and pH-triggered gelation Drug delivery Primary VX2 liver tumors in rabbit

Thus, the growing focus and developments on temperature-induced phase change systems and pH-triggered embolic agents are expected to bring new trends in the peripheral liquid embolic agents market in the coming years.

The peripheral liquid embolic agents market analysis has been carried out by considering the following segments: type, application and geography. Based on type, the peripheral liquid embolic agents market is bifurcated into polymerizing liquid embolic agents and precipitating liquid embolic agents. In terms of application, the peripheral liquid embolic agents market is classified into endoleak type II, malformations, bleedings and trauma, varicose vein, tumors, and visceral aneurysm..

The scope of the peripheral liquid embolic agents market report covers North America (the US, Canada, and Mexico), Europe (Spain, the UK, Germany, France, Italy, and the Rest of Europe), Asia Pacific (South Korea, China, Japan, India, Australia, and the Rest of Asia Pacific), Middle East & Africa (South Africa, Saudi Arabia, the UAE, and the Rest of Middle East & Africa), and South & Central America (Brazil, Argentina, and the Rest of South & Central America). North America is the biggest contributor to the global peripheral liquid embolic agents market. Asia Pacific is predicted to show the highest CAGR in the market during 2023-2031.

The North America regional market growth is attributed to the increasing cases of aneurysms, trauma, and others across the region. The market in Canada is anticipated to grow because of rising government support for addressing the increasing concerns regarding peripheral disorders. The market in Mexico is estimated to grow owing to the growing pharma industries and medical tourism. The Asia Pacific peripheral liquid embolic agents market is segmented into China, Japan, India, Australia, South Korea, and the Rest of Asia Pacific. The market growth in the region is driven by various factors such as the rising prevalence of peripheral artery diseases (PAD), increasing demand for minimally invasive procedures, growing number of hospitals and ambulatory surgery centers, rising focus on developing countries by market players , and developing healthcare infrastructure in Asia Pacific

Centers for Disease Control and Prevention (CDC), European Medicines Agency (EMA), The Pan American Health Organization (PAHO), and World Health Organization (WHO) are a few key primary and secondary sources referred to while preparing the report on the peripheral liquid embolic agents market.

Table Of Contents

1. Introduction

2. Executive Summary

3. Research Methodology

4. Peripheral Liquid Embolic Agents Market Landscape

5. Peripheral Liquid Embolic Agents Market - Key Market Dynamics

6. Peripheral Liquid Embolic Agents Market - Global Market Analysis

7. Peripheral Liquid Embolic Agents Market Analysis - by Type

8. Peripheral Liquid Embolic Agents Market Analysis - by Application

9. Peripheral Liquid Embolic Agents Market - Geographical Analysis

10. Industry Landscape

11. Company Profiles

12. Appendix

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â