Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ÀÚµ¿ Æó±â¹° ºÐ·ù ¹× ÀçȰ¿ë ½Ã½ºÅÛ ½ÃÀåÀº 2025³â¿¡ 10¾ï 4,409¸¸ ´Þ·¯¸¦ Â÷ÁöÇϰí, ¿¹Ãø ±â°£ Áß CAGRÀº 8.5%¸¦ ³ªÅ¸³», 2032³â¿¡´Â 18¾ï 4,819¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹»óµÇ°í ÀÖ½À´Ï´Ù.
ÀÚµ¿ Æó±â¹° ºÐ·ù, ÀçȰ¿ë ½Ã½ºÅÛÀº AI, ÄÄÇ»ÅÍ ºñÀü, ·Îº¿ °øÇÐ µîÀÇ ¼±Áø ±â¼úÀ» Ȱ¿ëÇÏ¿© Æó±â¹°À» ½Äº°, ºÐ¸®, ºÐ·ùÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ÇÃ¶ó½ºÆ½, ±Ý¼Ó, À¯¸®, Á¾À̸¦ Á¤È®ÇÏ°Ô ±¸ºÐÇÏ¿© ÀçȰ¿ë È¿À²À» Çâ»ó½Ã۰í ÀÎÀû ½Ç¼ö¿Í ÀΰǺñ¸¦ Àý°¨ÇÕ´Ï´Ù. ÀÚµ¿È´Â Áö¼Ó °¡´ÉÇÑ Æó±â¹° °ü¸®¸¦ Áö¿øÇÏ¸é¼ Ã³¸® ´É·Â, Àç·á ¼øµµ ¹× ÀÛ¾÷ ¾ÈÀüÀ» Çâ»ó½Ãŵ´Ï´Ù. µµ½Ã Áö¿ªÀÇ Æó±â¹° ¹ß»ý·® Áõ°¡, ¾ö°ÝÇÑ È¯°æ ±ÔÁ¦, ¼øÈ¯Çü °æÁ¦ ¿øÄ¢¿¡ ´ëÇÑ °ü½É Áõ°¡°¡ ¼¼°è ½ÃÀå È®´ëÀÇ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù.
µµ½ÃÆó±â¹° ¹ß»ý·® Áõ°¡
±Þ¼ÓÇÑ µµ½ÃÈ¿Í 1ÀÎ´ç ¼Òºñ·® Áõ°¡´Â Á¾·¡ÀÇ ¸Å¸³Áö³ª ¼öÀÛ¾÷¿¡ ÀÇÇÑ ºÐ·ù ¹æ¹ýÀ» ¾ÐµµÇϰí ÀÖ¾î ó¸® ´É·ÂÀÇ Çâ»ó°ú È¿À²È°¡ ±Þ¹«°¡ µÇ°í ÀÖ½À´Ï´Ù. ÀÚµ¿È ½Ã½ºÅÛÀº ÀÌ·¯ÇÑ ´ë·®ÀÇ Æó±â¹° È帧À» °ü¸®ÇÏ´Â µ¥ ÇÊ¿äÇÑ È®À强, ó¸® ´É·Â ¹× ºÐ·ù Á¤È®µµ¸¦ Á¦°øÇÏ¿© ÀÚ¿ø ȸ¼ö ½Ã¼³(MRF)ÀÌ ¾ö°ÝÇÑ ÀçȰ¿ë ¸ñÇ¥¸¦ ´Þ¼ºÇÏ°í ¸Å¸³Áö¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¾÷¹« È¿À²°ú ±ÔÁ¦ Áؼö ¿ä±¸´Â Æó±â¹° °ü¸®ÀÇ ¹ë·ùüÀÎ Àü¹Ý¿¡ °ÉÄ£ ÀÚµ¿È ±â¼ú¿¡ ´ëÇÑ ¼³ºñ ÅõÀÚ¸¦ Á÷Á¢ µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.
°í¾× ¼³ºñ ÅõÀÚ
±¤ÇÐ ºÐ·ù±â, AI žÀç ·Îº¿, °í±Þ ÄÁº£ÀÌ¾î ½Ã½ºÅÛ°ú °°Àº °í±Þ ±¸¼º ¿ä¼ÒÀÇ ÅëÇÕ¿¡´Â Á¶´Þ, ¼³Ä¡ ¹× ÅëÇÕ¿¡ »ó´çÇÑ Ãʱ⠺ñ¿ëÀÌ µì´Ï´Ù. °Ô´Ù°¡ ÀÌ ÀçÁ¤Àû À庮Àº ¿¹»ê¿¡ Á¦¾àÀ» ¹Þ´Â ÁöÀÚüÀÇ Æó±â¹° °ü¸® ÇÁ·Î±×·¥°ú ¼Ò±Ô¸ð »ç¾÷Àڵ鿡°Ô ƯÈ÷ ¾î·Á¿ö ÅõÀÚ ¼öÀÍ·ü(ROI) ±â°£ÀÌ ±æ¾îÁö°í ÀÚ±Ý Á¶´Þ ½ÂÀÎÀÌ º¹ÀâÇØÁý´Ï´Ù. ±× °á°ú, °íºñ¿ë ±¸Á¶°¡ ÀáÀçÀûÀΠä¿ë ±â¾÷À» ¾ïÁ¦Çϰí, ´ë±Ô¸ð ¹Î°£ ±â¾÷À» ¿ì´ëÇϰí, °¡°Ý¿¡ ¹Î°¨ÇÑ ½ÃÀå¿¡¼ÀÇ º¸±ÞÀ» Á¦ÇÑÇÒ °¡´É¼ºÀÌ ÀÖ½À´Ï´Ù.
°í±Þ AI ºÐ·ù ¾Ë°í¸®Áò °³¹ß
°í±Þ ÀΰøÁö´É(AI)°ú ¸Ó½Å·¯´×(ML) ºÐ·ù ¾Ë°í¸®ÁòÀÇ °³¹ßÀº Å« ½ÃÀå ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. ÀÌµé ±â¼úÀº Àç·áÀÇ ÀÎ½Ä Á¤¹Ðµµ¸¦ Çâ»ó½ÃÄÑ, Èæ»ö ÇÃ¶ó½ºÆ½À̳ª ´ÙÃþ Æ÷Àå µî, Áö±Ý±îÁö ºÐ·ùÀÌ °ï¶õÇß´ø º¹ÀâÇÑ Àç·áÀÇ È帧ÀÇ ½Äº°°ú ºÐ¸®¸¦ °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á, ½Ã½ºÅÛÀÇ ´É·ÂÀ» ´ëÆø Çâ»ó½Ãŵ´Ï´Ù. ¶ÇÇÑ Áö¼ÓÀûÀÎ ÇнÀ ¾Ë°í¸®ÁòÀ» ÅëÇØ ½Ã½ºÅÛÀº ÁøÈÇÏ´Â Æó±â¹° Á¶¼º¿¡ ÀûÀÀÇÏ¿© Ãâ·Â ºÐȹÀÇ ¼øµµ¿Í Àüü ȸ¼öÀ²À» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ÀÌ ±â¼ú Çõ½ÅÀº ±â¼ú °ø±Þ¾÷ü¿¡°Ô »õ·Î¿î ¼öÀÍ¿øÀ» âÃâÇϰí ÀçȰ¿ë ¾÷ü¿¡°Ô ´õ ³ôÀº ºñÁî´Ï½º È¿À²¼º°ú °æÁ¦Àû ½ÇÇà °¡´É¼ºÀ» Çâ»ó½ÃŰ´Â ±æÀ» Á¦°øÇÕ´Ï´Ù.
Àϰü¼ºÀÌ ¾ø´Â Æó±â¹° Á¶¼º
Æó±â¹°ÀÇ À¯Çü, »çÀÌÁî, Çü»ó, ÇÔ¼öÀ²¿¡ ÆíÂ÷°¡ ÀÖÀ¸¸é, ÀÚµ¿È ½Ã½ºÅÛÀÇ °ËÁö¡¤±â°èÀû ºÐ¸® ¸ÞÄ¿´ÏÁò¿¡ °úÁ¦°¡ »ý°Ü, ºÐ·ù ¿¡·¯, ½Ã½ºÅÛ Àë, Ãâ·Â ¼øµµÀÇ ÀúÇÏ·Î À̾îÁý´Ï´Ù. ÀÌ·¯ÇÑ ºÒÀÏÄ¡´Â ÀÚº» Áý¾àÀûÀÎ ½Ã½ºÅÛÀÇ ¿î¿µ È¿À²¼º°ú °æÁ¦Àû ÀÌÀÍÀ» °¨¼Ò½Ãų ¼ö ÀÖ½À´Ï´Ù. °Ô´Ù°¡, ƯÈ÷ À¯±â¹°¿¡ ÀÇÇÑ ³ôÀº ¿À¿° ¼öÁØÀº Àüó¸® ¹× À¯Áöº¸¼ö Áõ°¡¸¦ ÇÊ¿ä·Î Çϰí, ¿î¿µ ºñ¿ëÀ» Áõ°¡½Ã۰í, ÀÚµ¿È ¼Ö·ç¼Ç¿¡ ´ëÇÑ ÃÖÁ¾ »ç¿ëÀÚÀÇ ½Å·Ú¸¦ ¼Õ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.
COVID-19 ÆÒµ¥¹ÍÀº óÀ½¿¡´Â ÀÚµ¿ Æó±â¹° ºÐ·ù ½ÃÀåÀ» È¥¶õ½º·´°Ô Çϰí, Áß¿äÇÑ Çϵå¿þ¾î ºÎǰ °ø±Þ¸ÁÀÇ Áö¿¬À» ÀÏÀ¸ÄÑ, ¶ô´Ù¿î°ú »çȸÀû °Å¸®¸¦ µÎ´Â ÇÁ·ÎÅäÄÝÀ» À§ÇØ ÇÁ·ÎÁ§Æ®ÀÇ Àü°³¸¦ Áö¿¬½ÃÄ×½À´Ï´Ù. »ê¾÷ Æó±â¹°°ú »ó¾÷ Æó±â¹°ÀÇ ¾çÀÌ ±Þ°¨ÇÏ¿© ºÐ·ù ´É·Â¿¡ ´ëÇÑ ´ç¸é ¼ö¿ä´Â ÀϽÃÀûÀ¸·Î °¨¼ÒÇß½À´Ï´Ù. ±×·¯³ª ÀÌ À§±â´Â Æó±â¹° 󸮿¡¼ »ç¶÷ÀÇ °³ÀÔÀ» ÃÖ¼ÒÈÇÒ Çʿ伺À» °Á¶Çϰí ÀÚµ¿ÈÀÇ À§»ýÀûÀÎ ÀÌÁ¡À» ºÎ°¢½ÃÄ×½À´Ï´Ù. ÀÌ·¯ÇÑ ÀνÄÀº Æó±â¹° ¹ß»ý·®ÀÇ È¸º¹°ú °ÀÎÇÑ ÀçȰ¿ë ÀÎÇÁ¶ó ±¸Ãà¿¡ ´ëÇÑ Áַ°ú ÇÔ²² ½ÃÀåÀÇ È¸º¹°ú Àå±âÀûÀÎ µµÀÔ °èȹÀ» °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È Çϵå¿þ¾î ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ °ÍÀ¸·Î ¿¹»ó
ÀÚµ¿ ºÐ·ù ½Ã½ºÅÛÀÇ ÇÙ½ÉÀÌ µÇ´Â °ß°íÇÑ ¹°¸®ÀûÀÎÇÁ¶ó°¡ ±âº» ¿ä°ÇÀ̱⠶§¹®¿¡ ¿¹Ãø ±â°£ µ¿¾È Çϵå¿þ¾î ºÐ¾ß°¡ ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ºÎ¹®Àº ±¤ÇÐ ºÐ·ù±â, ¿¡¾î Á¦Æ®, ½´·¹´õ, º£ÀÏ·¯, °í±Þ ÄÁº£ÀÌ¾î ½Ã½ºÅÛ°ú °°Àº ÀÚº» Áý¾àÀûÀÎ Çʼö ±¸¼º ¿ä¼Ò¸¦ Æ÷ÇÔÇϸç Ãʱ⠽ýºÅÛ ºñ¿ëÀÇ ´ëºÎºÐÀ» Â÷ÁöÇÕ´Ï´Ù. ÁöÀÚü ¹× Æó±â¹° °ü¸® ȸ»ç°¡ ÀÚ¿ø ȸ¼ö ½Ã¼³(MRF)ÀÇ ¼³¸³ ¹× ¾÷±×·¹À̵忡 ÅõÀÚÇÏ´Â µ¿¾È, ÀÌ·¯ÇÑ ³»±¸¼ºÀÌ ¶Ù¾î³ª°í ó¸® ´É·ÂÀÌ ³ôÀº ÀåºñÀÇ Á¶´ÞÀº ÀÌ ºÎ¹®ÀÇ ¼öÀÍÀ» Å©°Ô ¹Ð¾î ¿Ã¸®°í ¿¹Ãø ±â°£ µ¿¾È ½ÃÀåÀÇ ¼±µÎ ÁÖÀÚÀÓÀ» º¸ÀåÇÕ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ÀüÀÚ Æó±â¹° ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ÀüÀÚ Æó±â¹° ºÐ¾ß´Â Á¦Ç° ¼ö¸íÁÖ±âÀÇ ´ÜÃà°ú ±Þ¼ÓÇÑ ±â¼úÀû ÁøºÎÈ·Î ÀÎÇØ ¼¼°èÀûÀ¸·Î ÀüÀÚ Æó±â¹°ÀÇ ¾çÀÌ Áõ°¡Çϰí Àֱ⠶§¹®¿¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¾ö°ÝÇÑ Á¤ºÎ ±ÔÁ¦¿Í È®´ë »ý»êÀÚ Ã¥ÀÓ(EPR)ÀÇ Àǹ«È´Â ±Í±Ý¼Ó°ú À¯Çع°ÁúÀ» ȸ¼öÇϱâ À§ÇØ ÀüÀÚ±â±âÀÇ ÀûÀýÇÑ ÀçȰ¿ëÀ» °Á¦Çϰí ÀÖÀ¸¸ç, ÀÌ´Â ÁÖ¿ä ¼ºÀå ¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ±Ý, ±¸¸®, ÈñÅä·ù ¿ø¼Ò¿Í °°Àº ȸ¼ö¹°ÀÇ °æÁ¦Àû °¡Ä¡°¡ ³ô±â ¶§¹®¿¡ ÀÚµ¿ ºÐ·ùÀº e-waste 󸮿¡ ¿ä±¸µÇ´Â Á¤¹Ðµµ¸¦ ´Þ¼ºÇϱâ À§ÇØ °áÁ¤ÀûÀ¸·Î À¯ÀÍÇϰí ÇÊ¿äÇÑ ¼Ö·ç¼ÇÀÌ µÇ¾î °Ý·ÄÇÑ ÅõÀÚ¿Í ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾ö°ÝÇÑ È¯°æ ±ÔÁ¦, ³ôÀº ±â¼ú µµÀÔ·ü ¹× È®¸³µÈ Æó±â¹° °ü¸® ÀÎÇÁ¶ó°¡ ºÏ¹Ì°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÁÖ¿ä ½ÃÀå ±â¾÷ÀÇ Á¸Àç¿Í Àç·á ȸ¼ö ½Ã¼³(MRF)ÀÇ Çö´ëȸ¦ ÅëÇØ ³ôÀº ÀçȰ¿ë·üÀ» ´Þ¼ºÇϱâÀ§ÇÑ °ÇÑ ÁÖ·ÂÀº ÁÖ¿ä °øÇå ¿äÀÎÀÔ´Ï´Ù. °Ô´Ù°¡ 1ÀÎ´ç Æó±â¹° ¹ß»ý·®ÀÌ ¸¹¾Æ °ø°ø´Üü¿Í ¹Î°£´Üü ¸ðµÎ¿¡¼ ¸¹Àº ÅõÀÚ ´É·ÂÀÌ ÀÖ¾î °íµµÀÇ ÀÚµ¿ºÐ·ù½Ã½ºÅÛ Á¶´ÞÀÌ ¿ëÀÌÇÏ°í ¿¹Ãø ±â°£À» ÅëÇØ ÀÌ Áö¿ªÀÌ ¼¼°è ½ÃÀå¿¡¼ Áö¹èÀûÀÎ ÁöÀ§¸¦ ±»È÷°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î Àü¸ÁµË´Ï´Ù. ÀÌ´Â ±Þ¼ÓÇÑ »ê¾÷È, µµ½ÃÈ, ¾ÐµµÀûÀÎ Æó±â¹° °ü¸®ÀÇ ¾î·Á¿ò¿¡ ¸Â¼±â À§ÇÑ Á¤ºÎ ÀÌ´Ï¼ÅÆ¼ºê Áõ°¡¸¦ µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. Áß±¹, Àεµ, ÀϺ»°ú °°Àº ±¹°¡µéÀº ¾ö°ÝÇÑ Æó±â¹° ¼öÀÔ ±ÝÁö¿Í ±¹³» ÀçȰ¿ë Á¤Ã¥À» ½ÃÇàÇϰí ÀÖÀ¸¸ç Çö´ëÀûÀÎ ºÐº° ÀÎÇÁ¶óÀÇ ±ä±Þ ¿ä±¸¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ȯ°æ ÀÇ½Ä Áõ°¡, ½º¸¶Æ® ½ÃƼ ÇÁ·ÎÁ§Æ® ÅõÀÚ Áõ°¡, »ê¾÷ ±â¹Ý È®´ë°¡ ÀÚµ¿ ÀçȰ¿ë ±â¼ú äÅÃÀ» °¡¼ÓÈÇϰí ÀÖÀ¸¸ç, ÀÌ Áö¿ªÀº ¼¼°è ½ÃÀå¿¡¼ °¡Àå ¿ªµ¿ÀûÀÎ ¼ºÀåÀ» ÀÌ·ç°í ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Automated Waste Sorting and Recycling Systems Market is accounted for $1044.09 million in 2025 and is expected to reach $1848.19 million by 2032 growing at a CAGR of 8.5% during the forecast period. Automated waste sorting and recycling systems leverage advanced technologies like AI, computer vision, and robotics to identify, separate, and sort waste materials. These systems improve recycling efficiency by accurately distinguishing plastics, metals, glass, and paper, reducing human error and labor costs. Automation enhances throughput, material purity, and operational safety while supporting sustainable waste management. Increasing urban waste generation, strict environmental regulations, and a growing focus on circular economy principles are driving market expansion globally.
Increasing urban waste generation
Rapid urbanization and increasing per capita consumption are overwhelming traditional landfill and manual sorting methods, creating an urgent need for higher processing capacity and efficiency. Automated systems provide the requisite scalability, throughput, and sorting precision to manage these voluminous waste streams, enabling material recovery facilities (MRFs) to meet stringent recycling targets and reduce landfill dependency. This demand for operational efficiency and regulatory compliance directly fuels capital investment in automation technologies across the waste management value chain.
High capital investment
The integration of sophisticated components like optical sorters, AI-powered robots, and advanced conveyor systems entails substantial upfront costs for procurement, installation, and integration. Moreover, this financial barrier is particularly challenging for municipal waste management programs and smaller operators with constrained budgets, lengthening the return on investment (ROI) period and complicating funding approvals. Consequently, the high cost structure can deter potential adopters, favoring large-scale private enterprises and limiting penetration in price-sensitive markets.
Development of advanced AI sorting algorithms
The development of advanced artificial intelligence (AI) and machine learning (ML) sorting algorithms presents a substantial market opportunity. These technologies significantly enhance system capabilities by improving material recognition accuracy, enabling the identification and separation of complex material streams previously difficult to sort, such as black plastics and multi-layered packaging. Additionally, continuous learning algorithms allow systems to adapt to evolving waste compositions, increasing purity of output fractions and overall recovery rates. This innovation creates new revenue streams for technology providers and offers recyclers a path to higher operational efficiency and improved economic viability.
Inconsistent waste stream composition
The variability in waste material type, size, shape, and moisture content can challenge the sensing and mechanical separation mechanisms of automated systems, leading to sorting errors, system jams, and reduced output purity. This inconsistency can diminish the operational efficacy and economic returns of these capital-intensive systems. Furthermore, high contamination levels, especially from organic matter, can necessitate increased pre-processing and maintenance, raising operational costs and potentially eroding end-user confidence in automation solutions.
The COVID-19 pandemic initially disrupted the automated waste sorting market, causing supply chain delays for critical hardware components and slowing project deployments due to lockdowns and social distancing protocols. A sharp decline in industrial and commercial waste volumes temporarily reduced the immediate demand for sorting capacity. However, the crisis underscored the necessity for minimal human intervention in waste handling, highlighting the hygienic advantages of automation. This awareness, coupled with a rebound in waste generation and a focus on building resilient recycling infrastructure, is accelerating market recovery and long-term adoption plans.
The hardware segment is expected to be the largest during the forecast period
The hardware segment is expected to account for the largest market share during the forecast period attributed to the fundamental requirement for robust physical infrastructure to form the core of any automated sorting system. This segment includes essential capital-intensive components such as optical sorters, air jets, shredders, balers, and advanced conveyor systems, which represent the most significant portion of initial system costs. As municipalities and waste management firms invest in establishing and upgrading their material recovery facilities (MRFs), the procurement of this durable and high-throughput equipment drives substantial segment revenue, ensuring its continued market leadership throughout the forecast period.
The e-waste segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the e-waste segment is predicted to witness the highest growth rate due to the escalating global volume of electronic waste, driven by short product lifecycles and rapid technological obsolescence. Strict government regulations and extended producer responsibility (EPR) mandates compelling the proper recycling of electronics to recover precious metals and hazardous materials are key growth factors. Additionally, the high economic value of recovered materials like gold, copper, and rare-earth elements makes automated sorting a critically profitable and necessary solution for achieving the precision required in e-waste processing, thereby fueling intense investment and growth.
During the forecast period, the North America region is expected to hold the largest market share, driven by stringent environmental regulations, high technological adoption rates, and well-established waste management infrastructure. The presence of major market players and a strong focus on achieving high recycling rates through material recovery facility (MRF) modernization are key contributors. Moreover, high per capita waste generation and significant investment capabilities from both public and private entities facilitate the procurement of advanced automated sorting systems, solidifying the region's dominant position in the global market throughout the forecast period.
Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR, fueled by rapid industrialization, urbanization, and growing governmental initiatives to combat overwhelming waste management challenges. Countries like China, India, and Japan are implementing stringent waste import bans and domestic recycling policies, creating a urgent need for modern sorting infrastructure. Furthermore, increasing environmental awareness, rising investments in smart city projects, and the expanding industrial base are driving the accelerated adoption of automated recycling technologies, positioning the region for the most dynamic growth in the global market.
Key players in the market
Some of the key players in Automated Waste Sorting and Recycling Systems Market include TOMRA, AMCS Group, ZenRobotics, Bulk Handling Systems, Pellenc ST, Machinex Industries, Steinert, REDWAVE, SUEZ, Veolia, AMP Robotics, Recycleye, Buhler Group, Waste Robotics, MariMatic and Envac.
In August 2025, BHS was awarded a contract to design, manufacture, and install the NextGen Integrated Processing System at the Sunnyvale Materials Recovery and Transfer (SMaRT) Station(R).
In May 2025, TOMRA unveiled its Rotake system at the Reuse Economy Expo in Paris. This reverse vending machine (RVM) accepts reusable food containers and refunds deposits instantly to consumers' mobile wallets.
In April 2025, STEINERT expanded its centre of excellence for near-infrared (NIR) technology at its site in Zittau, Germany, to enhance its sensor-based sorting systems.