Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ LED Çü±¤Ã¼ ½ÃÀåÀº 2025³â¿¡ 21¾ï ´Þ·¯·Î ÃßÁ¤µÇ°í, 2032³â¿¡´Â 42¾ï 8,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ¿¹Ãø ±â°£ Áß CAGR 10.7%·Î ¼ºÀåÇÒ Àü¸ÁÀÔ´Ï´Ù.
LED Çü±¤Ã¼´Â ÀϹÝÀûÀ¸·Î û»ö±¤À̳ª Àڿܼ±À» ¹æÃâÇÏ´Â LED ĨÀÇ Çù´ë¿ª ¹ß±¤À» ±¤¹üÀ§ÇÑ °¡½Ã ÆÄÀåÀ¸·Î º¯È¯ÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÀÌ º¯È¯Àº ¿øÇÏ´Â ¹à±â¿Í Á¤È®ÇÑ ¿¬»ö¼ºÀ» °¡Áø ¹é»ö±¤À» »ý¼ºÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀϹÝÀûÀ¸·Î ÈñÅä·ù ¿ø¼Ò ¹× ±âŸ ¹ß±¤ Àç·á¿¡¼ ¾òÀº Çü±¤Ã¼´Â ´ÜÆÄÀå ±¤ÀÚ¸¦ Èí¼öÇϰí ÀåÆÄÀå ±¤ÀÚ¸¦ ¹æÃâÇÕ´Ï´Ù. ¿ø·¡ Ĩ Ãâ·Â°ú Çü±¤Ã¼ ¹æÃâ ºûÀ» È¥ÇÕÇÏ¿© Á¦Á¶¾÷ü´Â ´Ù¾çÇÑ ¹é»ö Åæ°ú »ö»ó È¿°ú¸¦ Á¶Á¤ÇÒ ¼ö ÀÖ½À´Ï´Ù. È¿À², ¿¿¡ ´ëÇÑ ¾ÈÁ¤¼º, ±ä ¼ö¸íÀ¸·Î LED Çü±¤Ã¼´Â Á¶¸í ¼Ö·ç¼Ç, ÀüÀÚ µð½ºÇ÷¹ÀÌ, Â÷·®¿ë ÀÏ·ç¹Ì³×À̼Ç, ½ºÅ©¸° ¹é¶óÀÌÆ®¿¡ ÇʼöÀûÀÔ´Ï´Ù.
¹Ì±¹ ¿¡³ÊÁöºÎ(DOE)ÀÇ µ¥ÀÌÅÍ¿¡ µû¸£¸é 2023³â±îÁö LED Á¶¸íÀº ¹Ì±¹ ³» Àüü Á¶¸í ¼³ºñÀÇ 50% ÀÌ»óÀ» Â÷ÁöÇß°í, 2035³â±îÁö´Â °ÅÀÇ Àü ¼¼°è¿¡ º¸±ÞµÉ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ LED·ÎÀÇ ±¤¹üÀ§ÇÑ ÀüȯÀº º¸´Ù ¿ì¼öÇÑ ¿¬»ö¼º°ú ¿¡³ÊÁö È¿À²À» °¡´ÉÇÏ°Ô ÇÏ´Â °í¼º´É Çü±¤Ã¼ ¼ö¿ä¸¦ ÃËÁøÇÕ´Ï´Ù.
¿¡³ÊÁö È¿À²ÀûÀÎ Á¶¸í¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
¿¡³ÊÁö Àý¾àÀÌ Áß½ÃµÇ°Ô µÈ °ÍÀÌ LED Çü±¤Ã¼ ½ÃÀåÀ» Å©°Ô ¹Ð¾î ¿Ã¸®°í ÀÖ½À´Ï´Ù. ´õ ¸¹Àº Àü·Â°ú ºó¹øÇÑ ±³È¯ÀÌ ÇÊ¿äÇÑ ±âÁ¸ÀÇ Á¶¸í ½Ã½ºÅÛ°ú ´Þ¸® LED´Â ¿¡³ÊÁö È¿À²ÀÌ ³ô°í ÀÛµ¿ ¼ö¸íÀÌ ±é´Ï´Ù. ¸¹Àº Á¤ºÎ´Â ¿À·¡µÈ Á¶¸í ±â¼ú¿¡ ´ëÇÑ ÀÇÁ¸À» ÁÙÀÌ´Â Á¤Ã¥À» ½ÃÇàÇϰí ÀÖÀ¸¸ç, ÀÌ¿¡ µû¶ó LEDÀÇ »ç¿ëÀ» Àå·ÁÇϰí ÀÖ½À´Ï´Ù. Çü±¤Ã¼ ±â¼úÀº ¹à±â¿Í »ö Á¤¹Ðµµ¸¦ Çâ»ó½ÃŲ °íǰÁúÀÇ ¹é»ö±¤À» »ý¼ºÇÏ´Â µ¥ Áß½ÉÀûÀÎ ¿ªÇÒÀ» ÇÕ´Ï´Ù. »ê¾÷°è, °¡Á¤, µµ½Ã°¡ º¸´Ù ģȯ°æ ±â¼ú·Î À̵¿ÇÏ´Â µ¿¾È LED ¼Ö·ç¼ÇÀÇ ºñ¿ë È¿°ú´Â ´õ¿í ¸Å·ÂÀ» ²ø°í ÀÖ½À´Ï´Ù. ȯ°æ Ã¥ÀÓ°ú °æÁ¦Àû Àý¾àÀÇ ½Ã³ÊÁö È¿°ú·Î ÀÎÇÑ Çü±¤Ã¼ ±â¹Ý LED Á¶¸íÀº ²ÙÁØÇÑ ¼ºÀåÀ» °è¼ÓÇϰí ÀÖ½À´Ï´Ù.
ÈñÅä·ù Àç·á¿¡ ´ëÇÑ °ø±Þ¸Á ÀÇÁ¸
LED Çü±¤Ã¼ ½ÃÀåÀÇ Áß¿äÇÑ ¾ïÁ¦¿äÀÎÀº °í¼º´É Çü±¤Ã¼ÀÇ »ý»ê¿¡ ÇʼöÀûÀÎ ÈñÅä·ù ÀÚ¿ø¿¡ ´ëÇÑ ÀÇÁ¸ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ Àç·á´Â ÁÖ·Î Á¦ÇÑµÈ Áö¿ª¿¡¼ ä±¼µÇ±â ¶§¹®¿¡ °ø±Þ¸ÁÀº È¥¶õ¿¡ ¸Å¿ì Ãë¾àÇÕ´Ï´Ù. Á¤Ä¡Àû ºÐÀï, ¹«¿ª À庮, ¾ö°ÝÇÑ Ã¤±¼ ±ÔÁ¦´Â Á¾Á¾ °ø±Þ°ú °¡°ÝÀÇ º¯µ¿À¸·Î À̾îÁ® LED Á¦Á¶¾÷ü¿¡ ºÒÈ®½Ç¼ºÀ» ÃÊ·¡ÇÕ´Ï´Ù. Áß¼Ò±â¾÷Àº ƯÈ÷ ÀÌ·¯ÇÑ °úÁ¦¿¡ ´ëÇÑ ´ëÀÀÀ» °í¹ÎÇϰí ÀÖÁö¸¸ ´ë±â¾÷Àº º¸´Ù È¿°úÀûÀ¸·Î ºñ¿ëÀ» Èí¼öÇϰí ÀÖ½À´Ï´Ù. Á¦ÇÑµÈ °ø±Þ¿ø¿¡ ´ëÇÑ ÀÇÁ¸Àº ½ÃÀåÀ» ºÒ¾ÈÁ¤ÇÏ°Ô ÇÏ°í ´ëü ¿ø·á¿Í ´Ù¾çÇÑ °ø±Þ¿øÀÌ °³¹ßµÇÁö ¾Ê´Â ÇÑ Çü±¤Ã¼ »ý»êÀº Áö¼ÓÀûÀÎ À§Çè¿¡ Á÷¸éÇÏ°Ô µË´Ï´Ù.
Çü±¤Ã¼ ±â¼úÀÇ Áøº¸
Çü±¤Ã¼ °³¹ß¿¡ ÀÖ¾î¼ÀÇ ½ÅÈï±¹ °³Ã´Àº LED Çü±¤Ã¼ ½ÃÀå¿¡ »õ·Î¿î ¼ºÀåÀÇ °¡´É¼ºÀ» °¡Á®¿À°í ÀÖ½À´Ï´Ù. °úÇÐÀÚµéÀº º¸´Ù ³ôÀº È¿À², °í¿Â¿¡¼ÀÇ ¾ÈÁ¤¼º, ¿ì¼öÇÑ ¿¬»ö¼ºÀ» ½ÇÇöÇÏ´Â Â÷¼¼´ë Çü±¤Ã¼ ÈÇÕ¹°ÀÇ °³¹ß¿¡ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °³¼±À¸·Î LED´Â ÈÖµµ, ³»±¸¼º, ¹ü¿ë¼ºÀÌ Çâ»óµÇ¾î ´Ù¾çÇÑ ¿ëµµ·Î »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ³ª³ë Çü±¤Ã¼ ¹× ¾çÀÚÁ¡ÀÇ »ó½ÂÀº Á¤È®ÇÑ »öÁ¶Á¤°ú ¶Ù¾î³ ½Ã°¢Àû ǰÁúÀ» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á Á¶¸í ¼³°è¿¡ Çõ¸íÀ» °¡Á®¿É´Ï´Ù. ¶ÇÇÑ Àç·á È¿À² Çâ»óÀ¸·Î Àå±âÀûÀÎ ºñ¿ë Àý°¨¿¡µµ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ½º¸¶Æ® Á¶¸í, ÀÇ·á¿ë µð½ºÇ÷¹ÀÌ, ¸ôÀÔÇü ¿£ÅÍÅ×ÀÎ¸ÕÆ® ±â¼úÀÇ Ã¤ÅÃÀÌ È®´ëµÊ¿¡ µû¶ó Çü±¤Ã¼ÀÇ ±â¼ú Çõ½ÅÀº ¹Ì·¡ÀÇ ºñÁî´Ï½º ±âȸÀÇ Áß¿äÇÑ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù.
´ëü ±â¼úÀÇ °¡¿ë¼º
´ëü ±â¼úÀº LED Çü±¤Ã¼ »ê¾÷¿¡ ÀÖ¾î¼ Áõ°¡ÇÏ´Â À§ÇèÀÔ´Ï´Ù. OLED, ¾çÀÚÁ¡, ·¹ÀÌÀú Á¶¸í µîÀÇ ±â¼ú Çõ½ÅÀº µð½ºÇ÷¹À̳ª ÀÚµ¿Â÷ ½Ã½ºÅÛ µîÀÇ ¿ëµµ·Î À¯¿¬¼º, È¿À², ¶Ù¾î³ ¼º´ÉÀ» ¹ßÈÖÇÏ´Â °ÍÀ¸·Î º¸±ÞµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ´ëüǰÀÌ ºñ¿ë°ú È®À强À» Çâ»ó½ÃŰ¸é¼ ¿©·¯ ºÐ¾ß¿¡¼ ±âÁ¸ÀÇ Çü±¤Ã¼ ±â¹Ý LED¸¦ ´ëüÇÒ ¼ö ÀÖ½À´Ï´Ù. Â÷¼¼´ë µð½ºÇ÷¹ÀÌ ¹× Á¶¸í ¼Ö·ç¼ÇÀÇ ±Þ¼ÓÇÑ º¸±ÞÀº Çü±¤Ã¼°¡ µµÅµDZ⠽±´Ù´Â °ÍÀ» µ¸º¸ÀÌ°Ô ÇÕ´Ï´Ù. Á¦Á¶¾÷ü°¡ È¿À²¼º, ³»±¸¼º ¹× Àú·ÅÇÑ °¡°ÝÀ» Áö¼ÓÀûÀ¸·Î Çâ»ó½ÃŰÁö ¾ÊÀ¸¸é ´ëüǰÀÌ Á¡Â÷ Å« ½ÃÀå Á¡À¯À²À» ¾ò°í Çü±¤Ã¼ ±â¼úÀÇ Àå±âÀûÀÎ »ýÁ¸ °¡´É¼ºÀÌ ¼Õ»óµÉ ¼ö ÀÖ½À´Ï´Ù.
COVID-19ÀÇ ¹ß»ýÀº LED Çü±¤Ã¼ »ê¾÷¿¡ ´Ù¾çÇÑ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ÇÑÆí, ¼¼°è °ø±Þ¸Á È¥¶õ, ¹«¿ª Á¦ÇÑ, °øÀå °¡µ¿ Áß´ÜÀ¸·Î ÀÎÇØ ÈñÅä·ù ¿ø·á°¡ ºÎÁ·ÇÏ¿© »ý»êÀÌ ´À·ÁÁ³½À´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶, °Ç¼³ ÇÁ·ÎÁ§Æ® ¹× »ó¾÷ Ȱµ¿ÀÇ °¨¼Ò·Î LED ±â¹Ý ¼Ö·ç¼Ç¿¡ ´ëÇÑ ´ç¸éÇÑ ¼ö¿ä°¡ °¨¼ÒÇß½À´Ï´Ù. ÇÑÆí, µðÁöÅÐ ±â±âÀÇ »ç¿ë ±ÞÁõ, ÀÇ·á¿ë Á¶¸íÀÇ ¿ä±¸, ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº ±â¼ú¿¡ ÀÇÇØ LED Çü±¤Ã¼¿¡ »õ·Î¿î ±âȸ°¡ °¡Á®¿Ô½À´Ï´Ù. °æÁ¦°¡ Àç°³µÇ¸é ½º¸¶Æ® ÀÎÇÁ¶ó¿Í Áö¼Ó °¡´ÉÇÑ Á¶¸í ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ ÅõÀÚ°¡ ½ÃÀå ȸº¹À» Áö¿øÇß½À´Ï´Ù. Àü¹ÝÀûÀ¸·Î ÆÒµ¥¹ÍÀº LED Çü±¤Ã¼ ½ÃÀåÀÇ Ãë¾à¼º°ú Àå±âÀûÀÎ ¼ºÀå Àü¸ÁÀ» °Á¶Çß½À´Ï´Ù.
µû¶æÇÑ ¹é»ö Çü±¤Ã¼ ºÎ¹®ÀÌ ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë°¡ µÉ °ÍÀ¸·Î ¿¹»ó
µû¶æÇÑ ¹é»ö Çü±¤Ã¼ ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. µû¶æÇÑ ¹é»ö Çü±¤Ã¼´Â Æí¾ÈÇÔ°ú ºÐÀ§±â¸¦ ³ôÀ̰í Â÷ºÐÇÑ ÀÚ¿¬½º·¯¿î »öÁ¶ÀÇ ºûÀ» »ý¼ºÇÏ¿© ³ôÀº Æò°¡¸¦ ¹Þ¾ÒÀ¸¸ç ÁÖÅÃ, »ó¾÷ ½Ã¼³ ¹× Á¢°´ °ø°£¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ÀÌ Çü±¤Ã¼´Â ÀϹÝÀûÀ¸·Î ½Ç³» Á¶¸í, Àå½Ä µðÀÚÀÎ, µû¶æÇϰí ÄèÀûÇÑ Á¶¸íÀÌ ÇÊ¿äÇÑ È¯°æ¿¡ ÅëÇյǾî ÀÖ½À´Ï´Ù. ±×°ÍÀÇ È¿À²¼º, ½Ã°¢ÀûÀÎ ¸Å·Â, ¿¡³ÊÁö Àý¾à LED ±â¼ú°úÀÇ È£È¯¼ºÀ¸·Î Àü ¼¼°èÀûÀ¸·Î ¹Þ¾Æµé¿©Áö°í ÀÖ½À´Ï´Ù. ¼ÒºñÀÚÀÇ ¼±È£µµ°¡ ÄèÀûÇÔÀÌ ¶Ù¾î³ Áö¼Ó°¡´ÉÇÑ Á¶¸íÀ¸·Î À̵¿Çϸé¼, µû¶æÇÑ ¹é»ö Çü±¤Ã¼´Â ´Ù¾çÇÑ ¿ëµµ·Î ä¿ëÀ» À̲ø°í ÀÖÀ¸¸ç, LED Çü±¤Ã¼ ½ÃÀå¿¡¼ È®°íÇÑ ÁöÀ§¸¦ È®º¸Çϰí ÀÖ½À´Ï´Ù.
Áúȹ°°è Çü±¤Ã¼ ºÎ¹®Àº ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀÌ ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È, Áúȹ°°è Çü±¤Ã¼ ºÎ¹®Àº Ź¿ùÇÑ ¼º´É Ư¼º¿¡ °ßÀÎµÇ¾î °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. °íÈ¿À², ¶Ù¾î³ ³»¿¼º, ¾ÈÁ¤µÈ Ãâ·ÂÀ¸·Î ¾Ë·ÁÁø Áúȹ°°è Çü±¤Ã¼´Â °íÃâ·Â ¹× Àå¼ö¸íÀÇ LED ¿ëµµ¿¡ ƯÈ÷ À¯È¿ÇÕ´Ï´Ù. Â÷·®¿ë Á¶¸í, ¾÷¹«¿ë µð½ºÇ÷¹ÀÌ, ¶Ù¾î³ ¿¬»ö¼º°ú ¾ÈÁ¤µÈ ÈÖµµ¸¦ ÇÊ¿ä·Î ÇÏ´Â °í±Þ Á¶¸í ½Ã½ºÅÛ µî¿¡ Æø³Ð°Ô ÀÀ¿ëµÇ°í ÀÖ½À´Ï´Ù. ±íÀº ºÓÀº »öÀ» ½ÇÇöÇÒ ¼ö Àֱ⠶§¹®¿¡ ½Ã°¢ÀûÀΠǰÁúÀÌ Çâ»óµÇ°í °í±Þ Á¶¸í ¼Ö·ç¼ÇÀ¸·Î ÀαⰡ ÀÖ½À´Ï´Ù. ³»±¸¼º°ú Á¤¹Ðµµ¸¦ ¸ðµÎ °®Ãá LED¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁö´Â °¡¿îµ¥, Áúȹ°°è Çü±¤Ã¼´Â ¾÷°è¿¡¼ °¡Àå ºü¸£°Ô ¼ºÀåÇÏ´Â Ä«Å×°í¸®·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº Áß±¹, ÀϺ», Çѱ¹, ÀεµÀÇ »ý»ê ÀÎÇÁ¶ó°¡ Áö¹èÀûÀ̱⠶§¹®¿¡ ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ Áö¿ªÀÇ ¸®´õ½ÊÀº ±Þ¼ÓÇÑ »ê¾÷È, ¼ÒºñÀÚ¿ë ÀüÀÚ±â±âÀÇ »ý»ê È®´ë, ÀÚµ¿Â÷ Á¶¸í¿¡¼ LED ºÎǰÀÇ »ç¿ë ±ÞÁõ¿¡ ÀÇÇØ Áö¿øµÇ°í ÀÖ½À´Ï´Ù. ¿¡³ÊÁö Àý¾àÀ» ÃËÁøÇÏ´Â ±ÔÁ¦ Á¤Ã¥°ú È¿À²ÀûÀÎ Á¶¸í¿¡ ´ëÇÑ º¸Á¶±ÝÀÌ ÀÌ Áö¿ª¿¡¼ÀÇ º¸±ÞÀ» ´õ¿í °ÈÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ºñ¿ë ¿ìÀ§, ¼÷·Ã ³ëµ¿·Â °¡¿ë¼º, °·ÂÇÑ ¹°·ù ³×Æ®¿öÅ©°¡ Á¦Á¶¾÷ÀÇ ¿ìÀ§¸¦ °ÈÇϰí ÀÖ½À´Ï´Ù. µµ½Ã Àα¸ Áõ°¡, ±¸¸Å·Â Çâ»ó, ȯ°æ Ä£ÈÀûÀÎ Á¶¸í¿¡ ´ëÇÑ ÀǽÄÀÌ ³ô¾ÆÁü¿¡ µû¶ó ¾Æ½Ã¾ÆÅÂÆò¾çÀº ´Ù¸¥ Áö¿ªÀ» Å©°Ô À̲ø¾î ½ÃÀå Á¡À¯À² ÀÚ¸®¸¦ ±»È÷°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¼ºÀåÀº ±Þ¼ÓÇÑ µµ½ÃÈ, ¿¡³ÊÁö È¿À²ÀûÀÎ Á¶¸í ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ÀÎÇÁ¶ó Á¤ºñ¿¡ ´ëÇÑ ¸¹Àº ÅõÀÚ µîÀÇ ¿äÀÎ ¶§¹®ÀÔ´Ï´Ù. Áß±¹, Àεµ, ÀϺ»°ú °°Àº ±¹°¡µéÀº ÁÖÅÃ, »ó¾÷, »ê¾÷ ¿ëµµ¸¦ Æ÷ÇÔÇÑ ´Ù¾çÇÑ ºÐ¾ß¿¡¼ LED ±â¼úÀÇ Ã¤ÅÃÀ» ¼±µµÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ ¼ºÀåÀº Áö¼Ó °¡´ÉÇÑ Á¶¸í ¼Ö·ç¼ÇÀ» ÃßÁøÇÏ´Â À¯¸®ÇÑ Á¤ºÎ Á¤Ã¥°ú LED Çü±¤Ã¼ ±â¼úÀÇ ¹ßÀü¿¡ ÀÇÇØ ´õ¿í Áö¿øµÇ°í ÀÖ½À´Ï´Ù. ±× °á°ú ¾Æ½Ã¾ÆÅÂÆò¾çÀº ¼¼°èÀÇ LED Çü±¤Ã¼ ½ÃÀå¿¡¼ °¡Àå ºü¸£°Ô ¼ºÀåÇÏ´Â Áö¿ªÀÇ ÁöÀ§¸¦ À¯ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
According to Stratistics MRC, the Global Led Phosphor Market is accounted for $2.10 billion in 2025 and is expected to reach $4.28 billion by 2032 growing at a CAGR of 10.7% during the forecast period. Phosphors in LEDs play a critical role in transforming the narrow-band emission of LED chips, which commonly produce blue or ultraviolet light, into a wide range of visible wavelengths. This conversion allows the creation of white light with desirable brightness and accurate color rendering. Typically derived from rare earth elements or other luminescent materials, phosphors absorb short-wavelength photons and release them at longer wavelengths. By mixing the original chip output with phosphor-emitted light, manufacturers can tailor different white tones and color effects. Their efficiency, stability under heat, and long lifespan make LED phosphors indispensable in lighting solutions, electronic displays, automotive illumination, and screen backlighting.
According to data from the U.S. Department of Energy (DOE), LED lighting accounted for over 50% of all lighting installations in the U.S. by 2023, with projections indicating near-universal adoption by 2035. This widespread shift to LEDs drives demand for high-performance phosphors that enable better color rendering and energy efficiency.
Rising demand for energy-efficient lighting
Growing emphasis on energy conservation is significantly boosting the LED phosphor market. Unlike conventional lighting systems that require more power and frequent replacements, LEDs provide higher energy efficiency and longer operating lifespans. Many governments are enforcing policies to reduce reliance on older lighting technologies, thereby encouraging the use of LEDs. Phosphor technology plays a central role in generating high-quality white light with improved brightness and color accuracy. As industries, households, and cities shift toward greener technologies, the cost-effectiveness of LED solutions adds further appeal. The combined effect of environmental responsibility and economic savings continues to drive steady growth in phosphor-based LED lighting.
Supply chain dependence on rare earth materials
A critical restraint for the LED phosphor market is its dependency on rare earth resources, essential for producing high-performance phosphors. Since these materials are mined primarily in limited regions, the supply chain remains highly vulnerable to disruptions. Political conflicts, trade barriers, and strict mining regulations often lead to fluctuations in supply and prices, creating uncertainty for LED manufacturers. Smaller companies particularly struggle to cope with these challenges, while larger firms absorb the costs more effectively. This reliance on restricted sources makes the market unstable, and unless alternative raw materials or diversified suppliers are developed, phosphor production will face ongoing risks.
Advancements in phosphor technology
Emerging innovations in phosphor development are unlocking new growth prospects for the LED phosphor market. Scientists are focusing on creating next-generation phosphor compounds that deliver higher efficiency, stability at elevated temperatures, and better color rendering. These improvements allow LEDs to achieve enhanced brightness, durability, and versatility for broader applications. The rise of nanophosphors and quantum dots is revolutionizing lighting design by enabling precise color tuning and superior visual quality. Additionally, advancements help reduce costs over time by improving material efficiency. With growing adoption of smart lighting, medical displays, and immersive entertainment technologies, phosphor innovations are becoming a vital driver of future opportunities.
Availability of substitute technologies
Substitute technologies represent a growing risk for the LED phosphor industry. Innovations such as organic LEDs (OLEDs), quantum dots, and laser lighting are becoming popular because of their flexibility, efficiency, and superior performance in applications like displays and automotive systems. As these alternatives improve in cost and scalability, they may replace traditional phosphor-based LEDs in several sectors. The rapid adoption of next-generation display and lighting solutions highlights the vulnerability of phosphors to being phased out. Unless manufacturers continue to enhance efficiency, durability, and affordability, substitutes could gradually capture significant market share, undermining the long-term viability of phosphor technologies.
The outbreak of COVID-19 had a mixed impact on the LED phosphor industry. On one hand, disruptions in global supply chains, restrictions on trade, and factory shutdowns caused shortages of rare earth materials and slowed production. Declines in automotive manufacturing, construction projects, and commercial activities reduced immediate demand for LED-based solutions. On the other hand, the surge in digital device usage, medical lighting needs, and energy-efficient technologies provided new opportunities for LED phosphors. As economies reopened, investment in smart infrastructure and sustainable lighting projects supported market recovery. Overall, the pandemic emphasized both vulnerabilities and long-term growth prospects in the LED phosphor market.
The warm white phosphors segment is expected to be the largest during the forecast period
The warm white phosphors segment is expected to account for the largest market share during the forecast period. They are highly valued for producing soothing, natural-toned light that enhances comfort and ambiance, making them ideal for residential, commercial, and hospitality spaces. These phosphors are commonly integrated into indoor lighting, decorative designs, and environments where warm and inviting illumination is desired. Their efficiency, visual appeal, and compatibility with energy-saving LED technology increase their acceptance worldwide. As consumer preference shifts toward sustainable lighting with superior comfort, warm white phosphors continue to lead adoption across diverse applications, securing their strong position within the LED phosphor market.
The nitride-based phosphors segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the nitride-based phosphors segment is predicted to witness the highest growth rate, driven by its outstanding performance characteristics. Known for high efficiency, excellent thermal resistance, and stable output, these phosphors are particularly effective in high-power and long-life LED applications. They are extensively applied in automotive lighting, professional displays, and advanced illumination systems requiring superior color rendering and consistent brightness. Their capability to deliver deep red tones enhances visual quality, making them popular for premium lighting solutions. With rising demand for LEDs offering both durability and precision, nitride-based phosphors are emerging as the fastest-expanding category in the industry.
During the forecast period, the Asia Pacific region is expected to hold the largest market share, owing to its dominant production infrastructure in China, Japan, South Korea, and India. Its leadership is supported by fast-paced industrialization, expanding output of consumer electronics, and surging use of LED components in automotive lighting. Regulatory policies promoting energy conservation, along with subsidies for efficient lighting, further boost regional uptake. Moreover, cost advantages, availability of skilled workforce, and strong logistics networks strengthen its manufacturing edge. Rising urban populations, more purchasing power, and greater awareness for greener lighting are reinforcing Asia-Pacific's position as the top region by market share, well ahead of other geographical areas.
Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR. This growth is attributed to factors such as swift urbanization, an escalating demand for energy-efficient lighting solutions, and significant investments in infrastructure development. Countries like China, India, and Japan are spearheading the adoption of LED technologies across various sectors, including residential, commercial, and industrial applications. The region's growth is further supported by favorable government policies promoting sustainable lighting solutions and advancements in LED phosphor technologies. As a result, APAC is expected to maintain its position as the fastest-growing region in the global LED phosphor market.
Key players in the market
Some of the key players in Led Phosphor Market include Beijing Yuji International Co. Ltd, Intematix Corporation, Phosphor Tech Corporation, Denka Co., Ltd, Nichia Corporation, Mitsubishi Chemical Corporation, Edison Opto Corporation, General Electric Company, Harvatek Corporation, Leuchtstoffwerk Breitungen GmbH, Lumileds Holding B.V., Luming Technology Group Co., Ltd., Materion Corporation, Nippon Electric Glass Co., Ltd. and OSRAM GmbH.
In August 2025, Mitsubishi Chemical Corporation is pleased to announce that it signed an Agreement on Coordination and Cooperation for the Maintenance and Development of the Yokkaichi Industrial Complex with Mie Prefecture and Yokkaichi City, the aim of which is to utilize the industrial complex to help bring about a carbon-neutral society.
In May 2025, Materion announced that it has agreed to purchase manufacturing assets for tantalum solutions in Dangjin City, South Korea. This strategic investment expands Materion's global footprint with a facility in Asia to better serve semiconductor customers in that region. The transaction includes a newly constructed, state-of-the-art facility with specialized equipment used to produce fully finished tantalum sputtering targets.
In April 2024, Denka Company Limited (Denka) and Mitsubishi Corporation (MC) are pleased to announce our signing of a joint-venture agreement in the business of fullerenes, carbon molecules that form the base of cutting-edge materials in the field of nanotechnology. Under the terms of our agreement, Denka shall acquire from MC a 50% stake in Frontier Carbon Corporation (FCC), a company dedicated to the manufacturing and sales of fullerenes.