¼¼°èÀÇ ÇÁ¸°Æ¼µå ¹× ÀÓº£µðµå ¼¾¼­ ÀÏ·ºÆ®·Î´Ð½º ½ÃÀå ¿¹Ãø(-2032³â) - ±¸¼º ¿ä¼Òº°, ¼¾¼­º°, ÇÁ¸°ÆÃ ¹× Á¦Á¶ °øÁ¤º°, ¿ëµµº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®
Printed and Embedded Sensor Electronics Market Forecasts to 2032 - Global Analysis By Component, Sensor, Printing & Manufacturing Process, Application, End User and By Geography
»óǰÄÚµå : 1818046
¸®¼­Ä¡»ç : Stratistics Market Research Consulting
¹ßÇàÀÏ : 2025³â 09¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 200+ Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,150 £Ü 5,968,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 5,250 £Ü 7,551,000
PDF (2-5 User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷Àå¿¡¼­ 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,350 £Ü 9,133,000
PDF & Excel (Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷ÀåÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇÕ´Ï´Ù. Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ¹× Excel ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 7,500 £Ü 10,787,000
PDF & Excel (Global Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 10ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ÇÁ¸°Æ¼µå ¹× ÀÓº£µðµå ¼¾¼­ ÀÏ·ºÆ®·Î´Ð½º ½ÃÀåÀº 2025³â¿¡ 129¾ï 2,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇϰí, 2032³â¿¡´Â 205¾ï 2,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¿¹Ãø ±â°£ ÁßÀÇ CAGRÀº 6.83%¸¦ ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù.

ÇÁ¸°Æ¼µå ¹× ÀÓº£µðµå ¼¾¼­ ÀÏ·ºÆ®·Î´Ð½º´Â Ç÷º¼­ºí ¶Ç´Â ¸®Áöµå ±âÆÇ »ó¿¡ ÀûÃþ Á¦Á¶ ±â¼úÀ» »ç¿ëÇÏ¿© Á¦Á¶µÇ´Â ÄÄÆÑÆ®Çϰí ÅëÇÕ °¡´ÉÇÑ ½Ã½ºÅÛÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¼¾¼­´Â Ç¥¸é¿¡ Á÷Á¢ ÁõÂø ¶Ç´Â ÀÓº£µùÇÏ¿© ȯ°æ, ±¸Á¶ ¶Ç´Â »ý¸®ÇÐÀû ÆÄ¶ó¹ÌÅÍÀÇ ½Ç½Ã°£ ¸ð´ÏÅ͸µÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. Àüµµ¼º À×Å©, ¹Ú¸· ¹× ¹Ì¼¼ °¡°ø ¹æ¹ýÀ» Ȱ¿ëÇÏ¿© ½º¸¶Æ® ÆÐŰ¡, ¿þ¾î·¯ºí ¹× »ê¾÷ ÀÚµ¿È­¸¦ À§ÇÑ °æ·®, Àúºñ¿ë, È®Àå °¡´ÉÇÑ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ¿øÈ°ÇÑ ÅëÇÕÀº ¼ÒºñÀÚ, ÀÇ·á, IoT ¿ëµµÀÇ µ¥ÀÌÅÍ È¹µæ, ½Ã½ºÅÛ ÀÀ´ä¼º ¹× ¼³°èÀÇ ´Ù¾ç¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù.

MDPI°¡ ¹ßÇàÇÑ ÇмúÁö Sensors¿¡ µû¸£¸é 2001³â â°£ ÀÌ·¡ 7¸¸ 2,000°Ç ÀÌ»óÀÇ ³í¹®ÀÌ ¹ßÇ¥µÇ¾î 3¸¸ 5,000°Ç ÀÌ»óÀÇ ³í¹®ÀÌ 10ȸ ÀÌ»ó ÀοëµÇ¾ú½À´Ï´Ù.

»ç¹°ÀÎÅͳÝ(IoT)°ú Ä¿³ØÆ¼µå µð¹ÙÀ̽º ¼ºÀå

»ê¾÷°è¿¡¼­ÀÇ IoT ¿¡ÄڽýºÅÛÀÇ º¸±ÞÀº ÇÁ¸°Æ¼µå ¹× ÀÓº£µðµå ¼¾¼­ ÀÏ·ºÆ®·Î´Ð½º ¼ö¿ä¸¦ Å©°Ô ¹Ð¾î ¿Ã¸®°í ÀÖ½À´Ï´Ù. ÀÌ ¼¾¼­´Â ½Ç½Ã°£ µ¥ÀÌÅÍ ¼öÁý°ú ÀåÄ¡ °£ÀÇ ¿øÈ°ÇÑ Åë½ÅÀ» °¡´ÉÇÏ°Ô ÇÏ¸ç ½º¸¶Æ® Ȩ, »ê¾÷ ÀÚµ¿È­ ¹× ÀÇ·á ¸ð´ÏÅ͸µ ¿ëµµ¸¦ Áö¿øÇÕ´Ï´Ù. ÀÏ·ºÆ®·Î´Ð½ºÀÇ ¼ÒÇüÈ­¿Í ¿§Áö ÄÄÇ»ÆÃÀÇ ´ëµÎ´Â ÀÏ»óÀûÀÎ ¹°Ã¼¿¡ ¼¾¼­ ÅëÇÕÀ» ´õ¿í °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ¿¬°á Ç¥ÁØÀÌ ÁøÈ­ÇÔ¿¡ µû¶ó ÀÓº£µðµå ¼¾¼­´Â ¿¹Ãø ºÐ¼®°ú ÀÚÀ² ½Ã½ºÅÛÀÇ Áß½ÉÀûÀÎ Á¸Àç°¡ µÇ°í ÀÖ½À´Ï´Ù.

¼º´É°ú ³»±¸¼º ¹®Á¦

½Àµµ, ±â°èÀû ½ºÆ®·¹½º, ¿Âµµ º¯µ¿ µîÀÇ ¿äÀÎÀº ¼¾¼­ÀÇ Á¤È®¼º°ú ¼ö¸íÀ» ¼Õ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. Á¦Á¶¾÷ü´Â ÀÌ·¯ÇÑ °úÁ¦¸¦ ±Øº¹Çϱâ À§ÇØ °ß°íÇÑ Ä¸½¶È­ ±â¼ú°ú °í±Þ ±âÆÇ¿¡ ÅõÀÚÇØ¾ß ÇÕ´Ï´Ù. °Ô´Ù°¡ ÀÚµ¿Â÷ ¹× Ç×°ø¿ìÁÖ¿Í °°Àº ¿ªµ¿ÀûÀÎ ÀÀ¿ë ºÐ¾ß¿¡¼­ Àå±âÀûÀÎ ½Å·Ú¼ºÀ» È®º¸ÇÏ´Â °ÍÀº ¿©ÀüÈ÷ ±â¼úÀû Àå¾Ö¹°ÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ³»±¸¼º¿¡ ´ëÇÑ ¿ì·Á´Â Á¤È®¼º°ú ȸº¹·ÂÀ» ¾çº¸ÇÒ ¼ö ¾ø´Â ¹Ì¼Ç Å©¸®Æ¼ÄÃÇÑ ºÐ¾ß¿¡¼­ÀÇ Ã¤¿ëÀ» Áö¿¬½Ãų °¡´É¼ºÀÌ ÀÖ½À´Ï´Ù.

½º¸¶Æ® ¼¶À¯¿Í ÆÐ¼ÇÀÇ »õ·Î¿î ¿ëµµ

Á÷¹°¿¡ ³»ÀåµÈ ÇÁ¸°Æ¼µå ¼¾¼­´Â ½É¹Ú¼ö, ¼öºÐ °ø±Þ, ÀÚ¼¼ µîÀÇ »ý¸®Àû ¸Å°³º¯¼ö¸¦ ¸ð´ÏÅ͸µÇÏ¿© ÇÇÆ®´Ï½º ¹× ÀÇ·á¿¡ ½Ç½Ã°£ Çǵå¹éÀ» Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. µðÀÚÀ̳ʴ Àüµµ¼º À×Å©¿Í À¯¿¬ÇÑ ±âÆÇÀ» »ç¿ëÇÏ¿© ±â´ÉÀûÀÌ°í ¹ÌÇÐÀûÀ¸·Î ¸Å·ÂÀûÀÎ ¿ÊÀ» ¸¸µé°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÆÐ¼Ç°ú ±â¼úÀÇ À¶ÇÕÀº ½ºÆ÷Ã÷¿þ¾î, ¹Ð¸®Å͸® ±â¾î, ÀÇ·á¿ë ÀûÀÀ ÀÇ·ù µî¿¡¼­µµ ÁÖ¸ñÀ» ¹Þ°í ÀÖ½À´Ï´Ù.

ÁöÀû Àç»êÀÇ ´ÜÆíÈ­

ÇÁ¸°Æ¼µå ¼¾¼­¿Í ÀÓº£µðµå ¼¾¼­ ±â¼úÀÇ ±Þ¼ÓÇÑ ±â¼ú Çõ½ÅÀÇ ¼Óµµ´Â ƯÇãÀÇ Áߺ¹°ú ºÒ¸í·áÇÑ ¶óÀ̼±½ÌÀÇ Æ² µî ÁöÀû Àç»êÀÇ ´ÜÆíÈ­¸¦ ÃÊ·¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ´ÜÆíÈ­´Â Çù¾÷À» ¹æÇØÇϰí Á¦Ç° °³¹ßÀ» Áö¿¬½ÃŰ°í ±â¾÷À» ¹ýÀû ºÐÀï¿¡ ³ëÃâ½Ãų ¼ö ÀÖ½À´Ï´Ù. ½ÅÈï±â¾÷°ú Áß¼Ò±â¾÷Àº ƯÈ÷ ´Ù±â´É ¼¾¼­¸¦ µ¶ÀÚÀûÀÎ Ç÷§Æû¿¡ ÅëÇÕÇÏ´Â °æ¿ì º¹ÀâÇÑ ÁöÀûÀç»ê±Ç ÁöÇüÀ» Àß Á¶Á¾Çϴµ¥ ¾î·Á¿òÀ» °ÞÀ» ¼ö ÀÖ½À´Ï´Ù. ÇÕ¸®ÀûÀÎ ÁöÀû Àç»ê °Å¹ö³Í½º°¡ ¾øÀ¸¸é ¼Ò¼Û À§Çè ¹× Áß¿ä ±â¼ú¿¡ ´ëÇÑ ¾×¼¼½º Á¦ÇÑÀ¸·Î ÀÎÇØ ½ÃÀå ¼ºÀåÀÌ ÀúÇØ µÉ ¼ö ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ :

ÆÒµ¥¹ÍÀº ºñÁ¢ÃË °¨Áö ¹× ¿ø°Ý Áø´Ü¿¡ ´ëÇÑ ¼ö¿ä¸¦ ºÒ·¯ÀÏÀ¸ÄÑ ÀÇ·á ¹× °¡ÀüÁ¦Ç°¿¡ ´ëÇÑ ÇÁ¸°Æ¼µå ¼¾¼­ ¹× ÀÓº£µðµå ¼¾¼­ÀÇ Ã¤ÅÃÀ» ÃËÁøÇß½À´Ï´Ù. óÀ½¿¡´Â °ø±Þ¸ÁÀÇ È¥¶õÀ¸·Î ÀÎÇØ »ý»êÀÌ Áö¿¬µÇ¾úÁö¸¸ È®Àå °¡´ÉÇϰí Àú·ÅÇÑ ºñ¿ëÀÇ ¸ð´ÏÅ͸µ ¼Ö·ç¼ÇÀÌ ½Ã±ÞÇØÁ³À¸¸ç À¯¿¬ÇÑ ¼¾¼­ Ç÷§Æû¿¡ ´ëÇÑ ÅõÀÚ°¡ ºÎȰÇß½À´Ï´Ù. ¶ÇÇÑ ¿ø°Ý ÀÇ·á ¹× µðÁöÅÐ °Ç°­À¸·ÎÀÇ À̵¿Àº ¿þ¾î·¯ºí Àåºñ ¹× °¡Á¤¿ë Áø´Ü ŰƮ¿¡ ¼¾¼­ÀÇ ÅëÇÕÀ» °¡¼ÓÈ­Çß½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ±â±â ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á

Àåºñ ºÐ¾ß´Â »ê¾÷, ¼ÒºñÀÚ, ÀÇ·á¿ëÀ¸·Î ³Î¸® Àü°³µÇ°í Àֱ⠶§¹®¿¡ ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ½º¸¶Æ® ¹ÌÅÍ ¹× ÇÇÆ®´Ï½º Æ®·¡Ä¿¿¡¼­ ȯ°æ ¸ð´ÏÅÍ ¹× Áø´Ü µµ±¸¿¡ À̸£±â±îÁö ¼¾¼­ Áö¿ø ÀåÄ¡´Â À¯ºñÄõÅͽºÈ­µÇ°í ÀÖ½À´Ï´Ù. È®À强, ÀúÀü·Â ¹× ´Ù¾çÇÑ Æû ÆÑÅÍ¿¡ ´ëÇÑ ÀûÀÀ¼ºÀº ¿¬°á »ýŰ迡 ÇʼöÀûÀÔ´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¾ÐÀü ¼¾¼­ ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ Àü¸Á

¿¹Ãø ±â°£ µ¿¾È, ¾ÐÀü ¼¾¼­ÀÇ ºÎ¹®Àº ±â°èÀû ÀÀ·ÂÀ» Àü±â ½ÅÈ£·Î º¯È¯ÇÏ´Â µ¶Æ¯ÇÑ ´É·ÂÀ¸·Î ÀÎÇØ µ¿Àû °¨Áö ȯ°æ¿¡ °¡Àå ÀûÇÕÇϱ⠶§¹®¿¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î Àü¸ÁµË´Ï´Ù. ÀÌ·¯ÇÑ ¼¾¼­´Â ±¸Á¶ ¾ÈÀü¼º ¸ð´ÏÅ͸µ, ¿þ¾î·¯ºí µ¿ÀÛ ÃßÀû, ¿¡³ÊÁö ¼öÈ® ½Ã½ºÅÛ µîÀÇ ÀÀ¿ë ºÐ¾ß¿¡¼­ Á¡Á¡ ´õ ¸¹ÀÌ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÇÁ¸°ÆÃ °¡´ÉÇÑ ¾ÐÀü Àç·á¿Í À¯¿¬ÇÑ ±âÆÇÀÇ ¹ßÀüÀ¸·Î °î¸é°ú °æ·® ÀåÄ¡¿¡ ÅëÇÕÀÌ °¡´ÉÇÕ´Ï´Ù.

ÃÖ´ë °øÀ¯ Áö¿ª :

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì´Â °ß°íÇÑ R&D ÀÎÇÁ¶ó, Á¶±â ±â¼ú µµÀÔ, ÀÇ·á, ¹æÀ§, ¼ÒºñÀÚ¿ë ÀüÀÚ±â±â Àü¹Ý¿¡ °ÉÄ£ ¿Õ¼ºÇÑ ¼ö¿ä¿¡ °ßÀεǾî ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¶ÇÇÑ °í±Þ ¹ÝµµÃ¼ ¹× Àç·á ¿¬±¸ ±â°üÀÌ Àֱ⠶§¹®¿¡ °í¼º´É ¼¾¼­ Ç÷§ÆûÀÇ Áö¼ÓÀûÀÎ °³¹ßÀÌ ÃËÁøµË´Ï´Ù. Áö¼Ó°¡´É¼º°ú ÀÚµ¿È­¿¡ ÁßÁ¡À» µÐ ÀÌ Áö¿ªÀº ÆÐŰ¡ ¹× »ê¾÷¿ë IoT ¿ëµµ¿¡¼­ÀÇ Ã¤ÅÃÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.

°¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³»´Â Áö¿ª :

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº ÀüÀÚÁ¦Á¶±âÁö È®´ë, ÀÇ·áÅõÀÚ Áõ°¡, ½º¸¶Æ® µð¹ÙÀ̽º¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼ö¿ä Áõ°¡¿¡ ÈûÀÔ¾î °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î Àü¸ÁµË´Ï´Ù. Áß±¹, Çѱ¹, Àεµ µî ±¹°¡¿¡¼­´Â ¿þ¾î·¯ºí ±â¼ú, ½º¸¶Æ® ¼¶À¯, ³ó¾÷ ¹× ȯ°æ ¸ð´ÏÅ͸µ¿¡ ³»ÀåµÈ ¼¾¼­ ¼Ö·ç¼ÇÀÇ ±Þ¼ÓÇÑ µµÀÔÀ» º¼ ¼ö ÀÖ½À´Ï´Ù. µðÁöÅÐ Àüȯ°ú Áö¿ª Çõ½ÅÀ» ÃËÁøÇÏ´Â Á¤ºÎ Áö¿ø ÀÌ´Ï¼ÅÆ¼ºê´Â ½ÃÀå ħÅõ¸¦ °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù.

¹«·á ¸ÂÃãÇü ¼­ºñ½º

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­·Ð

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

Á¦4Àå Porter's Five Forces ºÐ¼®

Á¦5Àå ¼¼°èÀÇ ÇÁ¸°Æ¼µå ¹× ÀÓº£µðµå ¼¾¼­ ÀÏ·ºÆ®·Î´Ð½º ½ÃÀå : ±¸¼º ¿ä¼Òº°

Á¦6Àå ¼¼°èÀÇ ÇÁ¸°Æ¼µå ¹× ÀÓº£µðµå ¼¾¼­ ÀÏ·ºÆ®·Î´Ð½º ½ÃÀå : ¼¾¼­º°

Á¦7Àå ¼¼°èÀÇ ÇÁ¸°Æ¼µå ¹× ÀÓº£µðµå ¼¾¼­ ÀÏ·ºÆ®·Î´Ð½º ½ÃÀå : ÇÁ¸°ÆÃ ¹× Á¦Á¶ °øÁ¤º°

Á¦8Àå ¼¼°èÀÇ ÇÁ¸°Æ¼µå ¹× ÀÓº£µðµå ¼¾¼­ ÀÏ·ºÆ®·Î´Ð½º ½ÃÀå : ¿ëµµº°

Á¦9Àå ¼¼°èÀÇ ÇÁ¸°Æ¼µå ¹× ÀÓº£µðµå ¼¾¼­ ÀÏ·ºÆ®·Î´Ð½º ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

Á¦10Àå ¼¼°èÀÇ ÇÁ¸°Æ¼µå ¹× ÀÓº£µðµå ¼¾¼­ ÀÏ·ºÆ®·Î´Ð½º ½ÃÀå : Áö¿ªº°

Á¦11Àå ÁÖ¿ä ¹ßÀü

Á¦12Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

KTH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

According to Stratistics MRC, the Global Printed and Embedded Sensor Electronics Market is accounted for $12.92 billion in 2025 and is expected to reach $20.52 billion by 2032 growing at a CAGR of 6.83% during the forecast period. Printed and embedded sensor electronics are compact, integrable systems fabricated using additive manufacturing techniques on flexible or rigid substrates. These sensors are directly deposited or embedded into surfaces, enabling real-time monitoring of environmental, structural, or physiological parameters. Utilizing conductive inks, thin films, and microfabrication methods, they offer lightweight, low-cost, and scalable solutions for smart packaging, wearables, and industrial automation. Their seamless integration enhances data acquisition, system responsiveness, and design versatility across consumer, healthcare, and IoT applications.

According to the journal Sensors published by MDPI, over 72,000 papers have been published since its inception in 2001, with more than 35,000 papers cited at least 10 times, reflecting the growing academic and industrial relevance of sensor electronics across instrumentation, analytical chemistry, and electrical engineering domains.

Market Dynamics:

Driver:

Growth of the internet of things (IoT) and connected devices

The proliferation of IoT ecosystems across industries is significantly boosting demand for printed and embedded sensor electronics. These sensors enable real-time data acquisition and seamless communication between devices, supporting applications in smart homes, industrial automation, and healthcare monitoring. The miniaturization of electronics and the rise of edge computing are further accelerating sensor integration into everyday objects. As connectivity standards evolve, embedded sensors are becoming central to predictive analytics and autonomous systems.

Restraint:

Performance and durability issues

Factors such as humidity, mechanical stress, and temperature fluctuations can compromise sensor accuracy and lifespan. Manufacturers must invest in robust encapsulation techniques and advanced substrates to overcome these challenges. Additionally, ensuring long-term reliability in dynamic applications like automotive or aerospace remains a technical hurdle. These durability concerns may slow adoption in mission-critical sectors where precision and resilience are non-negotiable.

Opportunity:

Emerging applications in smart textiles and fashion

Printed sensors embedded in fabrics can monitor physiological parameters such as heart rate, hydration, and posture, offering real-time feedback for fitness and healthcare. Designers are experimenting with conductive inks and flexible substrates to create garments that are both functional and aesthetically appealing. This convergence of fashion and technology is also gaining traction in sportswear, military gear, and adaptive clothing for medical use.

Threat:

Intellectual property fragmentation

The rapid pace of innovation in printed and embedded sensor technologies has led to a fragmented intellectual property landscape, with overlapping patents and unclear licensing frameworks. This fragmentation can hinder collaboration, delay product development, and expose companies to legal disputes. Startups and SMEs may struggle to navigate the complex IP terrain, especially when integrating multi-functional sensors into proprietary platforms. Without cohesive IP governance, market growth could be stifled by litigation risks and restricted access to critical technologies.

Covid-19 Impact:

The pandemic catalyzed demand for contactless sensing and remote diagnostics, propelling the adoption of printed and embedded sensors in healthcare and consumer electronics. Supply chain disruptions initially slowed production, but the urgency for scalable, low-cost monitoring solutions revived investment in flexible sensor platforms. Additionally, the shift toward telemedicine and digital health accelerated the integration of sensors into wearable devices and home-based diagnostic kits.

The devices segment is expected to be the largest during the forecast period

The devices segment is expected to account for the largest market share during the forecast period owing to its widespread deployment across industrial, consumer, and medical applications. From smart meters and fitness trackers to environmental monitors and diagnostic tools, sensor-enabled devices are becoming ubiquitous. Their scalability, low power consumption, and adaptability to various form factors make them indispensable in connected ecosystems.

The piezoelectric sensors segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the piezoelectric sensors segment is predicted to witness the highest growth rate due to their unique ability to convert mechanical stress into electrical signals, making them ideal for dynamic sensing environments. These sensors are increasingly used in applications such as structural health monitoring, wearable motion tracking, and energy harvesting systems. Advancements in printable piezoelectric materials and flexible substrates are enabling their integration into curved surfaces and lightweight devices.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share driven by robust R&D infrastructure, early technology adoption, and strong demand across healthcare, defense, and consumer electronics. Additionally, the presence of advanced semiconductor and materials research institutions fosters continuous development of high-performance sensor platforms. The region's emphasis on sustainability and automation is also encouraging adoption in packaging and industrial IoT applications.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR fueled by expanding electronics manufacturing hubs, rising healthcare investments, and growing consumer demand for smart devices. Countries like China, South Korea, and India are witnessing rapid adoption of wearable technologies, smart textiles, and embedded sensor solutions in agriculture and environmental monitoring. Government-backed initiatives promoting digital transformation and local innovation are accelerating market penetration.

Key players in the market

Some of the key players in Printed and Embedded Sensor Electronics Market include Samsung Electronics Co., Ltd., LG Display Co., Ltd., DuPont de Nemours, Inc., BASF SE, Agfa-Gevaert Group, Molex, LLC, E Ink Holdings Inc., NovaCentrix, Nissha Co., Ltd., Palo Alto Research Center Incorporated (PARC), Renesas Electronics Corporation, ISORG SA, Canatu Oy, Optomec, Inc., GSI Technologies LLC, Thin Film Electronics ASA, Honeywell International Inc., TE Connectivity, Bosch Sensortec, and STMicroelectronics.

Key Developments:

In August 2025, LG Display announced new OLED panel showcases and technology roadmaps at K-Display 2025, positioning its 4th-generation OLED and automotive displays as the company's near-term focus. The release described product exhibits, demonstrations and LGD's emphasis on OLED leadership for consumer and vehicle displays.

In June 2025, Molex launched TrackLabel BLE printable asset labels to provide real-time asset tracking and visibility for supply chains, improving operational efficiency and security. The announcement positioned the product for wide industrial/commercial deployment and included technical and use-case details.

In March 2025, DuPont announced new circuit materials (e.g., Circuposit(TM) SAP8000 electroless copper and Microfill(TM) SFP-II-M) at the International Electronic Circuits (Shanghai) Exhibition, targeting fine-line, high-performance electronics. The release framed these materials as enabling improved signal integrity and thermal management for next-gen electronics.

Components Covered:

Sensors Covered:

Printing & Manufacturing Processes Covered:

Applications Covered:

End Users Covered:

Regions Covered:

What our report offers:

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

Table of Contents

1 Executive Summary

2 Preface

3 Market Trend Analysis

4 Porters Five Force Analysis

5 Global Printed and Embedded Sensor Electronics Market, By Component

6 Global Printed and Embedded Sensor Electronics Market, By Sensor

7 Global Printed and Embedded Sensor Electronics Market, By Printing & Manufacturing Process

8 Global Printed and Embedded Sensor Electronics Market, By Application

9 Global Printed and Embedded Sensor Electronics Market, By End User

10 Global Printed and Embedded Sensor Electronics Market, By Geography

11 Key Developments

12 Company Profiling

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â