<2024> ¹ÙÀÌÆú¶óÀüÁö ±â¼ú°³¹ß ÇöȲ ¹× ÇâÈÄ Àü¸Á
<2024> Current Status and Future Outlook of Bipolar Battery Technology Development
»óǰÄÚµå : 1458501
¸®¼­Ä¡»ç : SNE Research
¹ßÇàÀÏ : 2024³â 03¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® ¶Ç´Â ±¹¹® - 205 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
£Ü 6,500,000 £Ü 6,500,000
PDF (Corporate License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

ÁýÀüüÀÇ ¾ç¸é¿¡ °°Àº Àü±ØÀ¸·Î ±¸¼ºµÇ´Â ¸ð³ëÆú¶ó Àü±ØÀ¸·Î ÀÌ·ç¾îÁø ½Ì±Û ¼¿·Î ´ëÇ¥µÇ´Â 2Â÷ÀüÁö´Â ¸ðµç Àü±ØÀÌ °°Àº ÀüÇØÁú¿¡ ´ã°¡Á® ÀÖ°í, °¢ Àü±ØÀº ¿ÜºÎ ¿¬°á¼±À» »ç¿ëÇÏ¿© º´·Ä·Î ¿¬°áµÇ¾î ¸¹Àº ºñȰ¼º ¹°ÁúÀÌ ¹èÅ͸® ½Ã½ºÅÛ¿¡ ÅëÇÕµÇ¾î °á°úÀûÀ¸·Î ºÎÇÇ¿¡³ÊÁö¹Ðµµ´Â ¾à 40%, Áß·®¿¡³ÊÁö¹Ðµµ´Â ¾à 20%ÀÇ ¼Õ½ÇÀÌ ÃßÁ¤µË´Ï´Ù.

¹ÙÀÌÆú¶ó ¹èÅ͸®´Â Àü±â Ä¿³ØÅÍ ¹× ±âŸ ¾×¼¼¼­¸®¸¦ »ç¿ëÇÏÁö ¾Ê¾Æ ¼¿ ±¸¼º°ú ¸ð¾çÀÌ ½ÉÇÃÇϸç, ¹èÅ͸® ºÎÇÇ´Â Àüü ´ÜÀ§¼¿ÀÇ ÀûÃþ µÎ²²¿Í ´ÜÀ§¼¿ÀÇ ±âÆÇ ¸éÀûÀÇ °ö¿¡ °¡±õ°í, ¹èÅ͸® ¹«°Ô´Â ¸ðµç ±¸¼º ¿ä¼ÒÀÇ Áú·® ÇÕ°è¿¡ °¡±õ½À´Ï´Ù. ¹ÙÀÌÆú¶ó ¹èÅ͸®ÀÇ ¿ë·®Àº ´ÜÀÏ ´ÜÀ§¼¿ÀÇ ¿ë·®°ú µ¿ÀÏÇÏÁö¸¸, ¹ÙÀÌÆú¶ó ¹èÅ͸®ÀÇ Ãâ·ÂÀü¾ÐÀº Á÷·Ä·Î ¿¬°áµÈ ´ÜÀ§¼¿ÀÇ ¼ö¿Í °¢ ¼¿ÀÇ Àü¾ÐÀÇ °ö¿¡ ÀÇÇØ °áÁ¤µË´Ï´Ù.

¹ÙÀÌÆú¶ó Àü±ØÀ» »ç¿ëÇÏ´Â ¹èÅ͸®´Â ºÎÇÇ/Áß·® ¿¡³ÊÁö¹Ðµµµµ Å©°Ô Áõ°¡ÇÕ´Ï´Ù. ¶ÇÇÑ ¾ÖÇø®ÄÉÀÌ¼Ç Á᫐ ¼³°è¸¦ ±â¹ÝÀ¸·Î ¹èÅ͸® ¸ð¾çÀ» ½±°Ô Á¶Á¤ÇÒ ¼ö ÀÖ¾î ´ë»ó ÀåÄ¡ÀÇ ¹èÅ͸® ÀúÀå °ø°£ Ȱ¿ëµµ°¡ ±Ø´ëÈ­µË´Ï´Ù. Áï, ¹èÅ͸® ºÎÇǰ¡ °¨¼ÒµÇ¸ç, BMS¸¦ ÃÖ¼ÒÈ­ÇÒ ¼ö À־, ¼¿ ¿ÜÀåÀç »ç¿ë ÃÖ¼ÒÈ­·Î ¿¡³ÊÁö¹Ðµµ Çâ»ó°ú ´Ü°¡ Àý¾àÀ» µ¿½Ã¿¡ Ãß±¸ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ´Â °ð ÇÑÁ¤µÈ Àü±âÂ÷ ¹èÅ͸® žÀç °ø°£¿¡ ´õ ¸¹Àº ¹èÅ͸®¸¦ žÀçÇÒ ¼ö ÀÖ°Ô µÅ ÁÖÇà°Å¸® Áõ°¡·Î À̾îÁú ¼ö ÀÖÀ» °ÍÀ¸·Î ±â´ëÇÒ ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼­ ¹ÙÀÌÆú¶ó Àü±ØÀÇ ÀÌ·¯ÇÑ ÀåÁ¡Àº ¸ð¹ÙÀÏ ÀüÀÚ Á¦Ç° ¹× Àü±â ÀÚµ¿Â÷¿¡ »ç¿ëµÇ´Â 2Â÷ ÀüÁö ¼³°è¿¡ ¸Å¿ì ¸Å·ÂÀûÀÔ´Ï´Ù.

¹ÙÀÌÆú¶ó Àü±ØÀÇ ¶Ç ´Ù¸¥ ÀåÁ¡Àº ÀüÀÚ È帧ÀÌ ±âÆÇ¿¡ ¼öÁ÷ÀûÀ¸·Î ÀÌ·ç¾îÁö¸ç, ±âÆÇÀÇ ´Ü¸éÀûÀÌ Å©¸é Àü·ù ¹Ðµµ¿Í ºÐÆ÷°¡ Å©°Ô Çâ»óµË´Ï´Ù. µû¶ó¼­ ¹ÙÀÌÆú¶ó Àü±ØÀ» »ç¿ëÇϸé ÀÛµ¿ ¼Óµµ°¡ ºü¸¥ 2Â÷ ÀüÁö´Â ¾ÈÀü ¹®Á¦¾øÀÌ ÀÛµ¿ÇÒ ¼ö ÀÖ½À´Ï´Ù.

¹ÙÀÌÆú¶ó Àü±ØÀ» Àû¿ëÇÑ FurukawaÀü±âÀÇ ³³ÃàÀüÁö¸¦ ½ÃÀÛÀ¸·Î ÃÖ±Ù¿¡ TOYOTA¿¡¼­ ¹ÙÀÌÆú¶ó Ni-MHÀüÁö¸¦ »ó¿ëÈ­ÇÏ¿© Aqua HEV¿¡ Àû¿ëÇÏ¿´À¸¸ç, ¡®23³â 6¿ù ¹ßÇ¥¿¡¼­´Â Volume±Þ EV¿¡ ¹ÙÀÌÆú¶ó LFP¸¦ ¡®26-¡¯27³â¿¡ »ý»êÇϰí, ¹Ì·¡¹öÀüÀÇ EV¿¡´Â ¹ÙÀÌÆú¶ó Ni°è LiB¸¦ ¡®27-¡¯28³â¿¡ »ý»êÇÏ¿© ¼º´É¹öÀüÀÇ LiB¿Í ºñ±³ÇÏ¿© ÁÖÇà°Å¸®¿Í ÄÚ½ºÆ®¸¦ Çâ»ó½ÃŲ´Ù´Â ·Îµå¸ÊÀ» ¹ßÇ¥ÇÑ ¹Ù ÀÖ½À´Ï´Ù.

ÃÖ±Ù Ãâ½ÃµÈ TOYOTA Å©¶ó¿î Å©·Î½º¿À¹ö¿Í ·º¼­½º(Lexus RX)¿¡´Â ±âÁ¸ÀÇ Ni-MH¸¦ °³·®ÇÑ ¹ÙÀÌÆú¶ó Ni-MH°¡ ÀåÂøµÇ¾ú´Âµ¥, °í±Þ ¸ðµ¨, °í¿¬ºñ Á᫐ ¸ðµ¨¿¡´Â LIB¸¦ Àû¿ëÇØ ¿Ô´ø °Í°ú ¹Ý´ëµÇ´Â Çຸ·Î Á¡Â÷ ¶óÀξ÷ Àü¹Ý¿¡ Ni-MH¹èÅ͸®¸¦ È®´ë žÀçÇϰڴٴ ÀÇ¹Ì·Î ÇØ¼®µË´Ï´Ù. º» º¸°í¼­¿¡¼­´Â ÀÌÁ¦ ¸· Àû¿ëÀÌ ½ÃÀÛµÈ ¹ÙÀÌÆú¶óÀü±Ø °³¹ßÀÇ ¿ª»ç¿Í Áö±Ý±îÁöÀÇ ¿¬±¸°³¹ßÇöȲ µîÀ» ¼ö·ÏÇÏ¿´°í, °¢ °³¹ßÀÇ ³»¿ëÀ» Á» ´õ ÀÚ¼¼ÇÏ°Ô ´Ù·ç¾î ÀüüÀûÀÎ ÇöȲÀ» ½±°Ô ÆÄ¾ÇÇÒ ¼ö ÀÖµµ·Ï ±¸¼ºÇÏ¿´½À´Ï´Ù.

º» º¸°í¼­ÀÇ Strong Point´Â ´ÙÀ½°ú °°½À´Ï´Ù.

¸ñ Â÷

1. ÀÌÂ÷ÀüÁö¿ë ¹ÙÀÌÆú¶ó(Bipolar)Àü±Ø

2. ¹ÙÀÌÆú¶ó Àü°íüÀüÁö: ¼³°è, Á¦ÀÛ ¹× Àü±âÈ­ÇÐ

3. ¹ÙÀÌÆú¶ó Àü°íüÀüÁö: ¿¡³ÊÁö¹Ðµµ ¼³°è Toolkit

4. ¹ÙÀÌÆú¶ó Àü°íüÀüÁö: Áذíü ÀüÇØÁú ±â¹Ý

5. ¹ÙÀÌÆú¶ó Àü°íüÀüÁö: Ȳȭ¹°°è ÀüÇØÁú ±â¹Ý

6. ¹ÙÀÌÆú¶ó Àü°íüÀüÁö: Multistage printing Á¦Á¶ ±â¹Ý

7. ¹ÙÀÌÆú¶ó Àü°íüÀüÁö: FeOx-LFBO À½±Ø Àû¿ë

8. ¹ÙÀÌÆú¶ó LFP/LTO ÀüÁö: Micro/Mild Hybrid¿ë LIB

9. ¹ÙÀÌÆú¶ó Ni-MH ¹èÅ͸®

10. ¹ÙÀÌÆú¶ó °íÀü¾Ð Na-ionÀüÁö

11. ¹ÙÀÌÆú¶ó Àü¼öÁö ÀüÁö(All polymer battery)

12. ¹ÙÀÌÆú¶ó ³³ÃàÀüÁö(Furukawaï³Íï)

13. ¹ÙÀÌÆú¶ó ¸®Æ¬ÀüÁö(Fraunhofer IKTS)

14. ¹ÙÀÌÆú¶ó Ni-MH ÀüÁö(TOYOTA)

15. ¹ÙÀÌÆú¶ó ÀüÁö ƯÇã

¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

A single-cell secondary battery consisted of monopolar electrodes, where both sides of the current collector are composed of the same electrode material, has all electrodes immersed in the same electrolyte. Since each electrode is connected in parallel using external connecting wires, a significant amount of inactive material has been integrated into the battery system. As a result, it is estimated that the volumetric energy density may experience a loss of approximately 40%, and the gravimetric energy density approximately 20%.

The bipolar battery features a simple cell configuration and shape as it does not utilize electrical connectors or other accessories. The volume of the battery is close to the product of the total stack thickness of the individual unit cells and the substrate area of the unit cell, while the weight of the battery is comparable to the total mass of all components. Although the capacity of the bipolar battery is equivalent to that of a single unit cell, the output voltage of the bipolar battery is determined by the number of unit cells connected in series and the voltage of each cell multiplied together.

Using bipolar electrodes in batteries significantly increases both volumetric and gravimetric energy density. Additionally, based on application-centric design, the battery shape can be easily adjusted to maximize the utilization of the battery storage space in the target device. In other words, the battery volume decreases, and by minimizing the BMS, energy density enhancement and cost savings can be simultaneously pursued through minimized use of cell packaging materials. This ultimately translates into the ability to install more batteries in limited electric vehicle battery mounting spaces, potentially leading to increased driving range. Therefore, these advantages of bipolar electrodes are highly attractive for the design of secondary batteries used in mobile electronic devices and electric vehicles.

Another advantage of bipolar electrodes is that electron flow occurs vertically through the substrate, and when the substrate's cross-sectional area is large, current density and distribution are significantly improved. Therefore, using bipolar electrodes allows fast-operating secondary batteries to function safely without any safety issues.

Starting with Furukawa Electric's compact batteries featuring bipolar electrodes, Toyota has recently commercialized bipolar Ni-MH batteries, which were applied to the Aqua HEV. In the announcement at June 2023, Toyota revealed a roadmap stating that they plan to produce bipolar LFP batteries for volume-grade EVs in 2026-2027 and bipolar Ni-based LIBs for future versions of EVs in 2027-2028. This roadmap aims to enhance driving range and reduce costs compared to performance versions of LIBs.

The recently released Toyota Crown Crossover and Lexus RX feature an improved version of the traditional Ni-MH battery, known as the bipolar Ni-MH. This marks a departure from the previous trend of using LIBs, especially in high-end and fuel-efficient models. This shift suggests an intention to gradually expand the use of Ni-MH batteries across the lineup, indicating a strategic change in battery technology adoption.

In this report, we have compiled the history of the development of bipolar electrodes, which have recently begun to be applied, as well as the current status of research and development. We have detailed each development to provide a comprehensive overview, making it easy to understand the overall situation.

The strong points of this report are as follows:



Table of Contents

1. Bipolar Electrodes for Secondary Batteries

2. Bipolar Solid-State Batteries: Design, Fabrication, and Electrochemistry

3. Bipolar Solid-State Batteries: Design of Energy Density

4. Bipolar Solid-State Batteries: Based on Quasi-Solid Electrolytes

5. Bipolar Solid-State Batteries: Based on Sulfide Electrolytes

6. Bipolar Solid-State Batteries: Based on Multistage Printing Manufacturing

7. Bipolar Solid-State Batteries: Application of FeOx-LFBO Anode

8. Bipolar LFP/LTO Batteries: LIBs for Micro/Mild Hybrid

9. Bipolar Ni-MH Batteries

10. Bipolar High-Voltage Na-ion Batteries

11. Bipolar All Polymer Batteries

12. Bipolar Lead-Acid Batteries (Furukawa Electric Co., Ltd.)

13. Bipolar LIBs (Fraunhofer IKTS)

14. Bipolar Ni-MH Batteries (TOYOTA)

15. Bipolar Battery Patents

References

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â