Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ Á¶·ù¡¤ÆÄ·Â ¿¡³ÊÁö ½ÃÀåÀº 2025³â¿¡ 10¾ï ´Þ·¯¸¦ Â÷ÁöÇϸç 2032³â¿¡´Â 22¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ¿¹Ãø ±â°£ Áß CAGRÀº 12.3%·Î ¼ºÀåÇÒ Àü¸ÁÀÔ´Ï´Ù.
Á¶·ù¡¤ÆÄ·Â ¿¡³ÊÁö´Â ÀÚ¿¬ÀÇ ¹°ÀÇ ¿òÁ÷ÀÓ¿¡¼ ÀÌ¿ë °¡´ÉÇÑ Àü·ÂÀ» »ý»êÇϱâ À§ÇØ ¹Ù´ÙÀÇ ¿òÁ÷ÀÓÀ» ÀÌ¿ëÇÏ´Â °ÍÀ» ¸»ÇÕ´Ï´Ù. Á¶·ù ¿¡³ÊÁö´Â ¼öÁß ÅͺóÀ» ÅëÇØ Á¶¼ö ¿îµ¿ÀÇ ¿îµ¿ µ¿·ÂÀ» ÀÌ¿ëÇϰí, ÆÄ·Â ¿¡³ÊÁö´Â Ç¥¸éÆÄÀÇ »ó½Â°ú ÇϰÀ» ±â°èÀû ¶Ç´Â Àü±âÀû Ãâ·ÂÀ¸·Î º¯È¯ÇÕ´Ï´Ù. µÎ °¡Áö Á¢±Ù¹ý ¸ðµÎ ¿¹Ãø °¡´ÉÇϰí Àç»ýÇÑ ÇØ¾çÀÇ Èû¿¡ ÀÇÁ¸ÇÏ¿© ÀϰüµÇ°í Áö¼Ó°¡´ÉÇÑ ¿¡³ÊÁö »ý»ê ¹æ½ÄÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¹æ¹ýÀº ÇØ¾ç ȯ°æÀÇ ÀÚ¿¬Àû ¸®µëÀ» Áß½ÃÇϰí Àå±âÀûÀÎ ÇØ°áÃ¥À» Á¦°øÇÕ´Ï´Ù.
¿À¼Ç¿¡³ÊÁö½Ã½ºÅÛÁî¿¡ µû¸£¸é ÀÌ ½ÃÀåÀº ÇØ·ù¿Í ÆÄµµÀÇ ¿¹Ãø °¡´ÉÇÑ ¿îµ¿ ¿¡³ÊÁö¸¦ ÀÌ¿ëÇÏ¿© ½Å·ÚÇÒ ¼ö ÀÖ´Â Àç»ý¿¡³ÊÁö¸¦ »ý»êÇÕ´Ï´Ù.
Àç»ý¿¡³ÊÁö·ÎÀÇ ÀüȯÀÌ ÁøÇà Áß
¼¼°è ¿¡³ÊÁö ºÎ¹®Àº Áö¼Ó°¡´ÉÇÑ Àü·ÂÀ¸·Î °áÁ¤ÀûÀÎ Àüȯ±â¸¦ ¸ÂÀÌÇϰí ÀÖÀ¸¸ç, ȼ®¿¬·á¸¦ ´ëüÇÒ ¼ö ÀÖ´Â ½Å·ÚÇÒ ¼ö ÀÖ´Â ¿¡³ÊÁö·Î Á¶·ù ¿¡³ÊÁö¿Í ÆÄ·Â ¿¡³ÊÁö°¡ ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ź¼Ò¹èÃâ°ú ±âÈÄ º¯È¿¡ ´ëÇÑ ¿ì·Á°¡ Ä¿Áö¸é¼ °¢±¹ Á¤ºÎ´Â Àç»ý¿¡³ÊÁöÀÇ ±¹³» Àü·Â¸Á ÅëÇÕÀ» Àû±Ø Áö¿øÇϰí ÀÖ½À´Ï´Ù. ÀÌ ÀüȯÀº ÇØ¾ç ¹ßÀü ÇÁ·ÎÁ§Æ®ÀÇ »ó¾÷Àû ½ÇÇà °¡´É¼ºÀ» ³ôÀÔ´Ï´Ù. ¶ÇÇÑ ÇØ¾ç ÀÚ¿øÀÇ ¾ÈÁ¤ÀûÀÎ ÀÌ¿ëÀÌ °¡´ÉÇϹǷΠ¾ÈÁ¤ÀûÀÎ ¿¡³ÊÁö »ý»êÀÌ º¸ÀåµÇ¾î »ê¾÷À¸·ÎÀÇ µµÀÔÀÌ ´õ¿í °¡¼Ó鵃 °ÍÀÔ´Ï´Ù. ±× °á°ú, Àç»ý¿¡³ÊÁö·ÎÀÇ ÀüȯÀÌ ½ÃÀå È®´ëÀÇ ÇÙ½É ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù.
³ôÀº ¼³Ä¡ ¹× À¯Áöº¸¼ö ºñ¿ë
À¯¸Á ¼ºÀå¿¡µµ ºÒ±¸Çϰí Á¶·ù ¹× ÆÄ·Â ¿¡³ÊÁö ½ÃÀåÀº ³ôÀº ¼³Ä¡ ¹× Á¤ºñ ºñ¿ëÀ¸·Î ÀÎÇØ »ó´çÇÑ ÀçÁ¤Àû À庮¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ÇØ¾ç °Ç¼³¿¡´Â Ư¼ö Àåºñ, ÇØÀú ÄÉÀ̺í, ºÎ½Ä ¹æÁö ÀÎÇÁ¶ó°¡ ÇÊ¿äÇϸç, ÀÌ ¸ðµç °ÍÀÌ Ãʱâ ÀÚº» ÁöÃâÀ» Áõ°¡½Ãŵ´Ï´Ù. ¶ÇÇÑ °¡È¤ÇÑ ÇØ¾ç Á¶°Ç¿¡¼ÀÇ À¯Áöº¸¼ö´Â º¹ÀâÇÑ ÀÛ¾÷°ú ¸·´ëÇÑ ´Ù¿îŸÀÓÀ» ¼ö¹ÝÇÏ¿© ¼öÀͼºÀ» Á¦ÇÑÇÕ´Ï´Ù. ¼Ò±Ô¸ð °³¹ßÀÚµéÀº ÀÚ±Ý Á¶´Þ¿¡ ¾î·Á¿òÀ» °ÞÀ¸¸ç ´ë±Ô¸ð »ó¿ëȸ¦ ´ÊÃß°í ÀÖ½À´Ï´Ù. ±× °á°ú, ³ôÀº ºñ¿ë ºÎ´ãÀÌ ÁÖ¿ä °É¸²µ¹·Î ÀÛ¿ëÇÏ¿© ÀÌ ºÐ¾ß¿¡¼ÀÇ ±¤¹üÀ§ÇÑ Àü°³°¡ Á¦ÇÑµÇ°í °æÀï·Â È®´ë°¡ ´Ê¾îÁö°í ÀÖ½À´Ï´Ù.
ÇØ¾ç ¿¡³ÊÁö ±â¼úÀÇ ¹ßÀü
±â¼ú Çõ½ÅÀ¸·Î Á¶·ù ¹× ÆÄ·Â ¿¡³ÊÁö °³¹ßÀÇ »õ·Î¿î ±æÀÌ ¿¸®°í ÀÖ½À´Ï´Ù. Åͺó È¿À² Çâ»ó, ÷´Ü ¼ÒÀç, ¿¹Áöº¸Àü ½Ã½ºÅÛÀ¸·Î ½Å·Ú¼ºÀÌ Çâ»óµÇ°í ¿î¿µºñ¿ëÀÌ Àý°¨µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ µðÁöÅÐ ¸ð´ÏÅ͸µ ¼Ö·ç¼Ç°ú AI ±â¹Ý ¼º´É ÃÖÀûȸ¦ ÅëÇØ ½Ç½Ã°£ Á¶Á¤ÀÌ °¡´ÉÇÏ¿© ¿¡³ÊÁö Ãâ·ÂÀ» ±Ø´ëÈÇÒ ¼ö ÀÖ½À´Ï´Ù. °øµ¿ R&D ±¸»óÀº È®À强À» °ËÁõÇÏ´Â ÆÄÀÏ·µ ÇÁ·ÎÁ§Æ®¸¦ ÃßÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº ÅõÀÚÀÚµéÀÇ ½Å·Ú¸¦ ³ôÀÌ°í ´õ ¸¹Àº ÀÚº»À» ÀÌ ºÐ¾ß·Î ²ø¾îµéÀ̰í ÀÖ½À´Ï´Ù. µû¶ó¼ Áö¼ÓÀûÀÎ ±â¼ú ¹ßÀüÀº »ó¾÷Àû µµÀÔ°ú ¼¼°è ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ ¼ö ÀÖ´Â Å« ±âȸ°¡ µÉ °ÍÀÔ´Ï´Ù.
ȯ°æ-»ýÅÂ°è ÆÄ±« À§Çè
ÇØ¾ç ¿¡³ÊÁö ÇÁ·ÎÁ§Æ®´Â Àç»ýÇÏÁö¸¸ ¼¶¼¼ÇÑ »ýŰ迡 À§ÇèÀ» ÃÊ·¡Çϰí ȯ°æ¿¡ ´ëÇÑ ¿ì·Á¸¦ ºÒ·¯ÀÏÀ¸Åµ´Ï´Ù. ÅÍºó ¼³Ä¡´Â ¾î·ù ȸÀ¯, Àú¼»ý¹° ¼½ÄÁö, ÇØ¾ç »ý¹° ´Ù¾ç¼º¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¼öÁß ¼ÒÀ½°ú ÀüÀÚ±âÀåÀº ¼ö»ý»ý¹°À» ±³¶õ½Ãų ¼ö ÀÖÀ¸¸ç, ±ÔÁ¦°¡ °ÈµÇ°í ÀÖ½À´Ï´Ù. ÀÚ¿¬º¸È£´Üü¿Í Áö¿ª»çȸÀÇ ¹Ý´ë·Î ÀÎÇØ ÇÁ·ÎÁ§Æ® ½ÂÀÎÀÌ Áö¿¬µÇ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ÀÌ·¯ÇÑ »ýŰèÀÇ ºÒÈ®½Ç¼ºÀº °³¹ß»ç¾÷ÀÚ¿¡°Ô dz¹® ¸®½ºÅ©¿Í ÄÄÇöóÀ̾𽺠¸®½ºÅ©¸¦ °¡Á®¿É´Ï´Ù. ±× °á°ú, »ýÅÂ°è ÆÄ±«´Â ¿©ÀüÈ÷ ½É°¢ÇÑ À§ÇùÀÌ µÇ°í ÀÖÀ¸¸ç, ÇÁ·ÎÁ§Æ®ÀÇ È®À强À» ¹æÇØÇϰí ÀÌ ºÎ¹®ÀÇ Àå±âÀûÀÎ Áö¼Ó°¡´É¼º°ú ¼ö¿ë¼ºÀ» ¾î·Æ°Ô ¸¸µé ¼ö ÀÖ½À´Ï´Ù.
Àü¿°º´À¸·Î ÀÎÇØ Á¶·ù ¹× ÆÄ·Â ¿¡³ÊÁö ºÎ¹®Àº ÀϽÃÀûÀ¸·Î È¥¶õ¿¡ ºüÁ³°í, °Ç¼³, °ø±Þ¸Á, ¿¬±¸°³¹ß ±¸»óÀÌ Áö¿¬µÇ¾ú½À´Ï´Ù. ÀÚ±ÝÀº ´çÀåÀÇ °æ±â ȸº¹¿¡ ÅõÀԵǾú°í, ½ÇÇèÀûÀÎ ÇØ¾ç ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ ÀÚ±ÝÀº Á¦ÇѵǾú½À´Ï´Ù. ±×·¯³ª ÀÌ À§±â´Â ¶ÇÇÑ °¢±¹ Á¤ºÎ°¡ Äڷγª ÀÌÈÄ Ä£È¯°æ Á¤Ã¥À» °¡¼ÓÈÇÏ¸é¼ Ã»Á¤¿¡³ÊÁö·ÎÀÇ ÀüȯÀÇ ½Ã±Þ¼ºÀ» ´õ¿í °ÈÇß½À´Ï´Ù. ÀÌó·³ ȸº¹·Â ÀÖ´Â Àç»ý¿¡³ÊÁö¿øÀÌ ´Ù½Ã ÁÖ¸ñ¹Þ°Ô µÇ¸é¼ Á¶·ù¡¤ÆÄ·Â ¿¡³ÊÁö´Â Àü·«Àû ÀÚ»êÀ¸·Î ÀÚ¸®¸Å±èÇÏ°Ô µÇ¾ú½À´Ï´Ù. µû¶ó¼ ´Ü±âÀûÀÎ ÈÄÅð´Â ¹ß»ýÇßÀ¸³ª, Àü¿°º´Àº °á±¹ ½ÃÀåÀÇ Àå±âÀûÀÎ ¼ºÀå Àü¸ÁÀ» °ÈÇß½À´Ï´Ù.
Åͺó ºÎ¹®ÀÌ ¿¹Ãø ±â°£ Áß °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
Åͺó ºÐ¾ß´Â °ËÁõµÈ ½Å·Ú¼º°ú ³ôÀº ¿¡³ÊÁö º¯È¯ È¿À²·Î ÀÎÇØ ¿¹Ãø ±â°£ Áß °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Åͺó ½Ã½ºÅÛÀº ¾ÈÁ¤ÀûÀÎ Á¶·ù¸¦ Æ÷ÂøÇϹǷΠÆÄ·Â ÄÁ¹öÅÍ¿¡ ºñÇØ ¾ÈÁ¤ÀûÀÎ Ãâ·ÂÀ» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¸ðµâ½Ä ¼³°è·Î ´Ù¾çÇÑ Áö¿ªÀ¸·ÎÀÇ È®À强µµ Áö¿øÇÕ´Ï´Ù. Àç·á ¹× ºí·¹ÀÌµå ¼³°èÀÇ Áö¼ÓÀûÀÎ ±â¼ú Çõ½Å¿¡ ÈûÀÔ¾î ÅͺóÀº Àå±âÀûÀ¸·Î ºñ¿ë °æÀï·ÂÀ» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±× °á°ú, ÀÌ ºÎ¹®ÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÏ¿© ¾÷°èÀÇ »ó¾÷ȸ¦ ÃËÁøÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¿¹Ãø ±â°£ Áß À°»ó ºÎ¹®ÀÌ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¿¹Ãø ±â°£ Áß À°»ó ºÎ¹®Àº ºñ¿ë ¿ìÀ§¿Í ¼³Ä¡ ¿ëÀ̼º¿¡ ÈûÀÔ¾î °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À°»ó ÆÄ·Â ¿¡³ÊÁö ÄÁ¹öÅÍ¿Í Á¶·Â ½Ã½ºÅÛÀº ÇØ»ó ÇÁ·ÎÁ§Æ®¿¡ ºñÇØ ÀÎÇÁ¶ó ¼ö¿ä°¡ Àû°í ÀÚº» Áý¾àµµ°¡ ³·´Ù´Â ÀåÁ¡ÀÌ ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÇØ¾È ¼ÛÀü¸Á¿¡ ±ÙÁ¢ÇØ ÀÖÀ¸¸ç, ¹ßÀüµÈ Àü·ÂÀ» ½Å¼ÓÇÏ°Ô ÅëÇÕÇÒ ¼ö ÀÖ½À´Ï´Ù. Á¤ºÎ¿Í ¹Î°£ °³¹ß¾÷üµéÀº ¿î¿µ ¸®½ºÅ©¸¦ ÁÙÀ̱â À§ÇØ ÇØ¾È°¡ ÀαÙÀÇ ½Ã¹ü ÇÁ·ÎÁ§Æ®¿¡ Á¡Á¡ ´õ ¸¹Àº ³ë·ÂÀ» ±â¿ïÀ̰í ÀÖ½À´Ï´Ù. ±× °á°ú, À°»ó ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀÌ ºü¸£°Ô ÁøÇàµÇ¾î Àü ¼¼°è¿¡¼ ½ÃÀåÀÌ Å©°Ô °¡¼Ó鵃 °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¿¹Ãø ±â°£ Áß ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Âµ¥, À̴ dzºÎÇÑ ¿¬¾È ÀÚ¿ø°ú Á¤ºÎÀÇ °·ÂÇÑ Áö¿ø ´öºÐÀÔ´Ï´Ù. Áß±¹, ÀϺ», Çѱ¹°ú °°Àº ±¹°¡µéÀº ÇØ¾ç¿¡³ÊÁö ¿¬±¸ ¹× ½ÇÁõ ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÁÖµµÇϰí ÀÖ½À´Ï´Ù. Àü·Â ¼ö¿äÀÇ È®´ë¿Í Àç»ý¿¡³ÊÁö ÅëÇÕ Á¤Ã¥Àº ÀÌ Áö¿ªÀÇ Ã¤ÅÃÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¹Î°ü Çù·ÂÀ» ÅëÇÑ ÀÎÇÁ¶ó °³¹ßµµ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀÌ º¹ÇÕÀûÀ¸·Î ÀÛ¿ëÇÏ¿© ¾Æ½Ã¾ÆÅÂÆò¾çÀº ÇØ¾ç ¿¡³ÊÁöÀÇ ÁÖ¿ä °ÅÁ¡À¸·Î¼ÀÇ ÀÔÁö¸¦ °ÈÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ Áß ºÏ¹Ì´Â À¯¸®ÇÑ ±ÔÁ¦ ÇýÅðú R&D Ȱµ¿ÀÇ °¡¼ÓÈ·Î ÀÎÇØ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¹Ì±¹°ú ij³ª´Ù´Â ÇØ¾ç ½Ã¹ü ÇÁ·ÎÁ§Æ®¸¦ ÃßÁøÇϱâ À§ÇØ ÅºÅºÇÑ ¿¬¾È Áö¿ª°ú ÀÚ±Ý Áö¿ø ü°è¸¦ Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ±â¼ú ½ºÅ¸Æ®¾÷ ¹× ´ëÇаúÀÇ Çù¾÷À» ÅëÇØ ±â¼ú Çõ½ÅÀ» ÃËÁøÇϰí, ½Ã½ºÅÛÀÇ ºñÈ¿À²¼ºÀ» ÁÙÀ̰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Áö¼Ó°¡´É¼ºÀ» Áß½ÃÇÏ´Â ÅõÀÚÀÚµéÀº ½ÅÈï ÇØ¾ç ¿¡³ÊÁö ¼Ö·ç¼Ç¿¡ ÀÚº»À» ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ±× °á°ú, ºÏ¹ÌÀÇ ¼ºÀå¼¼´Â Àü ¼¼°è µ¿Á¾¾÷°èÀÇ ¼ºÀå¼¼¸¦ ´É°¡ÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
According to Stratistics MRC, the Global Tidal Stream and Wave Energy Market is accounted for $1.0 billion in 2025 and is expected to reach $2.2 billion by 2032 growing at a CAGR of 12.3% during the forecast period. Tidal stream and wave energy refers to the harnessing of ocean movements to generate usable power from natural water dynamics. Tidal stream energy captures the kinetic force of moving tides through underwater turbines, while wave energy converts the rise and fall of surface waves into mechanical or electrical output. Both approaches rely on predictable and renewable ocean forces, offering a consistent and sustainable way to create energy. These methods emphasize the natural rhythm of marine environments to provide long-term solutions.
According to Ocean Energy Systems, this market harnesses the predictable kinetic energy of ocean currents and waves to generate reliable renewable electricity.
Increasing shift to renewable sources
The global energy sector is undergoing a decisive transition toward sustainable power, with tidal stream and wave energy emerging as reliable alternatives to fossil fuels. Spurred by mounting concerns over carbon emissions and climate change, governments are actively supporting renewable integration into national grids. This transition enhances the commercial viability of ocean-based power projects. Moreover, the consistent availability of marine resources ensures stable energy generation, further accelerating industry adoption. Consequently, the renewable shift remains a central driver shaping market expansion.
High installation and maintenance costs
Despite promising growth, the tidal stream and wave energy market faces notable financial barriers due to expensive installation and upkeep. Offshore construction requires specialized equipment, subsea cabling, and corrosion-resistant infrastructure, all of which elevate initial capital expenditure. Furthermore, maintenance in harsh marine conditions entails complex operations and significant downtime, limiting profitability. Smaller developers struggle with funding access, delaying large-scale commercialization. As a result, the high cost burden remains a primary restraint, restricting widespread deployment and slowing competitive scalability within the sector.
Advancements in marine energy technologies
Technological innovations are unlocking new pathways for tidal and wave energy development. Enhanced turbine efficiency, advanced materials, and predictive maintenance systems are improving reliability and reducing operational costs. Additionally, digital monitoring solutions and AI-driven performance optimization enable real-time adjustments, maximizing energy output. Collaborative R&D initiatives are fostering pilot projects that validate scalability. These advancements also enhance investor confidence, drawing more capital into the sector. Therefore, continuous technological progress presents a major opportunity to propel commercial adoption and global market growth.
Environmental and ecosystem disruption risks
Marine energy projects, while renewable, pose risks to delicate ecosystems, sparking environmental concerns. Turbine installations may affect fish migration, benthic habitats, and marine biodiversity. Furthermore, underwater noise and electromagnetic fields can disturb aquatic species, leading to stricter regulatory scrutiny. Opposition from conservation groups and local communities often delays project approvals. Such ecological uncertainties create reputational and compliance risks for developers. Consequently, ecosystem disruption remains a critical threat, potentially hindering project scalability and challenging the sector's long-term sustainability and acceptance.
The pandemic temporarily disrupted the tidal stream and wave energy sector, as lockdowns delayed construction, supply chains, and R&D initiatives. Funding was redirected toward immediate economic recovery, limiting capital for experimental marine projects. However, the crisis also reinforced the urgency of clean energy transition, with governments accelerating post-COVID green policies. This renewed emphasis on resilient renewable sources positioned tidal and wave energy as strategic assets. Therefore, while short-term setbacks emerged, the pandemic ultimately reinforced the long-term growth outlook for the market.
The turbines segment is expected to be the largest during the forecast period
The turbines segment is expected to account for the largest market share during the forecast period, owing to its proven reliability and high energy conversion efficiency. Turbine systems capture consistent tidal flows, ensuring steady power output compared to wave converters. Their modular designs also support scalability across diverse geographies. Supported by ongoing innovations in materials and blade designs, turbines demonstrate cost competitiveness over time. Consequently, this segment is expected to account for the largest market share, driving industry commercialization.
The onshore segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the onshore segment is predicted to witness the highest growth rate, propelled by cost advantages and ease of installation. Onshore wave energy converters and tidal systems benefit from lower infrastructure demands compared to offshore projects, reducing capital intensity. Additionally, proximity to coastal grids facilitates faster integration of generated power. Governments and private developers are increasingly focusing on near-shore pilot projects to de-risk operations. Consequently, onshore solutions are predicted to witness rapid adoption, driving significant market acceleration globally.
During the forecast period, the Asia Pacific region is expected to hold the largest market share, attributed to abundant coastal resources and strong government support. Nations like China, Japan, and South Korea are leading investments in ocean energy research and demonstration projects. Expanding electricity demand and renewable integration policies further support regional adoption. Additionally, public-private collaborations are fostering infrastructure development. Collectively, these factors strengthen Asia Pacific's position as the dominant hub for marine energy.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR associated with favorable regulatory incentives and accelerating R&D activities. The United States and Canada are leveraging robust coastal zones and supportive funding frameworks to advance marine pilot projects. Technological startups and collaborations with universities are fueling innovation, reducing system inefficiencies. Furthermore, sustainability-focused investors are channeling capital into emerging ocean energy solutions. Consequently, North America's growth momentum is expected to outpace global peers.
Key players in the market
Some of the key players in Tidal Stream and Wave Energy Market include Ocean Power Technologies, Carnegie Clean Energy, Seabased, CorPower Ocean, EHL Azura, AW-Energy, Wave Swell Energy, OceanEnergy, Eco Wave Power, Orbital Marine Power, Sinn Power, Verdant Power, Marine Power Systems, Minesto, Tocardo, and Atlantis Resources
In July 2025, Orbital Marine Power announced the successful deployment and grid-connection of its new 4MW "O2-X" tidal turbine at the European Marine Energy Centre (EMEC) in Orkney, Scotland. This next-generation platform features a simplified mooring system and improved rotor blades, designed to significantly reduce the levelized cost of energy (LCOE) for tidal stream projects.
In July 2025, CorPower Ocean completed the first phase of its commercial-scale pilot farm in Portugal. The project, featuring four of its C4 wave energy converters, successfully withstood a major Atlantic storm, validating the company's storm-protection technology and proving the durability of its hull and hydraulic power take-off system in extreme conditions.
In June 2025, a partnership between Minesto and Atlantis Resources was formed to co-develop a hybrid tidal and ocean thermal energy conversion (OTEC) platform. The project aims to create a multi-technology marine energy hub, leveraging Minesto's "Deep Green" kite technology for tidal streams and Atlantis's expertise in large-scale project development to provide a more consistent and reliable power output.