Stratistics MRC¿¡ ÀÇÇϸé, ¾çÀÚ ÀÏ·ºÆ®·Î´Ð½º ¹× ¼¾½Ì µð¹ÙÀ̽º ¼¼°è ½ÃÀåÀº 2025³â¿¡ 4,369¾ï ´Þ·¯¿¡ À̸£°í, ¿¹Ãø ±â°£ Áß ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR) 15.8%·Î ¼ºÀåÇÏ¿© 2032³â¿¡´Â 1Á¶ 2,199¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¾çÀÚ ÀÏ·ºÆ®·Î´Ð½º ¹× ¼¾½Ì µð¹ÙÀ̽º´Â Áßø, ¾ôÈû, Åͳθµ µîÀÇ ¾çÀÚ ¿ªÇÐÀû ¿ø¸®¸¦ ÀÌ¿ëÇÏ¿© °íÀü ½Ã½ºÅÛÀ» ¶Ù¾î³Ñ´Â Á¤È®µµ, °¨µµ, ¼º´É Çâ»óÀ» ½ÇÇöÇÕ´Ï´Ù. ÀÌ ±â¼úµéÀº ¾çÀÚºñÆ®, ±¤È¸·Î, ³ª³ë ½ºÄÉÀÏ ¹°ÁúÀ» ÅëÇÕÇÏ¿© ¿øÀÚ-¼Ò¸³ÀÚ ¼öÁØÀÇ ¹°¸® Çö»óÀ» °¨Áö, ÃøÁ¤, Á¶ÀÛÇÕ´Ï´Ù. °èÃøÇÐ, »ý¹°ÀÇÇÐ Áø´Ü, ¾ÈÀü Åë½Å¿¡ ³Î¸® Àû¿ëµÇ¾î ÃÊ °í°¨µµ °¨Áö, ÀúÀâÀ½ ½ÅÈ£ ó¸®, ½Ç½Ã°£ µ¥ÀÌÅÍ ¼öÁýÀ» °¡´ÉÇÏ°Ô ÇÏ¿© °úÇÐ, »ê¾÷, ±¹¹æ °¢ ºÐ¾ßÀÇ Â÷¼¼´ë °èÃø±âÀÇ ±âÃʸ¦ Çü¼ºÇϰí ÀÖ½À´Ï´Ù.
Àü·Ê ¾ø´Â ³ôÀº Á¤¹Ðµµ¿Í °í°¨µµ¿¡ ´ëÇÑ ¿ä±¸°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.
¾çÀÚ ÀüÀÚ ¹× °¨Áö ÀåÄ¡´Â ÀÚ±âÀå, Áß·Â, ½Ã°£ µ¿±âÈÀÇ ¹Ì¼¼ÇÑ º¯È¸¦ °¨ÁöÇÏ´Â µ¥ ÀÖ¾î ŸÀÇ ÃßÁ¾À» ºÒÇãÇÏ´Â Á¤È®µµ¸¦ Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ´É·ÂÀº GPS ºñÁö¿ø ³»ºñ°ÔÀ̼Ç, ÁöÇÏ ¸ÅÇÎ, ³ú ¿µ»óÈ µîÀÇ ¿ëµµ¿¡ ÇʼöÀûÀÔ´Ï´Ù. ±âÁ¸ ¼¾¼°¡ ¼º´ÉÀÇ ÇѰ迡 µµ´ÞÇÔ¿¡ µû¶ó »ê¾÷°è´Â Á¤È®¼º¿¡ ´ëÇÑ ±â´ëÄ¡°¡ ³ô¾ÆÁü¿¡ µû¶ó ¾çÀÚ ±â¼ú·Î ´«À» µ¹¸®°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È´Â Àü·«Àû ¿ª·®À» °ÈÇϱâ À§ÇÑ ±¹°¡Àû ¾çÀÚ ÀÌ´Ï¼ÅÆ¼ºê¿Í »ó¾÷Àû ÅõÀÚ¿¡ ÀÇÇØ ´õ¿í ÃËÁøµÇ°í ÀÖ½À´Ï´Ù.
±âÁ¸ ±â¼ú°úÀÇ °æÀï
±âÁ¸ ¼¾¼´Â ³Î¸® º¸±ÞµÇ¾î ÀÖ°í, ºñ¿ë È¿À²ÀûÀ̸ç, ¼º¼÷ÇÑ Á¦Á¶ »ýŰ迡 ÀÇÇØ µÞ¹ÞħµÇ°í ÀÖ½À´Ï´Ù. ±×·¯³ª Ãʱ⠺ñ¿ëÀÌ ³ô°í È®À强¿¡ ÇѰ谡 ÀÖÀ¸¸ç º¹ÀâÇÑ ÅëÇÕÀÌ ÇÊ¿äÇϱ⠶§¹®¿¡ ¸¹Àº »ê¾÷¿¡¼ ¾çÀÚ¼¾¼ äÅÃÀ» ÁÖÀúÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Ç¥ÁØÈµÈ ÇÁ·ÎÅäÄÝÀ̳ª ±âÁ¸ ½Ã½ºÅÛ°úÀÇ »óÈ£¿î¿ë¼ºÀÌ ¾ø½À´Ï´Ù´Â Á¡µµ º¸±Þ¿¡ °É¸²µ¹·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεé·Î ÀÎÇØ ·¹°Å½Ã ½Ã½ºÅÛ¿¡¼ ¾çÀÚ Áö¿ø Ç÷§ÆûÀ¸·ÎÀÇ ÀüȯÀÌ ´Ê¾îÁö°í ÀÖ½À´Ï´Ù.
AI ¹× ¸Ó½Å·¯´×°úÀÇ À¶ÇÕÀÌ ÁøÇà Áß
¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀº ³ëÀÌÁî º¸Á¤, º¸Á¤ °³¼±, ½Ç½Ã°£ ÀÇ»ç°áÁ¤À» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á ¾çÀÚ ¼¾¼ÀÇ ¼º´ÉÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ À¶ÇÕÀº ºü¸£°í Á¤È®ÇÑ ¼¾½ÌÀÌ Áß¿äÇÑ ÀÚÀ²ÁÖÇàÂ÷, ½º¸¶Æ® ÀÎÇÁ¶ó, ÀÇ·á Áø´Ü ºÐ¾ß¿¡¼ ƯÈ÷ Å« ¿µÇâÀ» ¹ÌĨ´Ï´Ù. AI ÇÁ·¹ÀÓ¿öÅ©°¡ °íµµÈµÊ¿¡ µû¶ó ¾çÀÚ ÀåÄ¡¿ÍÀÇ ÅëÇÕÀº Çõ½ÅÀ» ÃËÁøÇÏ°í »õ·Î¿î »ó¾÷Àû ±æÀ» ¿¾îÁÙ °ÍÀ¸·Î ±â´ëµË´Ï´Ù. ÀÌ ½Ã³ÊÁö È¿°ú·Î ÀÎÇØ ºÐ¾ß °£ ¿¬±¸¿Í º¥Ã³Ä³ÇÇÅÐÀÇ Àڱݵµ ¸ðÀ̰í ÀÖ½À´Ï´Ù.
ÁöÀûÀç»ê±Ç°ú ±¹°¡¾Èº¸¿¡ ´ëÇÑ ¿ì·Á
°¢±¹ Á¤ºÎ´Â ±â¹Ð¼ºÀÌ ³ôÀº ¾çÀÚ ±â¼ú Çõ½ÅÀ» º¸È£Çϱâ À§ÇØ ¼öÃâ ±ÔÁ¦¸¦ ½ÃÇàÇÏ°í ±ÔÁ¦¸¦ °ÈÇϰí ÀÖ½À´Ï´Ù. ¾çÀÚ ¼¾¼´Â ¹Î¼ö ¹× ±º¿ëÀ¸·Î Ȱ¿ëµÉ ¼ö Àֱ⠶§¹®¿¡ ¾Ç¿ë ¹× ¹«´Ü ¾×¼¼½ºÀÇ À§ÇèÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ƯÇã°¡ ¼¼ºÐȵǰí û±¸Ç×ÀÌ Áߺ¹µÇ¾î ¹ýÀû ºÐÀïÀÌ ¹ß»ýÇÏ¿© »ó¿ëȰ¡ Áö¿¬µÉ °¡´É¼ºµµ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ À§ÇèÀº Ã¥ÀÓ°¨ ÀÖ´Â °³¹ß ¹× ¹èÆ÷¸¦ º¸ÀåÇϱâ À§ÇØ °ß°íÇÑ »çÀ̹ö º¸¾È Á¶Ä¡¿Í ±¹Á¦ Çù·ÂÀ» ÇÊ¿ä·Î ÇÕ´Ï´Ù.
Äڷγª19 ÆÒµ¥¹ÍÀº ¾çÀÚ ÀüÀÚ ¹× ¼¾½Ì µð¹ÙÀ̽º ½ÃÀå¿¡ ¹Ì¹¦ÇÑ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. Ãʱ⠺À¼â·Î ÀÎÇØ °ø±Þ¸ÁÀÌ ²÷¾îÁö°í R&D Ȱµ¿ÀÌ Áö¿¬µÈ ¹Ý¸é, À̹ø À§±â´Â ÀÇ·á ¹× ¿ø°Ý Áø´Ü¿¡¼ ÷´Ü °¨Áö ±â¼úÀÇ Á߿伺À» ºÎ°¢½ÃÄ×½À´Ï´Ù. ¾çÀÚ¼¾¼´Â ÀÓ»óÇöÀå¿¡¼ ¿µ»óÁø´ÜÀÇ Á¤È®µµ Çâ»ó°ú »ý¸®Àû ¸Å°³º¯¼ö ¸ð´ÏÅ͸µ¿¡ ÀÏÁ¶Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÆÒµ¥¹ÍÀº µðÁöÅÐ ÀüȯÀ» °¡¼ÓÈÇϰí, ¾ÈÀüÇÑ Åë½Å°ú µ¥ÀÌÅÍ ¹«°á¼ºÀ» À§ÇÑ ¾çÀÚ Áö¿ø ¼Ö·ç¼Ç¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁ³½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾çÀÚ ¼¾¼ ºÎ¹®ÀÌ °¡Àå Å« ½ÃÀåÀ¸·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¾çÀÚ ¼¾¼ ºÎ¹®Àº ¹°¸® Çö»óÀ» ¸Å¿ì Á¤È®ÇÏ°Ô ÃøÁ¤ÇÒ ¼ö ÀÖ´Â µ¶º¸ÀûÀÎ ´É·ÂÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¿øÀڽðè, ¾çÀÚÀڷ°è, Áß·Â°è µîÀÇ ±â¼úÀº Ç×°ø¿ìÁÖ, ±¹¹æ, Áö±¸¹°¸®Å½»ç µî¿¡ µµÀԵǰí ÀÖ½À´Ï´Ù. °í°¨µµ ¹× ȯ°æ ³ëÀÌÁî¿¡ °ÇØ Àü·«ÀûÀÎ ¿ëµµ¿¡ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ ºÎ¹®Àº ÇöÀç ÁøÇà ÁßÀÎ ¼ÒÇüÈ ³ë·Â°ú CMOS ȣȯ Ç÷§Æû°úÀÇ ÅëÇÕÀÇ ÇýÅÃÀ» ´©¸®°í ÀÖÀ¸¸ç, »ó¾÷Àû ¿µ¿ª Àü¹Ý¿¡¼ ±× »ç¿ë¼ºÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ½Ç¸®ÄÜ Æ÷Åä´Ð½º ºÎ¹®ÀÌ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ½Ç¸®ÄÜ Æ÷Åä´Ð½º ºÎ¹®Àº °í¼Ó µ¥ÀÌÅÍ Àü¼Û°ú ¼ÒÇü ¾çÀÚ È¸·Î¸¦ °¡´ÉÇÏ°Ô ÇÏ´Â ¿ªÇÒ·Î ÀÎÇØ °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ÀåÄ¡µéÀº ±¤±â¹Ý ½Åȣ󸮸¦ Ȱ¿ëÇÏ¿© ÀúÁö¿¬ Åë½Å°ú ´ë¿ªÆø È®ÀåÀ» ½ÇÇöÇϸç, ¾çÀÚ ÄÄÇ»ÆÃ°ú º¸¾È ³×Æ®¿öÅ©¿¡ ÀûÇÕÇÕ´Ï´Ù. ÀÌ ºÐ¾ß¿¡¼´Â ÇÏÀ̺긮µå ÁýÀû ±â¼úÀÇ Çõ½ÅÀÌ ºü¸£°Ô ÁøÇàµÇ°í ÀÖÀ¸¸ç, Æ÷Åä´Ð Ĩ°ú ¾çÀÚ ÇÁ·Î¼¼¼ ¹× ¼¾¼¿ÍÀÇ ÀÎÅÍÆäÀ̽º°¡ °¡´ÉÇØÁö°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´Â Á¤ºÎÀÇ ÀÚ±Ý Áö¿ø, ¼±ÁøÀûÀÎ ¿¬±¸±â°ü, Ȱ¹ßÇÑ ½ºÅ¸Æ®¾÷ »ýŰ踦 ¹è°æÀ¸·Î Çϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ª¿¡¼´Â ±¹¹æ¿ë ¼¾¼ °³¹ß, ¿ìÁÖ¿¡¼ÀÇ ¾çÀÚ ½ÇÇè µî ¸î °¡Áö ÁÖ¿ä ¾çÀÚ ÇÁ·Î±×·¥ÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. Çаè¿Í »ê¾÷°èÀÇ °·ÂÇÑ Çù·Â°ü°è·Î ±â¼ú ÀÌÀü°ú »ó¿ëȰ¡ °¡¼Óȵǰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±ÔÁ¦ ´ç±¹ÀÇ Áö¿ø°ú Àü·«Àû ÆÄÆ®³Ê½ÊÀ» ÅëÇØ ÀÌ ºÐ¾ß¿¡¼ ºÏ¹ÌÀÇ ¿ìÀ§°¡ °ÈµÇ°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áß±¹, ÀϺ», Àεµ µîÀÇ ±¹°¡µéÀº ¾çÀÚ ÀÎÇÁ¶ó¸¦ ±¸ÃàÇÏ°í ¼÷·ÃµÈ ÀÎÀ縦 ¾ç¼ºÇϱâ À§ÇÑ ±¹°¡Àû Â÷¿øÀÇ ÀÌ´Ï¼ÅÆ¼ºê¸¦ ÃßÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ª¿¡¼´Â ÷´Ü ³»ºñ°ÔÀÌ¼Ç ½Ã½ºÅÛ, ȯ°æ ¸ð´ÏÅ͸µ µµ±¸, ¾ÈÀüÇÑ Åë½Å ³×Æ®¿öÅ©¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, äÅÃÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. °¢±¹ Á¤ºÎ°¡ ±â¼ú ÁÖ±ÇÀ» ¿ì¼±½ÃÇÏ´Â °¡¿îµ¥, ¾Æ½Ã¾ÆÅÂÆò¾çÀº ¾çÀÚ Çõ½ÅÀÇ ¿ªµ¿ÀûÀÎ °ÅÁ¡À¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Quantum Electronics & Sensing Devices Market is accounted for $436.9 billion in 2025 and is expected to reach $1,219.9 billion by 2032 growing at a CAGR of 15.8% during the forecast period. Quantum electronics and sensing devices utilize quantum mechanical principles such as superposition, entanglement, and tunneling to achieve enhanced precision, sensitivity, and performance beyond classical systems. These technologies incorporate quantum bits, photonic circuits, and nanoscale materials to detect, measure, or manipulate physical phenomena at atomic and subatomic levels. Widely applied in metrology, biomedical diagnostics, and secure communications, they enable ultra-sensitive detection, low-noise signal processing, and real-time data acquisition, forming the foundation for next-generation instrumentation across scientific, industrial, and defense sectors.
Increasing need for unprecedented precision and sensitivity
Quantum electronics and sensing devices offer unmatched accuracy in detecting minute changes in magnetic fields, gravitational forces, and time synchronization. These capabilities are vital for applications like GPS-denied navigation, subsurface mapping, and brain imaging. As conventional sensors reach their performance limits, industries are turning to quantum technologies to meet rising expectations for precision. This shift is further supported by national quantum initiatives and commercial investments aimed at enhancing strategic capabilities.
Competition from traditional technologies
Conventional sensors are widely available, cost-effective, and supported by mature manufacturing ecosystems. Many industries remain hesitant to adopt quantum alternatives due to high initial costs, limited scalability, and complex integration requirements. Additionally, the lack of standardized protocols and interoperability with existing systems poses challenges for widespread deployment. These factors collectively slow down the transition from legacy systems to quantum-enabled platforms.
Growing convergence with AI and machine learning
Machine learning algorithms can enhance the performance of quantum sensors by compensating for noise, improving calibration, and enabling real-time decision-making. This convergence is particularly impactful in autonomous vehicles, smart infrastructure, and medical diagnostics, where rapid and accurate sensing is critical. As AI frameworks become more sophisticated, their integration with quantum devices is expected to drive innovation and open new commercial pathways. This synergy is also attracting cross-disciplinary research and venture capital funding.
Intellectual property and national security concerns
Governments are implementing export controls and tightening regulations to safeguard sensitive quantum innovations. The dual-use nature of quantum sensors-applicable in both civilian and military domains heightens the risk of misuse or unauthorized access. Additionally, fragmented patent landscapes and overlapping claims can lead to legal disputes, slowing down commercialization. These risks necessitate robust cybersecurity measures and international cooperation to ensure responsible development and deployment.
The COVID-19 pandemic had a nuanced impact on the quantum electronics and sensing devices market. While initial lockdowns disrupted supply chains and delayed R&D activities, the crisis also underscored the importance of advanced sensing technologies in healthcare and remote diagnostics. Quantum sensors played a role in enhancing imaging precision and monitoring physiological parameters in clinical settings. Moreover, the pandemic accelerated digital transformation, prompting increased interest in quantum-enabled solutions for secure communications and data integrity.
The quantum sensors segment is expected to be the largest during the forecast period
The quantum sensors segment is expected to account for the largest market share during the forecast period due to their unparalleled ability to measure physical phenomena with extreme accuracy. Technologies such as atomic clocks, quantum magnetometers, and gravimeters are being deployed in aerospace, defense, and geophysical exploration. Their high sensitivity and resilience to environmental noise make them indispensable for strategic applications. The segment benefits from ongoing miniaturization efforts and integration with CMOS-compatible platforms, which are expanding their usability across commercial domains.
The silicon photonics segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the silicon photonics segment is predicted to witness the highest growth rate driven by its role in enabling high-speed data transmission and compact quantum circuits. These devices leverage light-based signal processing to achieve low-latency communication and enhanced bandwidth, making them ideal for quantum computing and secure networks. The segment is witnessing rapid innovation in hybrid integration techniques, allowing photonic chips to interface with quantum processors and sensors.
During the forecast period, the North America region is expected to hold the largest market share attributed to robust government funding, advanced research institutions, and a thriving startup ecosystem. The region hosts several flagship quantum programs, including defense-grade sensor development and spaceborne quantum experiments. Strong collaborations between academia and industry are accelerating technology transfer and commercialization. Furthermore, regulatory support and strategic partnerships are reinforcing North America's dominance in this domain.
Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGRfueled by rising investments in quantum research and expanding industrial applications. Countries like China, Japan, and India are launching national initiatives to build quantum infrastructure and train skilled personnel. The region's growing demand for advanced navigation systems, environmental monitoring tools, and secure communication networks is driving adoption. As regional governments prioritize technological sovereignty, Asia Pacific is emerging as a dynamic hub for quantum innovation.
Key players in the market
Some of the key players in Quantum Electronics & Sensing Devices Market include ID Quantique SA, Campbell Scientific, Inc., LI-COR Biosciences, M Squared Lasers Ltd., Muquans SAS, Qnami AG, Teledyne Scientific & Imaging, Thorlabs, Inc., Oxford Instruments plc, QuSpin Inc., Zurich Instruments AG, AOSense, Inc., Qnnect LLC, QinetiQ Group plc, Bosch Quantum Sensing, and Infleqtion.
In June 2025, Campbell Scientific reported a contract to design, deliver and commission an AWOS (Automated Weather Observing System) for Beyla Airport, Guinea, showing continued deployment of their environmental/meteorological monitoring systems.
In June 2025, ID Quantique announced collaboration with Turkcell (and Juniper Networks) to deploy quantum-safe networking solutions, showcasing IDQ's quantum-secure crypto and photonics expertise for telecom infrastructure.
In January 2025, Thorlabs announced the acquisition/strategic partnership with Praevium Research (VCSEL/laser technology) a move to bring high-speed tunable VCSEL capability into Thorlabs' portfolio. Industry coverage framed this as strengthening Thorlabs' position in quantum/photonic component supply for imaging and communications.