Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ÀÚµ¿Â÷¿ë ´ÜÀÚ ½ÃÀåÀº 2025³â 269¾ï ´Þ·¯¸¦ Â÷ÁöÇÏ¸ç ¿¹Ãø ±â°£ µ¿¾È CAGRÀº 9.6%·Î ¼ºÀåÇØ 2032³â±îÁö 511¾ï 1,000¸¸ ´Þ·¯¿¡ À̸¦ Àü¸ÁÀÔ´Ï´Ù.
ÀÚµ¿Â÷¿ë ´ÜÀÚ´Â ÄÉÀ̺í, ¿ÍÀÌ¾î ¹× ÀüÀÚ ºÎǰ °£ÀÇ È®½ÇÇÑ ¿¬°áÀ» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á ÀÚµ¿Â÷ Àü±â ½Ã½ºÅÛ¿¡¼ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ½Â¿ëÂ÷, »ó¿ëÂ÷, Àü±âÀÚµ¿Â÷´Â È¿°úÀûÀÎ Àü·Â °ø±ÞÀ» ÃËÁøÇÏ°í ½ÅÈ£ ǰÁúÀ» À¯ÁöÇÏ¸ç ¾ÈÀüÀ» º¸ÀåÇÕ´Ï´Ù. ¿, Áøµ¿ ¹× ºÎ½ÄÀ» °ßµô ¼ö ÀÖµµ·Ï ¼³°èµÈ ÀÌ·¯ÇÑ ´ÜÀÚ´Â Â÷·®ÀÇ ½Å·Ú¼º°ú ¼ö¸í Çâ»ó¿¡ ±â¿©ÇÕ´Ï´Ù. Àü±âÀÚµ¿Â÷¿Í ADAS¿Í °°Àº ÷´Ü ±â¼úÀÇ º¸±ÞÀº °í¼º´É ´ÜÀÚÀÇ Çʿ伺À» ³ôÀ̰í ÀÖ½À´Ï´Ù. Á¦Á¶¾÷ü´Â ¾ö°ÝÇÑ »ê¾÷ Ç¥ÁØÀ» ÁؼöÇϰí ÃֽŠÀÚµ¿Â÷ Àü±â ½Ã½ºÅÛ Áõ°¡ ¿ä±¸¸¦ ÃæÁ·Çϱâ À§ÇØ ¿ì¼öÇÑ ¼ÒÀç¿Í Á¤¹Ð ¼³°è·Î Çõ½ÅÀ» ÁøÇàÇϰí ÀÖ½À´Ï´Ù.
À¯·´ÀÚµ¿Â÷°ø¾÷ȸ(ACEA)¿¡ µû¸£¸é 2022³â ¼¼°è¿¡¼ »ý»êµÈ ÀÚµ¿Â÷´Â ¾à 8,540¸¸´ë·Î 2021³âºÎÅÍ 5.7% Áõ°¡Çß½À´Ï´Ù. ÀÌ·¯ÇÑ »ý»ê·®ÀÇ ±ÞÁõÀº ÀÚµ¿Â÷ÀÇ ½Å·Ú¼º ³ôÀº Àü±â ¿¬°áÀ» º¸ÀåÇϱâ À§ÇØ ÇʼöÀûÀÎ ´ÜÀÚ¸¦ Æ÷ÇÔÇÑ ÀÚµ¿Â÷ ºÎǰ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¸¦ µÞ¹ÞħÇÕ´Ï´Ù.
ÀÚµ¿Â÷ »ý»ê Áõ°¡
¼¼°è ÀÚµ¿Â÷ »ý»ê È®´ë´Â ÀÚµ¿Â÷¿ë ´ÜÀÚ ½ÃÀåÀÇ ÁÖ¿ä ÃËÁø¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù. ´õ ¸¹Àº ÀÚµ¿Â÷°¡ »ý»êµÊ¿¡ µû¶ó ´ÜÀÚ¿Í °°Àº ½Å·ÚÇÒ ¼ö ÀÖ´Â Àü±â ¿¬°áÀÇ Çʿ伺ÀÌ Áõ°¡ÇÕ´Ï´Ù. ÀÚµ¿Â÷ ´ÜÀÚÀº ¹èÅ͸®, ¿ÍÀ̾î Çϳ׽º, ÀüÀÚ ½Ã½ºÅÛÀ» ¿¬°áÇÏ°í ºÎµå·¯¿î Àü·Â È帧°ú ½ÅÈ£ Àϰü¼ºÀ» º¸ÀåÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. ƯÈ÷ ¾Æ½Ã¾ÆÅÂÆò¾ç, À¯·´, ºÏ¹Ì¿¡¼ÀÇ ÀÚµ¿Â÷ »ý»ê ´ë¼öÀÇ ±ÞÁõÀÌ ÀÌ ¼ö¿ä¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ÃֽŠÀÚµ¿Â÷¿¡´Â ÷´Ü ÀüÀÚ±â±â³ª ½º¸¶Æ® ½Ã½ºÅÛÀÌ Å¾ÀçµÇ¾î ÀÖ¾î, ¿, Áøµ¿, ºÎ½Ä¿¡ °ßµô ¼ö ÀÖ´Â ³»±¸¼ºÀÌ ÀÖ´Â ´ÜÀÚ ¼ö¿ä°¡ ³ô¾ÆÁö°í ÀÖ¾î, ÀÚµ¿Â÷ÀÇ È¿À²°ú ¼ö¸íÀ» ÁöÁöÇϰí ÀÖ½À´Ï´Ù.
³ôÀº »ý»ê ºñ¿ë
»ý»ê ºñ¿ëÀÇ »ó½ÂÀÌ ÀÚµ¿Â÷¿ë ´ÜÀÚ ½ÃÀåÀÇ Å« ¾ïÁ¦¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù. ±¸¸® ¹× ¾Ë·ç¹Ì´½°ú °°Àº °íǰÁúÀÇ ±Ý¼Ó ¹× º¸È£ ÄÚÆÃÀÌ ´ÜÀÚ¿¡ ÇʼöÀûÀ̸ç Àç·á ºñ¿ëÀÌ Áõ°¡ÇÕ´Ï´Ù. Á¤¹ÐÇÑ Á¦Á¶ °øÁ¤Àº ¾ö°ÝÇÑ ÀÚµ¿Â÷ Ç¥ÁØÀ» ÁؼöÇØ¾ß Çϸç ÀÚº» ºñ¿ë°ú ¿î¿µ ºñ¿ëÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. ºÒ¾ÈÁ¤ÇÑ ¿øÀç·á °¡°ÝÀº ´õ¿í À繫»óÀÇ ºÒÈ®½Ç¼ºÀ» °¡Á®¿À°í, °æÀï·ÂÀ» À¯ÁöÇϱâ À§ÇØ Áß¼Ò Á¦Á¶¾÷ü¿¡ °úÁ¦¸¦ ºÙÀ̰í ÀÖ½À´Ï´Ù. ºñ¿ë¿¡ ¹Î°¨ÇÑ ÀÚµ¿Â÷ ºÎ¹®¿Í ½ÅÈï ½ÃÀåÀº ´õ Àú·ÅÇÑ ´ëüǰÀ» ¼±È£ÇÒ ¼ö ÀÖÀ¸¸ç ÇÁ¸®¹Ì¾ö ´ÜÀÚÀÇ Ã¤¿ëÀÌ Á¦Çѵ˴ϴÙ. ±× °á°ú, ÀÌ·¯ÇÑ °æÁ¦Àû ¿äÀÎÀÌ ½ÃÀåÀÇ È®´ë¸¦ ¾ïÁ¦ÇØ, ÀÚµ¿Â÷¿ë ´ÜÀÚ Á¦Á¶¾÷ü°¡ ǰÁú ¹× ¼º´É ±âÁØÀ» À¯ÁöÇÏ¸é¼ ±Þ¼ºÀåÀ» ´Þ¼ºÇÏ´Â °ÍÀ» ¾î·Æ°Ô Çϰí ÀÖ½À´Ï´Ù.
ADAS(÷´Ü ¿îÀü Áö¿ø ½Ã½ºÅÛ)ÀÇ Ã¤¿ë È®´ë
ADAS ¹× Ä¿³ØÆ¼µåÄ« ±â¼úÀÇ È°¿ë È®´ë´Â ÀÚµ¿Â÷¿ë ´ÜÀÚ Á¦Á¶¾÷ü¿¡ À¯¸ÁÇÑ ±âȸ¸¦ °¡Á®´ÙÁÝ´Ï´Ù. ¼¾¼, Ä«¸Þ¶ó, ÀÎÆ÷Å×ÀÎ¸ÕÆ® ½Ã½ºÅÛÀ» °®Ãá ÃֽŠÀÚµ¿Â÷´Â ¾ÈÀüÇϰí È¿À²ÀûÀÎ ¿îÀüÀ» À§ÇØ ½Å·ÚÇÒ ¼ö ÀÖ´Â Àü±â ¿¬°á¿¡ ÀÇÁ¸ÇÕ´Ï´Ù. °í¼º´É ´ÜÀÚ´Â ÀÌ·¯ÇÑ º¹ÀâÇÑ ½Ã½ºÅÛ ³»¿¡¼ ÀϰüµÈ ½ÅÈ£ ǰÁú°ú Àü·Â ºÐ¹è¸¦ º¸ÀåÇÕ´Ï´Ù. ·¹ÀÎŰÇÎ ¾î½Ã½ºÆ®, ¾î´ðƼºê Å©·çÁî ÄÁÆ®·Ñ, ÀÚµ¿ ºê·¹ÀÌÅ© µîÀÇ ±â´ÉÀÌ Ç¥ÁØ Àåºñ µÇ¾î °ß°íÇÑ ´ÜÀÚ¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ´ÜÀÚ Á¦Á¶¾÷ü´Â ³» ºÎ½Ä¼º, ³»¿¼º ¹× ÃÖ÷´Ü ÀÚµ¿Â÷ ÀüÀÚ Á¦Ç°°úÀÇ È£È¯¼ºÀÌ ¶Ù¾î³ ±¸¼º ¿ä¼Ò¸¦ ¼³°èÇÔÀ¸·Î½á ÀÌÀÍÀ» ¾òÀ» ¼ö ÀÖÀ¸¸ç ÀÚµ¿Â÷ ºÎ¹®ÀÇ °í±Þ ¾ÈÀü¼º°ú ¿¬°á ±â¼úÀÇ ±¤¹üÀ§ÇÑ Ã¤ÅÃÀ» Áö¿øÇÕ´Ï´Ù.
½ÃÀå °æÀï °ÝÈ
Ä¡¿ÇÑ ½ÃÀå °æÀïÀÌ ÀÚµ¿Â÷ ´ÜÀÚ »ê¾÷À» À§ÇùÇϰí ÀÖ½À´Ï´Ù. ¼ö¸¹Àº Áö¿ª ¹× ¼¼°è ±â¾÷µéÀÌ ½ÃÀåÀÇ ÆÐ±ÇÀ» µÑ·¯½Î°í Àû±ØÀûÀÎ °æÀïÀ» ¹úÀÌ´Â ÇÑÆí, ½Å±Ô Âü°¡ ±â¾÷Àº Çõ½ÅÀûÀÌ°í ºñ¿ë È¿À²ÀûÀÎ Á¦Ç°À» ÅõÀÔÇϰí ÀÖ½À´Ï´Ù. °æÀï¾÷ü °£ÀÇ ÇÕº´°ú Àμö´Â ½ÃÀå ¿ªÇÐÀ» ´õ¿í º¯È½ÃÄÑ °æÀïÀ» °ÝȽÃŵ´Ï´Ù. ÀÌ·¯ÇÑ °æÀï ȯ°æÀº °¡°Ý ÀÎÇÏ, ¸¶ÄÉÆÃ ºñ¿ë »ó½Â, ±Ý¸® ¾Ð¹ÚÀ» ÃÊ·¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. Á¦Á¶¾÷ü´Â °æÀï·ÂÀ» À¯ÁöÇϱâ À§ÇØ Áö¼ÓÀûÀ¸·Î ±â¼ú Çõ½ÅÀ» ¼öÇàÇϰí Á¦Ç° ǰÁúÀ» Çâ»ó½Ã۰í Á¦Ç° Â÷º°È¸¦ µµ¸ðÇØ¾ßÇÕ´Ï´Ù. ÁøÈÇÏ´Â °í°´ÀÇ ¿ä±¸, ±â¼úÀû º¯È, ¶óÀ̹ú Àü·«¿¡ ´ëÀÀÇÒ ¼ö ¾ø´Â °æ¿ì ½ÃÀå Á¡À¯À²ÀÌ ¶³¾îÁö°í °³º° ±â¾÷ÀÇ ¼ºÀåÀÌ Á¦ÇѵǾî ÀÚµ¿Â÷¿ë ´ÜÀÚ ½ÃÀå Àüü°¡ ºÒ¾ÈÁ¤ÇØÁú ¼ö ÀÖ½À´Ï´Ù.
COVID-19ÀÇ ´ëÀ¯ÇàÀº ÀÚµ¿Â÷¿ë ´ÜÀÚ ½ÃÀå¿¡ ÇöÀúÇÑ ¿µÇâÀ» ÁÖ¾ú°í ¿©·¯ Áö¿ª¿¡¼ °ø±Þ¸ÁÀ» È¥¶õ½º·´°Ô ¸¸µé°í »ý»êÀ» Áß´ÜÇß½À´Ï´Ù. ¿îÀü Á¤Áö ¹× ±ÔÁ¦·Î ÀÚµ¿Â÷ ÆÇ¸Å°¡ °¨¼ÒÇÏ°í ½Â¿ëÂ÷ ¹× »ó¿ëÂ÷¿¡ »ç¿ëµÇ´Â ´ÜÀÚ ¼ö¿ä°¡ °¨¼ÒÇß½À´Ï´Ù. ±¸¸®¿Í ¾Ë·ç¹Ì´½À» Æ÷ÇÔÇÑ ¿øÀç·á ºÎÁ·Àº Á¦Á¶¿¡ Ãß°¡ÀûÀÎ Á¦¾àÀ» °¡Çß½À´Ï´Ù. ±â¼ú°ú Çõ½ÅÀÇ °³¹ß ÀÏÁ¤ÀÌ ´Ê¾îÁ® ½ÃÀå ÀüüÀÇ Áøº¸°¡ µÐȵǾú½À´Ï´Ù. ±×·¯³ª ÀÌ À§±â´Â Àü±âÀÚµ¿Â÷¿Í Ä¿³ØÆ¼µåÀÚµ¿Â÷±â¼úÀÇ Ã¤¿ëÀ» °¡¼ÓÈÇØ Á¦Á¶¾÷ü¿¡°Ô Àü·«ÀÇ ¼öÁ¤À» Ã˱¸Çß½À´Ï´Ù. »ý»êÀÌ Àç°³µÇ°í ¼±ÁøÀûÀÌ°í ³»±¸¼º ÀÖ´Â ÀÚµ¿Â÷¿ë ´ÜÀÚ¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡ÇÔ¿¡ µû¶ó ½ÃÀå ȸº¹ÀÌ ÁøÇàµÇ°í ÀÖÀ¸¸ç ¾÷°èÀÇ ¿Ï¸¸ÇÑ ¾ÈÁ¤È¿Í ¹Ì·¡ ¼ºÀå Àü¸ÁÀ» Á¦½ÃÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¸µ ´ÜÀÚ ºÐ¾ß°¡ ÃÖ´ë°¡ µÉ Àü¸Á
¸µ ´ÜÀÚ´Â ³»±¸¼º, ½Å·Ú¼ºÀÌ ³ô°í ¿©·¯ Â÷·® ÀÀ¿ë ºÐ¾ß¿¡¼ ³Î¸® »ç¿ëµÇ¹Ç·Î ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¸µ ´ÜÀÚ´Â ¾ÈÀüÇϰí Áøµ¿¿¡ °ÇÑ ¿¬°áÀ» Á¦°øÇÏ¿© ½Â¿ëÂ÷, »ó¿ëÂ÷ ¹× Àü±âÀÚµ¿Â÷ÀÇ ¾ÈÀü¼º°ú ¾ÈÁ¤µÈ Àü±â ¼º´ÉÀ» º¸ÀåÇÕ´Ï´Ù. °ß°íÇÑ ±¸Á¶·Î È¿À²ÀûÀÎ Àü·ù Àü´ÞÀ» °¡´ÉÇÏ°Ô ÇÏ¿© Àå±â°£ÀÇ ºÎ½Ä ¹× ´Ü¼± À§ÇèÀ» ÃÖ¼ÒÈÇÕ´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶¾÷ü´Â ÀϹÝÀûÀ¸·Î Á¢Áö, ¹èÅ͸® ¿¬°á, °íÀü·ù ȸ·Î¿¡ ¸µ ´ÜÀÚ¸¦ »ç¿ëÇÕ´Ï´Ù. ÀÌ ºÎ¹®ÀÇ ¿ì¼ö¼ºÀº ´Ù¾çÇÑ ¿ÍÀÌ¾î °ÔÀÌÁö¿¡ ´ëÇÑ ÀûÀÀ¼º, °£´ÜÇÑ ¼³Ä¡ ÇÁ·Î¼¼½º ¹× °¡È¤ÇÑ ÀÚµ¿Â÷ ȯ°æ¿¡¼ÀÇ ¿À·¡ Áö¼ÓµÇ´Â ¼º´É¿¡ ÀÇÇØ Áö¿øµÇ¸ç, ¼¼°èÀûÀ¸·Î ´ÜÀÚ À¯Çü Áß¿¡¼ ¼±È£µÇ´Â ¼±ÅÃÀÔ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ±¸¸® ºÎ¹®ÀÇ CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹»ó
¿¹Ãø ±â°£ µ¿¾È ±¸¸® ºÎ¹®ÀÌ °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±¸¸®·Î ¸¸µé¾îÁø ´ÜÀÚ´Â ½Å·ÚÇÒ ¼ö ÀÖ´Â Àü·Â Àü¼Û°ú ½ÅÈ£ ¹«°á¼ºÀ» º¸ÀåÇϸç Àü±âÀÚµ¿Â÷, °í¼º´É ÀÚµ¿Â÷ ¹× °í±Þ ÀüÀÚ ½Ã½ºÅÛ¿¡ ÇʼöÀûÀÔ´Ï´Ù. ±¸¸®´Â ¹ü¿ë¼ºÀÌ ÀÖ°í °µµ°¡ ÀÖ¾î ´Ù¾çÇÑ µµ±ÝÀ̳ª ÄÚÆÃ ±â¼ú¿¡ ´ëÀÀÇÒ ¼ö Àֱ⠶§¹®¿¡ ½Â¿ëÂ÷, »ó¿ëÂ÷, EV µî¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº ÀÚµ¿Â÷¿Í ADAS¿Í °°Àº ÷´Ü ¾ÈÀü ½Ã½ºÅÛÀÇ Ã¤¿ëÀÌ ´Ã¾î³ª ±¸¸® ´ÜÀÚ ¼ö¿ä¸¦ ¹Ð¾î ¿Ã¸®°í ÀÖ½À´Ï´Ù. ±î´Ù·Î¿î ÀÚµ¿Â÷ Àü±â Ç¥ÁØÀ» ÃæÁ·Çϰí Àüü ½Ã½ºÅÛÀÇ ¼º´ÉÀ» ³ôÀ̱â À§ÇØ Á¦Á¶¾÷ü´Â ±¸¸®¸¦ ¼±È£ÇÕ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±× ÀÌÀ¯´Â Áß±¹, Àεµ, ÀϺ» µî ±¹°¡¿¡¼ ÀÚµ¿Â÷ Á¦Á¶ÀÇ ±â¹ÝÀÌ ³Ð°í ÀÚµ¿Â÷ »ý»ê ´ë¼ö°¡ ´Ã°í Àֱ⠶§¹®ÀÔ´Ï´Ù. ÀÌ Áö¿ªÀÇ ÁÖ¿ä ÀÚµ¿Â÷ Çãºê ¹× ºÎǰ °ø±Þ¾÷ü´Â ´ÜÀÚ ¹× ±âŸ Àü±â ºÎǰ¿¡ ´ëÇÑ ¿Õ¼ºÇÑ ¼ö¿ä¸¦ °ßÀÎÇϰí ÀÖ½À´Ï´Ù. µµ½ÃÈÀÇ ÁøÀü, °¡Ã³ºÐ ¼Òµæ Áõ°¡, Àü±âÀÚµ¿Â÷ÀÇ º¸±Þ È®´ë µîÀÇ ¿äÀÎÀÌ ½ÃÀåÀÇ È®´ë¸¦ ´õ¿í ÀÚ±ØÇϰí ÀÖ½À´Ï´Ù. ¼¼°è Á¦Á¶¾÷ü³ª ÇöÁö Á¦Á¶¾÷ü¿¡ ÀÇÇÑ »ý»ê ¼³ºñ¿¡ ´ëÇÑ ÅõÀÚ´Â °ø±Þ üÀÎÀÇ È¿À²À» Çâ»ó½Ãŵ´Ï´Ù. ±â¼ú Çõ½Å°ú À¯¸®ÇÑ Á¤ºÎÁ¤Ã¥°ú ÇÔ²² ¾Æ½Ã¾ÆÅÂÆò¾çÀº ½Â¿ëÂ÷, »ó¿ëÂ÷, Àü±âÂ÷¿¡ °ÉÃÄ ³»±¸¼ºÀÌ ³ô°í °í¼º´ÉÀÎ ÀÚµ¿Â÷¿ë ´ÜÀÚÀÇ ¿Õ¼ºÇÑ ¼ö¿ä¸¦ À¯ÁöÇϰí ÁÖ¿ä Áö¿ª ½ÃÀåÀ¸·Î¼ÀÇ ÁöÀ§¸¦ È®º¸Çϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì´Â Àü±âÀÚµ¿Â÷, ADAS, Ä¿³ØÆ¼µå ÀÚµ¿Â÷ ±â¼úÀÇ º¸±ÞÀÌ Áõ°¡ÇÔ¿¡ µû¶ó °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±â¼úÀÇ Áøº¸, ¾ö°ÝÇÑ ¾ÈÀü ±âÁØ, °í¼º´É Â÷·®¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼ö¿ä´Â ½Å·ÚÇÒ ¼ö ÀÖ´Â °íǰÁú ´ÜÀÚÀÇ Çʿ伺À» Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶¾÷ü¿Í °ø±Þ¾÷üÀÇ ¿¬±¸ °³¹ß ¹× ÇöÁö Á¦Á¶ ½Ã¼³¿¡ ´ëÇÑ ¸¹Àº ÅõÀÚ´Â ½ÃÀå È®´ë¸¦ °ÈÇϰí ÀÖ½À´Ï´Ù. °Ô´Ù°¡ Àüµ¿ À̵¿¼ºÀ» ÃßÁøÇϰí ÀÎÇÁ¶ó °³¹ßÀ» Áö¿øÇÏ´Â Á¤ºÎÀÇ ¿ì´ë Á¶Ä¡µµ ÷´Ü Àü±â ºÎǰÀÇ Ã¤¿ë È®´ë¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεé·Î ÀÎÇØ ºÏ¹Ì´Â ÀÚµ¿Â÷¿ë ´ÜÀÚÀÇ ±Þ¼ºÀå ½ÃÀåÀ¸·Î È®¸³µÇ¾î ÀÖÀ¸¸ç, ÀÌ ºÐ¾ß¿¡¼ÀÇ °·ÂÇÑ ¼ºÀå ÀáÀç·Â°ú ±â¼úÀû ¸®´õ½ÊÀ» ¹Ý¿µÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Automotive Terminal Market is accounted for $26.90 billion in 2025 and is expected to reach $51.11 billion by 2032 growing at a CAGR of 9.6% during the forecast period. Automotive terminals play a crucial role in vehicle electrical systems by enabling secure connections between cables, wires, and electronic components. They facilitate effective power delivery, maintain signal quality, and ensure safety in passenger cars, commercial vehicles, and electric vehicles. Built to endure heat, vibrations, and corrosion, these terminals contribute to improved vehicle reliability and lifespan. Growing use of electric vehicles and advanced technologies like ADAS is driving the need for high-performance terminals. Manufacturers are innovating with superior materials and precision designs to comply with strict industry standards and satisfy the increasing demands of modern automotive electrical systems.
According to the European Automobile Manufacturers Association (ACEA), approximately 85.4 million motor vehicles were produced globally in 2022, marking a 5.7% increase from 2021. This surge in production underscores the growing demand for automotive components, including terminals, which are essential for ensuring reliable electrical connections in vehicles.
Increasing vehicle production
The expansion of vehicle manufacturing globally acts as a major driver for the automotive terminal market. As more cars are produced, the need for reliable electrical connections such as terminals rises. Automotive terminals are vital for linking batteries, wiring harnesses, and electronic systems, ensuring smooth power flow and signal consistency. The surge in vehicle output, especially in Asia-Pacific, Europe, and North America, contributes to this demand. Incorporation of advanced electronics and smart systems in modern vehicles intensifies the requirement for durable terminals that resist heat, vibrations, and corrosion, thereby supporting vehicle efficiency and longevity.
High production costs
Rising production costs act as a major restraint on the automotive terminal market. High-quality metals like copper and aluminum, along with protective coatings, are essential for terminals, increasing material expenses. Precision manufacturing processes must comply with strict automotive standards, driving capital and operational costs higher. Volatile raw material prices further contribute to financial uncertainty, challenging smaller producers in maintaining competitiveness. Cost-sensitive vehicle segments and emerging markets may prefer cheaper alternatives, limiting adoption of premium terminals. As a result, these economic factors constrain market expansion, making it harder for automotive terminal manufacturers to achieve rapid growth while maintaining quality and performance standards.
Increasing adoption of advanced driver-assistance systems (ADAS)
The expanding use of ADAS and connected vehicle technologies presents promising opportunities for automotive terminal suppliers. Modern vehicles equipped with sensors, cameras, and infotainment systems rely on dependable electrical connections for safe and efficient operation. High-performance terminals ensure consistent signal quality and power distribution within these intricate systems. With features such as lane-keeping assistance, adaptive cruise control, and automated braking becoming standard, the demand for robust terminals is increasing. Terminal manufacturers can benefit by designing components with superior corrosion resistance, thermal endurance, and compatibility with cutting-edge automotive electronics, supporting the broader adoption of advanced safety and connectivity technologies in the automotive sector.
Intense competition in the market
Intense market competition threatens the automotive terminal industry. Numerous regional and global players compete aggressively for market dominance, while new entrants introduce innovative, cost-effective products. Mergers and acquisitions among competitors further alter market dynamics, heightening rivalry. This competitive environment can trigger price reductions, higher marketing costs, and margin pressures. Manufacturers must consistently innovate, improve product quality, and differentiate their offerings to remain competitive. Inability to respond to evolving customer demands, technological changes, or rival strategies may lead to declining market share, restricting individual company growth and potentially destabilizing the broader automotive terminal market.
The COVID-19 pandemic had a notable impact on the automotive terminal market, disrupting supply chains and halting production in several regions. Lockdowns and restrictions reduced vehicle sales, lowering demand for terminals used in passenger and commercial vehicles. Raw material shortages, including copper and aluminum, further constrained manufacturing. Development timelines for technology and innovation were delayed, slowing overall market progress. However, the crisis also accelerated adoption of electric vehicles and connected automotive technologies, encouraging manufacturers to adjust strategies. Market recovery is underway as production resumes and investment in advanced, durable automotive terminals increases, signaling gradual stabilization and future growth prospects for the industry.
The ring terminals segment is expected to be the largest during the forecast period
The ring terminals segment is expected to account for the largest market share during the forecast period owing to their durability, reliability, and extensive usage in multiple vehicle applications. They offer secure, vibration-proof connections, ensuring safety and consistent electrical performance in passenger cars, commercial vehicles, and electric vehicles. Their sturdy construction allows efficient current transfer while minimizing the risk of corrosion or disconnection over prolonged periods. Automotive producers commonly use ring terminals for grounding, battery connections, and high-current circuits. The segment's prominence is supported by its adaptability to different wire gauges, simple installation process, and long-lasting performance under harsh automotive conditions, making it the preferred choice among terminal types globally.
The copper segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the copper segment is predicted to witness the highest growth rate, attributed to its superior electrical conductivity, thermal efficiency, and resistance to corrosion. Terminals made from copper ensure reliable power transmission and signal integrity, which is critical for electric vehicles, high-performance automobiles, and advanced electronic systems. Copper's versatility, strength, and ability to support various plating and coating techniques make it widely used in passenger cars, commercial vehicles, and EVs. Rising adoption of energy-efficient vehicles and advanced safety systems like ADAS is boosting demand for copper terminals. Manufacturers are increasingly prioritizing copper to satisfy stringent automotive electrical standards and enhance overall system performance.
During the forecast period, the Asia Pacific region is expected to hold the largest market share due to its extensive automotive manufacturing base and increasing vehicle output in countries like China, India, and Japan. Major automotive hubs and component suppliers in this region drive strong demand for terminals and other electrical parts. Factors such as rising urbanization, higher disposable income, and growing electric vehicle adoption further stimulate market expansion. Investment by global and local manufacturers in production facilities improves supply chain efficiency. Coupled with technological innovations and favorable government policies, Asia-Pacific maintains strong demand for durable and high-performance automotive terminals across passenger cars, commercial vehicles, and electric vehicles, securing its position as the leading regional market.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, driven by the rising penetration of electric vehicles, ADAS, and connected car technologies. Technological advancements, strict safety standards, and consumer demand for high-performance vehicles are boosting the need for reliable, high-quality terminals. Significant investments by automakers and suppliers in R&D and local manufacturing facilities strengthen market expansion. Moreover, government incentives promoting electric mobility and supporting infrastructure development contribute to increased adoption of advanced electrical components. Together, these factors establish North America as the fastest-growing market for automotive terminals, reflecting strong growth potential and technological leadership in the sector.
Key players in the market
Some of the key players in Automotive Terminal Market include TE Connectivity Ltd., Aptiv PLC, Yazaki Corporation, Sumitomo Electric Industries, Ltd., Amphenol Corporation, Lear Corporation, Molex LLC, Panasonic Corporation, Japan Aviation Electronics Industry, Ltd., Fujikura Ltd., Keats Manufacturing Company, PKC Group Ltd., Delphi Technologies (part of Aptiv PLC), Grote Industries and Furukawa Electric Co., Ltd.
In August 2025, Amphenol Corporation announced that it has entered into two unsecured delayed draw term loan credit agreements totaling $4 billion to support its planned acquisition of CommScope Holding Company, Inc.'s Connectivity and Cable Solutions (CCS) business. The company disclosed the agreements in a statement based on a filing with the Securities and Exchange Commission.
In March 2025, Sumitomo Electric Industries, Ltd. and 3M announce an assembler agreement enabling Sumitomo Electric to offer variety of optical fiber connectivity products featuring 3M(TM) Expanded Beam Optical (EBO) Interconnect technology, a high-performance solution to meet scalability needs of next-generation data centers and advanced network architectures.
In February 2025, TE Connectivity plc has entered into a definitive agreement to acquire Richards Manufacturing Co. from funds managed by Oaktree Capital Management, L.P. and members of the Bier family, long-standing owners and leaders of the business. The transaction will strengthen TE's position in serving electrical utilities in North America by combining complementary product portfolios and adding the expertise of the Richards team, enabling TE to benefit from strong growth trends in underground electrical networks.