Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ Â÷¼¼´ë Æ÷Åä´Ð °áÁ¤ ½ÃÀåÀº 2025³â¿¡ 47¾ï ´Þ·¯¸¦ Â÷ÁöÇÏ¸ç ¿¹Ãø ±â°£ Áß CAGRÀº 12.6%·Î ¼ºÀåÇϸç, 2032³â¿¡´Â 108¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸ÁÀÔ´Ï´Ù.
Â÷¼¼´ë ±¤ °áÁ¤Àº ºûÀÇ ÀüÆÄ, ¹Ý»ç, ¹ß±¤À» Á¦¾îÇÏ¿© ºûÀ» Á¶ÀÛÇÏ´Â ÁÖ±âÀû ³ª³ë±¸Á¶¸¦ °¡Áø ÷´Ü ¼ÒÀçÀÔ´Ï´Ù. ±¤ÇÐ, Åë½Å, ¼¾¼¿¡ »ç¿ëµÇ¸ç, ·¹ÀÌÀú ¹× žçÀüÁö¿Í °°Àº ¿ëµµ¿¡¼ Á¤¹ÐÇÑ ±¤ Á¦¾î¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ±âÁ¸ÀÇ ±¤ÇÐÀû Á¦¾à¿¡¼ ¹þ¾î³ ÀÌ °áÁ¤Àº °íÈ¿À²ÀÇ ÄÄÆÑÆ®ÇÑ ¼³°è¸¦ ½ÇÇöÇÏ¿© Æ÷Åä´Ð½º ¹× ¿¡³ÊÁö È¿À²ÀûÀÎ ±â¼úÀ» À§ÇÑ Çõ½ÅÀûÀÌ°í °í¼º´ÉÀÇ ¼Ö·ç¼ÇÀ» ¿øÇÏ´Â »ê¾÷¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.
Nature Photonics Àú³Î¿¡ µû¸£¸é ÀÌ·¯ÇÑ ³ª³ë ±¸Á¶ Àç·á´Â ºûÀ» Á¶ÀÛÇϵµ·Ï ¼³°èµÇ¾î ÃÊ °íÈ¿À² ·¹ÀÌÀú, ±¤ ÄÄÇ»ÅÍ, ¿ÏÀüÇÑ ºû Èí¼ö¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.
¼ÒÇüÈ ÀüÀÚÁ¦Ç°¿¡ ´ëÇÑ ¼ö¿ä
ÀÌ ½ÃÀåÀ» ÁÖµµÇÏ´Â °ÍÀº Á¡Á¡ ´õ ¼ÒÇüÈ, °í¼º´ÉȵǴ ÀüÀÚ ¹× Æ÷Åä´Ð µð¹ÙÀ̽º¿¡ ´ëÇÑ ²÷ÀÓ¾ø´Â ¼ö¿äÀÔ´Ï´Ù. Æ÷Åä´Ð Å©¸®½ºÅ»Àº ³ª³ë ½ºÄÉÀÏ¿¡¼ Àü·Ê ¾ø´Â ºûÀÇ Á¦¾î¸¦ °¡´ÉÇÏ°Ô Çϸç, ±¤Ä¨, ÃʼÒÇü ¼¾¼, ÷´Ü µð½ºÇ÷¹ÀÌ µî ¼ÒÇüÈ, °í¼ÓÈ, ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº ºÎǰ °³¹ß¿¡ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ ´É·ÂÀº ÄÄÇ»ÆÃ, Åë½Å, ÇコÄÉ¾î ºÐ¾ßÀÇ Â÷¼¼´ë ±â¼ú¿¡ ÇʼöÀûÀ̸ç, ±âÁ¸ ÀüÀÚÁ¦Ç°ÀÇ ÇѰ踦 ¶Ù¾î³Ñ´Â µð¹ÙÀ̽º ÅëÇÕ°ú ¼º´ÉÀÇ ÇѰ踦 ¶Ù¾î³Ñ´Â °ÍÀÔ´Ï´Ù.
º¹ÀâÇÑ Á¦Á¶ ºñ¿ë
³ª³ë±¸Á¶¸¦ ÇÊ¿äÇÑ Á¤¹Ðµµ¿Í °áÇÔ °øÂ÷·Î Á¦Á¶Çϱâ À§Çؼ´Â ¸Å¿ì ³ôÀº ºñ¿ë°ú º¹À⼺ÀÌ Å« Á¦¾àÀ¸·Î ÀÛ¿ëÇÕ´Ï´Ù. ÀüÀÚºö ¸®¼Ò±×·¡Çdzª ·¹ÀÌ¾î ¹ÙÀÌ ·¹À̾î ÁõÂø°ú °°Àº ±â¼úÀº ½Ã°£ÀÌ ¿À·¡ °É¸®°í, Ư¼ö Àåºñ°¡ ÇÊ¿äÇϸç, 󸮷®ÀÌ ³·¾Æ ´ë·® »ý»êÀÌ ¾î·Æ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÑ Á¦Á¶ °øÁ¤Àº ¼³ºñ ÅõÀÚ¿Í ´ÜÀ§´ç ºñ¿ëÀÌ ³ô±â ¶§¹®¿¡ »ó¾÷Àû È®À强°ú äÅÃÀº ÁÖ·Î °í°¡ ¿ëµµ¿¡ ±¹ÇѵǸç, ¼º´ÉÀÌ ºñ½Ñ °¡°ÝÀ» Á¤´çÈÇÒ ¼ö ÀÖ´Â °í°¡ ¿ëµµ¿¡ ÇÑÁ¤µË´Ï´Ù.
±¤ÄÄÇ»ÆÃÀÇ ¹ßÀü
Å« ±âȸ´Â ±¤ÄÄÇ»ÆÃÀÇ ¹ßÀü¿¡ ÀÖÀ¸¸ç, ±¤ °áÁ¤Àº ±¤ °áÁ¤ÀÌ ±âº» ±¸¼º ¿ä¼ÒÀÔ´Ï´Ù. ±¤ °áÁ¤Àº ±¤ Æ®·£Áö½ºÅÍ, µµÆÄ°ü, ·ÎÁ÷ °ÔÀÌÆ®ÀÇ ¿ªÇÒÀ» Çϸç, ÀüÀÚ ´ë½Å ºûÀ» ÀÌ¿ëÇØ ó¸®ÇÏ´Â ÄÄÇ»Å͸¦ ±¸ÇöÇÒ ¼ö ÀÖÀ¸¸ç, ¼Óµµ¿Í ¿¡³ÊÁö È¿À²À» Å©°Ô Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. AI ¹× ºòµ¥ÀÌÅÍ ¿ëµµ¸¦ À§ÇØ ±âÁ¸ ¹ÝµµÃ¼ ±â¹Ý ÄÄÇ»ÆÃÀÇ ÇѰ踦 ±Øº¹ÇØ¾ß ÇÒ Çʿ伺ÀÌ Ä¿Áö¸é¼ ÀÌ ºÐ¾ß¿¡ ´ëÇÑ ¸·´ëÇÑ R&D ÅõÀÚ°¡ ÀÌ·ç¾îÁö°í ÀÖÀ¸¸ç, ÀÌ´Â °Å´ëÇÑ ÀáÀç ½ÃÀåÀ» âÃâÇϰí ÀÖ½À´Ï´Ù.
ƯÇã Ä§ÇØ À§Çè
ÀÌ ½ÃÀåÀº ÇÙ½É ±¤°áÁ¤ ¼³°è, Á¦Á¶ ¹æ¹ý, ÀÀ¿ëÀ» µÑ·¯½Ñ °í¹Ðµµ ƯÇã¸ÁÀ¸·Î ÀÎÇØ Å« À§Çù¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÑ ÁöÀûÀç»ê±Ç »óȲÀ» ÆÄ¾ÇÇÏ´Â °ÍÀº ¾î·Æ°í, ƯÈ÷ ½ºÅ¸Æ®¾÷À̳ª ½Å±Ô ÁøÃâ±â¾÷ÀÇ °æ¿ì ºÎÁÖÀÇ·Î ÀÎÇÑ Æ¯Çã Ä§ÇØÀÇ À§Ç輺ÀÌ ³ô½À´Ï´Ù. ±æ°í ºñ¿ëÀÌ ¸¹ÀÌ µå´Â ¼Ò¼ÛÀº ±â¼ú Çõ½ÅÀ» ÀúÇØÇϰí, ÅõÀÚ¸¦ ¾ïÁ¦Çϸç, ½Å±â¼úÀÇ »ó¿ëȸ¦ ¹æÇØÇϰí, ÁÖ¿ä Æ¯Ç㸦 º¸À¯ÇÑ ¼Ò¼öÀÇ ´ë±â¾÷¿¡ ½ÃÀå Áö¹è·ÂÀ» ÁýÁß½Ãų ¼ö ÀÖ½À´Ï´Ù.
COVID-19 ÆÒµ¥¹ÍÀº Ãʱ⿡ ¼¼°è °ø±Þ¸ÁÀ» È¥¶õ¿¡ ºü¶ß·Á ¿¬±¸¿Í »ý»êÀ» Áö¿¬½ÃÄ×½À´Ï´Ù. ±×·¯³ª Àå±âÀûÀÎ ¿µÇâÀº µðÁöÅÐ ÀüȯÀ» °¡¼ÓÈÇÏ°í °í±Þ ÄÄÇ»ÆÃ ¹× Åë½Å ÀÎÇÁ¶óÀÇ Çʿ伺À» ºÎ°¢½ÃŰ´Â ±àÁ¤ÀûÀÎ ¿µÇâÀ» °¡Á®¿Ô½À´Ï´Ù. ¿ø°Ý ±Ù¹«, µ¥ÀÌÅÍ ¼Òºñ, ÀÇ·á Áø´Ü ¿¬±¸°³¹ßÀÇ ±ÞÁõÀº ±¤±â¼ú¿¡ ´ëÇÑ ÅõÀÚ¸¦ Áõ°¡½ÃÄ×½À´Ï´Ù. Á¤ºÎÀÇ °æ±âºÎ¾çÃ¥¿¡´Â ±â¼ú ¹× ¹ÝµµÃ¼ µ¶¸³¿¡ ´ëÇÑ ÀÚ±ÝÁö¿øÀÌ Æ÷ÇԵǴ °æ¿ì°¡ ¸¹¾Æ Â÷¼¼´ë ±¤°áÁ¤ ½ÃÀåÀ» ´õ¿í ºÎÃß±â°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ Áß ¸®¼Ò±×·¡ÇÇ ±â¹Ý ºÎ¹®ÀÌ °¡Àå Å« ºÎ¹®ÀÌ µÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¸®¼Ò±×·¡ÇÇ ±â¹Ý ºÎ¹®Àº °¡Àå Àß È®¸³µÈ È®Àå °¡´ÉÇÑ °íÁ¤¹Ð ³ª³ë °¡°ø ±â¼ú, ƯÈ÷ ½ÉÀڿܼ±(DUV) ¸®¼Ò±×·¡ÇÇ¿Í ±ØÀڿܼ±(EUV) ¸®¼Ò±×·¡ÇÇÀÇ ÀåÁ¡À¸·Î ÀÎÇØ ¿¹Ãø ±â°£ Áß °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¹ÝµµÃ¼ »ê¾÷¿¡ ÀÇÇØ ¼º¼÷µÈ ÀÌ·¯ÇÑ ¹æ¹ýÀº »ó¾÷Àû ±¤°áÁ¤ ÀÀ¿ë¿¡ ÇÊ¿äÇÑ Å©±â¿Í ±ÕÀϼºÀ» °®Ãá ÁÖ±âÀû ³ª³ë±¸Á¶¸¦ ´ë·® »ý»êÇÒ ¼ö ÀÖ½À´Ï´Ù. ´Ù¸¥ ¹æ½Ä¿¡ ºñÇØ 󸮷®ÀÌ »ó´ëÀûÀ¸·Î ³ô±â ¶§¹®¿¡ ´ë·® »ý»ê¿¡ °¡Àå Çö½ÇÀûÀÎ ¼±ÅÃÀ̸ç, ÀÌ ºÐ¾ß¿¡¼ °¡Àå ³ôÀº Á¡À¯À²À» È®º¸Çϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ Áß ½Ç¸®ÄÜ ºÎ¹®Àº °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¿¹Ãø ±â°£ Áß ½Ç¸®ÄÜ ºÎ¹®ÀÌ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´Â ±âÁ¸ CMOS Á¦Á¶ »ýŰè¿ÍÀÇ Å¹¿ùÇÑ È£È¯¼ºÀ» ¹ÙÅÁÀ¸·Î ±¤°áÁ¤ ¼ÒÀÚ¿Í ÀüÀÚȸ·Î¸¦ ´ÜÀÏ Ä¨¿¡ ¿øÈ°ÇÏ°Ô ÅëÇÕÇÒ ¼ö ÀÖ½À´Ï´Ù. ½Ç¸®ÄÜ Æ÷Åä´Ð½º´Â µ¥ÀÌÅͼ¾ÅÍ ¹× AI °¡¼Ó±âÀÇ ÄÚÆÐŰÁö ±¤ÇÐÀÇ ÇÙ½É ¿øµ¿·ÂÀÔ´Ï´Ù. ÀÌ ¼ÒÀçÀÇ ³ôÀº ±¼Àý·ü·Î ÀÎÇØ °·ÂÇÑ ºû Æ÷ȹ°ú ÃʼÒÇü µð¹ÙÀ̽º¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ½Ç¸®ÄÜ °¡°ø¿¡ ´ëÇÑ ¹æ´ëÇÑ ÀÎÇÁ¶ó¿Í Áö½Ä ±â¹ÝÀº °³¹ß À庮°ú ºñ¿ëÀ» Å©°Ô ³·Ãß¾î ºü¸¥ º¸±Þ°ú ÃÖ°í ¼ºÀåÀÇ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ Áß ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´Â TSMC, »ï¼º, SKÇÏÀ̴нº¿Í °°Àº ´ë±â¾÷ÀÌ ¹ÝµµÃ¼ Á¦Á¶ ¹× ÀüÀÚ±â±â Á¶¸³¿¡¼ Àý´ëÀûÀÎ ¿ìÀ§¸¦ Á¡Çϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. ÀÌ Áö¿ª¿¡´Â °Å´ëÇÑ °¡ÀüÁ¦Ç° ½ÃÀåÀÌ ÀÖ°í, ±â¼ú ¿¬±¸°³¹ß¿¡ ´ëÇÑ Á¤ºÎÀÇ °·ÂÇÑ Áö¿øÀÌ ÀÖÀ¸¸ç, Åë½Å ¹× ÄÄÇ»ÆÃ°ú °°Àº »ê¾÷ÀÇ ´Ù¿î½ºÆ®¸² ¼ö¿ä°¡ ÁýÁߵǾî ÀÖ½À´Ï´Ù. Àç·á ¹× Á¦Á¶¿¡¼ ÃÖÁ¾ ÀÀ¿ë ÀåÄ¡ »ý»ê¿¡ À̸£±â±îÁö ÅëÇÕµÈ °ø±Þ¸ÁÀ¸·Î ÀÎÇØ APAC´Â ±¤°áÁ¤ ±â¼ú »ó¿ëȸ¦ À§ÇÑ °¡Àå Å©°í °¡Àå ¼º¼÷ÇÑ ½ÃÀåÀ¸·Î ¼ºÀåÇß½À´Ï´Ù.
¿¹Ãø ±â°£ Áß ºÏ¹Ì´Â ±¹¹æ ±â°ü(DARPA), ÇÏÀÌÅ×Å© ´ë±â¾÷(±¸±Û, IBM, ÀÎÅÚ), ÀÏ·ù ´ëÇÐÀÇ ±âÃÊ ¿¬±¸ ¹× °³¹ß¿¡ ´ëÇÑ ¸·´ëÇÑ ÅõÀÚ¿Í °ü·ÃÇÏ¿© °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ Áö¿ªÀº ±¤ÄÄÇ»ÆÃ, ¾çÀÚÁ¤º¸Ã³¸®, ÷´Ü ¼¾¼ µî ½ÅÈï ¿ëµµÀÇ ±â¼ú Çõ½Å °ÅÁ¡ÀÔ´Ï´Ù. CHIPS¹ý°ú °°Àº Á¤ºÎ Áö¿ø Á¤Ã¥, µöÅ×Å© ½ºÅ¸Æ®¾÷¿¡ ´ëÇÑ °·ÂÇÑ º¥Ã³Ä³ÇÇÅРȯ°æ, Ç×°ø¿ìÁÖ ¹× ±¹¹æ ºÐ¾ßÀÇ ³ôÀº ¼ö¿ä°¡ ±Þ¼ÓÇÑ ±â¼ú ¹ßÀü°ú ÃÖ°íÀÇ ¼ºÀå·üÀ» °ßÀÎÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Next-Gen Photonic Crystals Market is accounted for $4.7 billion in 2025 and is expected to reach $10.8 billion by 2032 growing at a CAGR of 12.6% during the forecast period. Next-gen photonic crystals are advanced materials with periodic nanostructures that manipulate light by controlling its propagation, reflection, or emission. Used in optics, telecommunications, and sensors, they enable precise light control for applications like lasers or solar cells. Free from traditional optical limitations, these crystals offer high efficiency and compact designs, catering to industries seeking innovative, high-performance solutions for photonics and energy-efficient technologies.
According to Nature Photonics, these nanostructured materials are engineered to manipulate light, enabling ultra-efficient lasers, optical computers, and perfect light absorption.
Miniaturized electronics demand
The market is driven by the insatiable demand for increasingly miniaturized and high-performance electronics and photonic devices. Photonic crystals enable unprecedented control over light at the nanoscale, which is critical for developing smaller, faster, and more energy-efficient components like optical chips, ultra-compact sensors, and advanced displays. This capability is essential for next-generation technologies in computing, telecommunications, and healthcare, pushing the boundaries of device integration and performance beyond the limits of conventional electronics.
Complex fabrication costs
A significant restraint is the extremely high cost and complexity associated with fabricating nanostructures with the required precision and defect tolerance. Techniques like electron-beam lithography and layer-by-layer deposition are time-consuming, require specialized equipment, and have low throughput, making mass production challenging. These complex fabrication processes result in high capital expenditure and per-unit costs, limiting commercial scalability and adoption to primarily high-value applications where performance justifies the premium price.
Optical computing advances
A major opportunity lies in the advancement of optical computing, where photonic crystals are fundamental building blocks. They can act as optical transistors, waveguides, and logic gates, potentially enabling computers that use light instead of electrons for processing, offering vastly superior speed and energy efficiency. The rising need to overcome the limitations of traditional semiconductor-based computing for AI and big data applications is driving significant R&D investment in this field, creating a massive potential market.
Patent infringement risks
The market faces a considerable threat from dense patent thickets surrounding core photonic crystal designs, fabrication methods, and applications. Navigating this complex intellectual property landscape is challenging and poses a high risk of inadvertent infringement, especially for startups and new entrants. Lengthy and costly litigation can stifle innovation, deter investment, and prevent the commercialization of novel technologies, consolidating market power among a few large holders of key patents.
The COVID-19 pandemic initially disrupted global supply chains, delaying research and production. However, its long-term impact was positive, accelerating the digital transformation and highlighting the critical need for advanced computing and telecommunications infrastructure. The surge in remote work, data consumption, and R&D in medical diagnostics increased investment in photonics technologies. Government recovery packages often included funding for tech and semiconductor independence, further boosting the next-gen photonic crystals market.
The lithography-based segment is expected to be the largest during the forecast period
The lithography-based segment is expected to account for the largest market share during the forecast period, resulting from its dominance as the most established and scalable high-precision nanofabrication technique, particularly deep ultraviolet (DUV) and extreme ultraviolet (EUV) lithography. These methods, matured by the semiconductor industry, allow for the mass production of periodic nanostructures with the feature sizes and uniformity required for commercial photonic crystal applications. Their relatively higher throughput compared to alternatives makes them the most viable option for volume manufacturing, securing the segment's leading market share.
The silicon segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the silicon segment is predicted to witness the highest growth rate, propelled by its unparalleled compatibility with the existing CMOS fabrication ecosystem, enabling seamless integration of photonic crystal devices with electronic circuits on a single chip. Silicon photonics is a key enabler for co-packaged optics in data centers and AI accelerators. The material's high refractive index allows for strong light confinement and ultra-compact devices. The vast infrastructure and knowledge base for silicon processing drastically lower development barriers and costs, driving rapid adoption and the highest growth.
During the forecast period, the Asia Pacific region is expected to hold the largest market share, attributed to its absolute dominance in semiconductor manufacturing and electronics assembly, with giants like TSMC, Samsung, and SK Hynix. The region has a massive consumer electronics market, strong government support for tech R&D, and a concentrated downstream demand from industries like telecommunications and computing. This integrated supply chain, from materials and fabrication to end-use device production, makes APAC the largest and most mature market for commercializing photonic crystal technologies.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR associated with, heavy investment in foundational R&D from defense agencies (DARPA), tech giants (Google, IBM, Intel), and leading universities. The region is a hub for innovation in emerging applications like optical computing, quantum information processing, and advanced sensors. Supportive government policies like the CHIPS Act, a strong venture capital environment for deep-tech startups, and high demand from the aerospace and defense sectors are driving rapid technological advancement and the highest growth rate.
Key players in the market
Some of the key players in Next-Gen Photonic Crystals Market include Corning Incorporated, Furukawa Electric Co. Ltd., GLOphotonics SAS, Gooch & Housego, Hamamatsu Photonics K.K., IPG Photonics Corporation, NKT Photonics A/S, Opalux Inc., Photonic Lattice Inc., NeoPhotonics Corporation, II-VI Incorporated, Lumentum Holdings Inc., Finisar Corporation, Broadcom Inc., Cisco Systems, Inc., and Intel Corporation.
In September 2025, Hamamatsu Photonics K.K. launched its new high-sensitivity biosensor platform utilizing defect-engineered photonic crystals. The technology allows for the real-time, label-free detection of single molecules, targeting advancements in pharmaceutical research and point-of-care medical diagnostics.
In August 2025, Corning Incorporated received a significant grant from the U.S. Department of Energy to scale up production of its proprietary hollow-core photonic crystal fiber. This fiber, which guides light through air, promises near-light-speed data transmission with significantly reduced latency for critical infrastructure and high-performance computing applications.