Vacuum-Optimized Rocket Engines Global Market Report 2025
상품코드:1810805
리서치사:The Business Research Company
발행일:On Demand Report
페이지 정보:영문 250 Pages
라이선스 & 가격 (부가세 별도)
ㅁ Add-on 가능: 고객의 요청에 따라 일정한 범위 내에서 Customization이 가능합니다. 자세한 사항은 문의해 주시기 바랍니다.
ㅁ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송기일은 문의해 주시기 바랍니다.
한글목차
진공 최적화 로켓 엔진 시장 규모는 향후 몇 년 동안 급성장할 것으로 예상됩니다. 2029년에는 CAGR 10.4%로 89억 7,000만 달러로 성장할 것입니다. 예측 기간 동안의 성장은 고효율 우주 추진에 대한 수요 증가, 민간 및 방위 우주 임무에서 진공 최적화 엔진의 사용 증가, 적층 가공 및 노즐 설계의 발전, 위성 발사의 급증, 진공 최적화 로켓 엔진의 채택을 촉진하는 정부 및 민간 우주 이니셔티브의 강력한 지원으로 인한 것입니다. 정부 및 민간 우주 이니셔티브의 강력한 지원에 기인합니다. 이 기간 동안 예상되는 주요 동향으로는 우주 환경에서의 성능 향상을 위한 진공 최적화 엔진의 적용, 고효율 추력을 제공하기 위한 상부 및 심우주 임무에의 적용, 임무 비용 절감을 위한 재사용 가능한 발사 시스템에의 활용, 정밀한 조종을 위한 소형 위성 및 궤도 이동 항공기에 통합, 열 손실 및 구조적 손실을 줄이기 위한 첨단 노즐 및 재료 설계, 임무의 유연성과 내구성을 향상시키기 위한 차세대 추진 기술과의 잠재적 결합 등이 포함됩니다.
상업적 우주 활동의 증가는 향후 몇 년 동안 진공 최적화 로켓 엔진 시장의 성장을 견인할 것으로 예상됩니다. 상업적 우주 활동에는 위성 발사, 우주여행, 궤도 서비스 등 민간 부문의 우주 사업이 포함됩니다. 이러한 활동의 증가는 주로 세계 연결을 촉진하고, 원격지를 지원하며, 5G, 사물인터넷(IoT), 실시간 데이터 전송과 같은 기술 발전을 촉진하는 위성 기반 인터넷 및 통신 서비스에 대한 수요 증가에 기인합니다. 진공 최적화 로켓 엔진은 우주 공간에서의 효율성과 추진력을 강화하여 더 긴 임무, 더 큰 탑재량, 상업용 우주 사업에서 더 나은 전반적인 성능을 가능하게 합니다. 예를 들어, 2024년 1월 미국 비영리단체인 우주재단은 2023년 발사 시도 횟수 223회, 발사 성공 횟수 212회로 세계 발사 활동이 3년 연속 사상 최고치를 기록했다고 보고했습니다. 또한, 상업적 발사는 2022년에 비해 50% 증가했습니다. 따라서 상업용 우주 활동의 증가는 진공 최적화 로켓 엔진 시장의 성장을 촉진하고 있습니다.
진공 최적화 로켓 엔진 시장의 주요 업체들은 고도로 복잡한 추진 시스템 제작 속도를 높이기 위해 자율 차세대 계산 설계 모델과 같은 첨단 기술 개발에 주력하고 있습니다. 이 모델들은 인공지능을 사용하여 복잡한 엔진 형상을 자율적으로 설계하여 설계 시간을 크게 단축하고, 다양한 압력 조건에 대해 성능을 최적화합니다. 예를 들어, 2024년 12월 아랍에미리트의 계산 공학 기업 LEAP 71은 차세대 계산 모델에 의해 자율적으로 설계된 열연소식 5000 뉴턴 에어로 스파이크 로켓 엔진을 개발했습니다. 단 몇 주 만에 제작된 이 엔진은 구리 한 조각으로 3D 프린팅되어 첫 번째 시도에서 성공적으로 점화에 성공했습니다. 중앙 스파이크를 둘러싸고 있는 토로이드 연소실이 특징이며, 기존의 벨 노즐을 대체하여 다양한 고도에서 효율성을 향상시킵니다. 에어로 스파이크 엔진의 컴팩트한 디자인과 대기권과 진공 환경에서의 성능은 로켓 추진 기술의 큰 도약을 의미합니다.
목차
제1장 주요 요약
제2장 시장 특징
제3장 시장 동향과 전략
제4장 시장 : 금리, 인플레이션, 지정학, 무역 전쟁과 관세, 그리고 코로나와 회복이 시장에 미치는 영향을 포함한 거시경제 시나리오
제5장 세계의 성장 분석과 전략 분석 프레임워크
세계의 진공 최적화 로켓 엔진 : PESTEL 분석(정치, 사회, 기술, 환경, 법적 요인, 촉진요인과 억제요인)
최종 이용 산업 분석
세계의 진공 최적화 로켓 엔진 시장 : 성장률 분석
세계의 진공 최적화 로켓 엔진 시장 실적 : 규모와 성장, 2019-2024
세계의 진공 최적화 로켓 엔진 시장 예측 : 규모와 성장, 2024-2029, 2034F
세계의 진공 최적화 로켓 엔진 : 총 잠재 시장 규모(TAM)
제6장 시장 세분화
세계의 진공 최적화 로켓 엔진 시장 : 유형별, 실적과 예측, 2019-2024, 2024-2029F, 2034F
극저온
하이퍼골릭
고체
액체
하이브리드
세계의 진공 최적화 로켓 엔진 시장 : 구성요소별, 실적과 예측, 2019-2024, 2024-2029F, 2034F
노즐
연소실
터보 펌프
기타 구성요소
세계의 진공 최적화 로켓 엔진 시장 : 최종사용자별, 실적과 예측, 2019-2024, 2024-2029F, 2034F
항공우주
방위
우주 탐사
기타 최종사용자
세계의 진공 최적화 로켓 엔진 시장 : 하위 세분화 극저온(유형별), 실적과 예측, 2019-2024, 2024-2029F, 2034F
액체 산소(LOX) 및 액체 수소(LH2) 엔진
액체 산소(LOX) 및 액체 메탄(LCH4) 엔진
액체 산소(LOX)와 액화천연가스 엔진
액체 불소와 수소 엔진
세계의 진공 최적화 로켓 엔진 시장 : 하위 세분화 하이퍼골릭, 유형별, 실적과 예측, 2019-2024, 2024-2029F, 2034F
비대칭 디메틸히드라진(UDMH) 및 사산화질소(NTO) 엔진
모노메틸히드라진(MMH)과 사산화질소(NTO) 엔진
에어로진 50 및 사산화질소(NTO) 엔진
히드라진 및 억제 적색 발연 질산(IRFNA) 엔진
세계의 진공 최적화 로켓 엔진 시장 : 하위 세분화 고체, 종류별, 실적과 예측, 2019-2024, 2024-2029F, 2034F
단일입자 고체 모터
다중입자 고체 모터
주조 경화 복합 추진제 모터
압출 성형 더블 기반 추진제 모터
세계의 진공 최적화 로켓 엔진 시장 : 하위 세분화 액체, 종류별, 실적과 예측, 2019-2024, 2024-2029F, 2034F
압력 공급 액체 엔진
펌프 공급 액체 엔진
단계 연소 주기 엔진
가스 제너레이터 주기 엔진
익스팬더 사이클 엔진
세계의 진공 최적화 로켓 엔진 시장 : 하위 세분화 하이브리드, 유형별, 실적과 예측, 2019-2024, 2024-2029F, 2034F
하이드록실 말단 폴리부타디엔(HTPB) 및 액체 산소(LOX) 엔진
HTPB와 아산화질소 엔진
파라핀 기반 및 액체 산소(LOX) 엔진
아크릴로니트릴 부타디엔 스티렌(ABS)과 아산화질소 엔진
제7장 지역별·국가별 분석
세계의 진공 최적화 로켓 엔진 시장 : 지역별, 실적과 예측, 2019-2024, 2024-2029F, 2034F
세계의 진공 최적화 로켓 엔진 시장 : 국가별, 실적과 예측, 2019-2024, 2024-2029F, 2034F
제8장 아시아태평양 시장
제9장 중국 시장
제10장 인도 시장
제11장 일본 시장
제12장 호주 시장
제13장 인도네시아 시장
제14장 한국 시장
제15장 서유럽 시장
제16장 영국 시장
제17장 독일 시장
제18장 프랑스 시장
제19장 이탈리아 시장
제20장 스페인 시장
제21장 동유럽 시장
제22장 러시아 시장
제23장 북미 시장
제24장 미국 시장
제25장 캐나다 시장
제26장 남미 시장
제27장 브라질 시장
제28장 중동 시장
제29장 아프리카 시장
제30장 경쟁 구도와 기업 개요
진공 최적화 로켓 엔진 시장 : 경쟁 구도
진공 최적화 로켓 엔진 시장 : 기업 개요
Space Exploration Technologies Corp Overview, Products and Services, Strategy and Financial Analysis
Blue Origin Enterprises LP Overview, Products and Services, Strategy and Financial Analysis
Relativity Space Inc. Overview, Products and Services, Strategy and Financial Analysis
ispace Inc. Overview, Products and Services, Strategy and Financial Analysis
Rocket Lab USA Inc. Overview, Products and Services, Strategy and Financial Analysis
제31장 기타 주요 기업과 혁신적 기업
Firefly Aerospace Inc.
AgniKul Cosmos Private Limited
Ursa Major Technologies Inc.
Rocket Factory Augsburg AG
Stoke Space Technologies Inc.
Isar Aerospace Technologies GmbH
Dawn Aerospace BV
Phase Four Inc.
ABL Space Systems Inc.
Astra Space Inc.
Payload Aerospace SL
Skyrora Limited
Skyroot Aerospace Private Limited
Bellatrix Aerospace Private Limited
LandSpace Technology Corporation Ltd
제32장 세계의 시장 경쟁 벤치마킹과 대시보드
제33장 주요 인수합병
제34장 최근의 시장 동향
제35장 시장 잠재력이 높은 국가, 부문, 전략
진공 최적화 로켓 엔진 시장 2029 : 새로운 기회를 제공하는 국가
진공 최적화 로켓 엔진 시장 2029 : 새로운 기회를 제공하는 부문
진공 최적화 로켓 엔진 시장 2029 : 성장 전략
시장 동향에 기반한 전략
경쟁 전략
제36장 부록
KSM
영문 목차
영문목차
A vacuum-optimized rocket engine is a type of rocket engine engineered specifically to operate in the vacuum of space, where atmospheric pressure is minimal or nonexistent. These engines typically have larger nozzles that enable exhaust gases to expand more efficiently, providing increased thrust and better fuel efficiency compared to engines designed for sea-level operation. They are commonly utilized in the upper stages of rockets during space missions.
The main categories of vacuum-optimized rocket engines include cryogenic, hypergolic, solid, liquid, and hybrid types. Cryogenic vacuum-optimized engines use super-cooled liquid propellants, such as liquid oxygen and liquid hydrogen, to achieve high performance and efficiency in space. These engines consist of various components like the nozzle, combustion chamber, turbopump, and others. They serve a range of end users, including aerospace companies, defense sectors, space exploration organizations, and more.
Note that the outlook for this market is being affected by rapid changes in trade relations and tariffs globally. The report will be updated prior to delivery to reflect the latest status, including revised forecasts and quantified impact analysis. The report's Recommendations and Conclusions sections will be updated to give strategies for entities dealing with the fast-moving international environment.
The sharp hike in U.S. tariffs and the associated trade disputes in spring 2025 are notably impacting the aerospace and defense sector by raising costs for titanium, carbon fiber composites, and avionics materials largely sourced from global suppliers. Defense contractors, locked into fixed-price government contracts, absorb these added costs, while commercial aerospace firms face airline pushback on higher aircraft prices. Delays in component shipments due to customs bottlenecks further disrupt tight production schedules for jets and satellites. The industry is responding by stockpiling critical materials, seeking waivers for defense-related imports, and collaborating with allied nations to diversify supply chain.
The vacuum-optimized rocket engines market research report is one of a series of new reports from The Business Research Company that provides vacuum-optimized rocket engines market statistics, including vacuum-optimized rocket engines industry global market size, regional shares, competitors with a vacuum-optimized rocket engines market share, detailed vacuum-optimized rocket engines market segments, market trends and opportunities, and any further data you may need to thrive in the vacuum-optimized rocket engines industry. This vacuum-optimized rocket engines market research report delivers a complete perspective of everything you need, with an in-depth analysis of the current and future scenario of the industry.
The vacuum-optimized rocket engines market size has grown rapidly in recent years. It will grow from $5.46 billion in 2024 to $6.04 billion in 2025 at a compound annual growth rate (CAGR) of 10.7%. The growth during the historic period can be linked to increasing demand for efficient in-space propulsion, a rise in satellite deployments, progress in engine design and materials, growing investments in reusable launch systems, and the expansion of commercial space missions.
The vacuum-optimized rocket engines market size is expected to see rapid growth in the next few years. It will grow to $8.97 billion in 2029 at a compound annual growth rate (CAGR) of 10.4%. The growth during the forecast period can be attributed to rising demand for high-efficiency in-space propulsion, increased use of vacuum-optimized engines in commercial and defense space missions, advancements in additive manufacturing and nozzle design, a surge in satellite launches, and strong support from government and private space initiatives driving the adoption of vacuum-optimized rocket engines. Key trends anticipated in this period include the deployment of vacuum-optimized engines for enhanced performance in space environments, their application in upper-stage and deep space missions to deliver high-efficiency thrust, use in reusable launch systems to lower mission costs, integration into small satellite and orbital transfer vehicles for precise maneuvering, advanced nozzle and material designs that reduce thermal and structural losses, and potential combinations with next-generation propulsion technologies to improve mission flexibility and endurance.
The increasing number of commercial space activities is expected to drive the growth of the vacuum-optimized rocket engines market in the coming years. Commercial space activities involve private sector operations in space, including satellite launches, space tourism, and in-orbit services. The rise in these activities is mainly due to the growing demand for satellite-based internet and communication services that facilitate global connectivity, support remote regions, and promote advancements in technologies such as 5G, the Internet of Things (IoT), and real-time data transmission. Vacuum-optimized rocket engines enhance efficiency and thrust in the vacuum of space, allowing for longer missions, larger payload capacities, and better overall performance in commercial space operations. For example, in January 2024, The Space Foundation, a US non-profit organization, reported that global launch activity reached record highs for the third year in a row, with 223 launch attempts and 212 successful completions in 2023. Additionally, commercial launches increased by 50% compared to 2022. Hence, the rise in commercial space activities is propelling growth in the vacuum-optimized rocket engines market.
Key players in the vacuum-optimized rocket engines market are focusing on developing advanced technologies like autonomous next-generation computational design models to speed up the creation of highly complex propulsion systems. These models use artificial intelligence to autonomously design intricate engine geometries, drastically cutting design times while optimizing performance for different pressure conditions. For instance, in December 2024, LEAP 71, a UAE computational engineering firm, developed a hot-fired 5,000-Newton Aerospike rocket engine designed autonomously by a next-generation computational model. Manufactured in just weeks, this engine was 3D printed as a single copper piece and ignited successfully on its first attempt. It features a toroidal combustion chamber surrounding a central spike, replacing the conventional bell nozzle to improve efficiency at various altitudes. The compact design and performance of this aerospike engine in both atmospheric and vacuum environments represent a major leap in rocket propulsion technology.
In May 2022, Phantom Space Corporation, a US-based space applications company, partnered with Ursa Major to purchase over 200 rocket engines for its Daytona and Laguna launch vehicles. The order includes Hadley engines providing 5,000 pounds of thrust and Ripley engines with 50,000 pounds of thrust, offered in different configurations such as ground test and upper-stage vacuum-optimized variants. This collaboration aims to improve the performance and flexibility of Phantom Space's launch vehicles across a variety of mission types. Ursa Major, also based in the US, specializes in manufacturing rocket propulsion systems, including vacuum-optimized rocket engines.
Major players in the vacuum-optimized rocket engines market are Space Exploration Technologies Corp, Blue Origin Enterprises LP, Relativity Space Inc., ispace Inc., Rocket Lab USA Inc., Firefly Aerospace Inc., AgniKul Cosmos Private Limited, Ursa Major Technologies Inc., Rocket Factory Augsburg AG, Stoke Space Technologies Inc., Isar Aerospace Technologies GmbH, Dawn Aerospace BV, Phase Four Inc., ABL Space Systems Inc., Astra Space Inc., Payload Aerospace SL, Skyrora Limited, Skyroot Aerospace Private Limited, Bellatrix Aerospace Private Limited, LandSpace Technology Corporation Ltd, and ExPace Technology Co Ltd.
North America was the largest region in the vacuum-optimized rocket engine market in 2024. The regions covered in vacuum-optimized rocket engines report are Asia-Pacific, Western Europe, Eastern Europe, North America, South America, Middle East and Africa.
The countries covered in the vacuum-optimized rocket engines market report are Australia, Brazil, China, France, Germany, India, Indonesia, Japan, Russia, South Korea, UK, USA, Canada, Italy, Spain.
The vacuum-optimized rocket engines market consists of sales of complete propulsion units, upper-stage engine systems, and thrust chambers. Values in this market are 'factory gate' values, that is, the value of goods sold by the manufacturers or creators of the goods, whether to other entities (including downstream manufacturers, wholesalers, distributors, and retailers) or directly to end customers. The value of goods in this market includes related services sold by the creators of the goods.
The market value is defined as the revenues that enterprises gain from the sale of goods and/or services within the specified market and geography through sales, grants, or donations in terms of the currency (in USD, unless otherwise specified).
The revenues for a specified geography are consumption values and are revenues generated by organizations in the specified geography within the market, irrespective of where they are produced. It does not include revenues from resales along the supply chain, either further along the supply chain or as part of other products.
Vacuum-Optimized Rocket Engines Global Market Report 2025 from The Business Research Company provides strategists, marketers and senior management with the critical information they need to assess the market.
This report focuses on vacuum-optimized rocket engines market which is experiencing strong growth. The report gives a guide to the trends which will be shaping the market over the next ten years and beyond.
Reasons to Purchase
Gain a truly global perspective with the most comprehensive report available on this market covering 15 geographies.
Assess the impact of key macro factors such as geopolitical conflicts, trade policies and tariffs, post-pandemic supply chain realignment, inflation and interest rate fluctuations, and evolving regulatory landscapes.
Create regional and country strategies on the basis of local data and analysis.
Identify growth segments for investment.
Outperform competitors using forecast data and the drivers and trends shaping the market.
Understand customers based on the latest market shares.
Benchmark performance against key competitors.
Suitable for supporting your internal and external presentations with reliable high quality data and analysis
Report will be updated with the latest data and delivered to you within 2-3 working days of order along with an Excel data sheet for easy data extraction and analysis.
All data from the report will also be delivered in an excel dashboard format.
Where is the largest and fastest growing market for vacuum-optimized rocket engines ? How does the market relate to the overall economy, demography and other similar markets? What forces will shape the market going forward, including technological disruption, regulatory shifts, and changing consumer preferences? The vacuum-optimized rocket engines market global report from the Business Research Company answers all these questions and many more.
The report covers market characteristics, size and growth, segmentation, regional and country breakdowns, competitive landscape, market shares, trends and strategies for this market. It traces the market's historic and forecast market growth by geography.
The market characteristics section of the report defines and explains the market.
The market size section gives the market size ($b) covering both the historic growth of the market, and forecasting its development.
The forecasts are made after considering the major factors currently impacting the market. These include:
The forecasts are made after considering the major factors currently impacting the market. These include the technological advancements such as AI and automation, Russia-Ukraine war, trade tariffs (government-imposed import/export duties), elevated inflation and interest rates.
Market segmentations break down the market into sub markets.
The regional and country breakdowns section gives an analysis of the market in each geography and the size of the market by geography and compares their historic and forecast growth.
The competitive landscape chapter gives a description of the competitive nature of the market, market shares, and a description of the leading companies. Key financial deals which have shaped the market in recent years are identified.
The trends and strategies section analyses the shape of the market as it emerges from the crisis and suggests how companies can grow as the market recovers.
Scope
Markets Covered:1) By Type: Cryogenic; Hypergolic; Solid; Liquid; Hybrid
2) By Component: Nozzle; Combustion Chamber; Turbopump; Other Components
3) By End User: Aerospace; Defense; Space Exploration; Other End Users
Subsegments:
1) By Cryogenic: Liquid Oxygen (LOX) And Liquid Hydrogen (LH2) Engines; Liquid Oxygen (LOX) And Liquid Methane (LCH4) Engines; Liquid Oxygen (LOX) And Liquid Natural Gas Engines; Liquid Fluorine And Hydrogen Engines
2) By Hypergolic: Unsymmetrical Dimethylhydrazine (UDMH) And Nitrogen Tetroxide (NTO) Engines; Monomethylhydrazine (MMH) And Nitrogen Tetroxide (NTO) Engines; Aerozine 50 And Nitrogen Tetroxide (NTO) Engines; Hydrazine And Inhibited Red Fuming Nitric Acid (IRFNA) Engines
3. Vacuum-Optimized Rocket Engines Market Trends And Strategies
4. Vacuum-Optimized Rocket Engines Market - Macro Economic Scenario Including The Impact Of Interest Rates, Inflation, Geopolitics, Trade Wars and Tariffs, And Covid And Recovery On The Market
4.1. Supply Chain Impact from Tariff War & Trade Protectionism
5. Global Vacuum-Optimized Rocket Engines Growth Analysis And Strategic Analysis Framework
5.1. Global Vacuum-Optimized Rocket Engines PESTEL Analysis (Political, Social, Technological, Environmental and Legal Factors, Drivers and Restraints)
5.2. Analysis Of End Use Industries
5.3. Global Vacuum-Optimized Rocket Engines Market Growth Rate Analysis
5.4. Global Vacuum-Optimized Rocket Engines Historic Market Size and Growth, 2019 - 2024, Value ($ Billion)
5.5. Global Vacuum-Optimized Rocket Engines Forecast Market Size and Growth, 2024 - 2029, 2034F, Value ($ Billion)
5.6. Global Vacuum-Optimized Rocket Engines Total Addressable Market (TAM)
6.1. Global Vacuum-Optimized Rocket Engines Market, Segmentation By Type, Historic and Forecast, 2019-2024, 2024-2029F, 2034F, $ Billion
Cryogenic
Hypergolic
Solid
Liquid
Hybrid
6.2. Global Vacuum-Optimized Rocket Engines Market, Segmentation By Component, Historic and Forecast, 2019-2024, 2024-2029F, 2034F, $ Billion
Nozzle
Combustion Chamber
Turbopump
Other Components
6.3. Global Vacuum-Optimized Rocket Engines Market, Segmentation By End User, Historic and Forecast, 2019-2024, 2024-2029F, 2034F, $ Billion
Aerospace
Defense
Space Exploration
Other End Users
6.4. Global Vacuum-Optimized Rocket Engines Market, Sub-Segmentation Of Cryogenic, By Type, Historic and Forecast, 2019-2024, 2024-2029F, 2034F, $ Billion
Liquid Oxygen (LOX) And Liquid Hydrogen (LH2) Engines
Liquid Oxygen (LOX) And Liquid Methane (LCH4) Engines
Liquid Oxygen (LOX) And Liquid Natural Gas Engines
Liquid Fluorine And Hydrogen Engines
6.5. Global Vacuum-Optimized Rocket Engines Market, Sub-Segmentation Of Hypergolic, By Type, Historic and Forecast, 2019-2024, 2024-2029F, 2034F, $ Billion
Unsymmetrical Dimethylhydrazine (UDMH) And Nitrogen Tetroxide (NTO) Engines
Monomethylhydrazine (MMH) And Nitrogen Tetroxide (NTO) Engines
Aerozine 50 And Nitrogen Tetroxide (NTO) Engines
Hydrazine And Inhibited Red Fuming Nitric Acid (IRFNA) Engines
6.6. Global Vacuum-Optimized Rocket Engines Market, Sub-Segmentation Of Solid, By Type, Historic and Forecast, 2019-2024, 2024-2029F, 2034F, $ Billion
Single-Grain Solid Motors
Multi-Grain Solid Motors
Cast-Cured Composite Propellant Motors
Extruded Double-Base Propellant Motors
6.7. Global Vacuum-Optimized Rocket Engines Market, Sub-Segmentation Of Liquid, By Type, Historic and Forecast, 2019-2024, 2024-2029F, 2034F, $ Billion
Pressure-Fed Liquid Engines
Pump-Fed Liquid Engines
Staged Combustion Cycle Engines
Gas Generator Cycle Engines
ExpAnder Cycle Engines
6.8. Global Vacuum-Optimized Rocket Engines Market, Sub-Segmentation Of Hybrid, By Type, Historic and Forecast, 2019-2024, 2024-2029F, 2034F, $ Billion
Hydroxyl-Terminated Polybutadiene (HTPB) And Liquid Oxygen (LOX) Engines
HTPB And Nitrous Oxide Engines
Paraffin-Based And Liquid Oxygen (LOX) Engines
Acrylonitrile Butadiene Styrene (ABS) And Nitrous Oxide Engines
7. Vacuum-Optimized Rocket Engines Market Regional And Country Analysis
7.1. Global Vacuum-Optimized Rocket Engines Market, Split By Region, Historic and Forecast, 2019-2024, 2024-2029F, 2034F, $ Billion
7.2. Global Vacuum-Optimized Rocket Engines Market, Split By Country, Historic and Forecast, 2019-2024, 2024-2029F, 2034F, $ Billion