ź¼Ò¼¶À¯ ±¸Á¶ Àü±Ø ½ÃÀå ¿¹Ãø(-2032³â) : Àü±Ø À¯Çüº°, Àç·á Çü»óº°, ±â´Éº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®
Carbon Fiber Structural Electrodes Market Forecasts to 2032 - Global Analysis By Type of Electrode (Anodes and Cathodes), Material Form (Woven Fabric, Non-Woven Veil/Mat, Unidirectional Tape and Chopped Fiber), Functionality, End User and By Geography
»óǰÄÚµå : 1813463
¸®¼­Ä¡»ç : Stratistics Market Research Consulting
¹ßÇàÀÏ : 2025³â 09¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 200+ Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,150 £Ü 5,868,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 5,250 £Ü 7,423,000
PDF (2-5 User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷Àå¿¡¼­ 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,350 £Ü 8,978,000
PDF & Excel (Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷ÀåÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇÕ´Ï´Ù. Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ¹× Excel ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 7,500 £Ü 10,605,000
PDF & Excel (Global Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 10ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ Åº¼Ò¼¶À¯ ±¸Á¶ Àü±Ø ½ÃÀåÀº 2025³â¿¡ 48¾ï 9,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇϰí, ¿¹Ãø ±â°£ µ¿¾È CAGRÀº 12.2%¸¦ ³ªÅ¸³», 2032³â¿¡´Â 109¾ï 4,000¸¸ ´Þ·¯¿¡ À̸¦ Àü¸ÁÀÔ´Ï´Ù.

ź¼Ò¼¶À¯ ±¸Á¶ Àü±ØÀº °í°­µµ ź¼Ò¼¶À¯ Àç·á¿Í Àü±âÈ­ÇÐÀû ±â´É¼ºÀ» °áÇÕÇÏ¿© ±¸Á¶ ÁöÁö ¹× Ȱ¼º Àü±Ø ¿ªÇÒÀ» ÇÏ´Â ºÎǰÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. Àü±âÀÚµ¿Â÷, Ç×°ø¿ìÁÖ, ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ¿¡ »ç¿ëµÇ¾î ¿¡³ÊÁö È¿À²À» Çâ»ó½ÃŰ¸é¼­ °æ·®È­¸¦ ½ÇÇöÇÕ´Ï´Ù. ÀÌ Àç·á´Â Àüµµ¼º, ±â°èÀû °­µµ ¹× È­ÇÐÀû ¾ÈÁ¤¼ºÀ» ÅëÇÕÇÏ°í ´Ù±â´É ¿ëµµ¸¦ Áö¿øÇÕ´Ï´Ù. ±âÁ¸ÀÇ Àü±Ø°ú ÁöÁöüÀÇ ±¸¼ºÀ» ´ëüÇÔÀ¸·Î½á ¼³°è¸¦ °£¼ÒÈ­ÇÏ°í ½Ã½ºÅÛÀÇ º¹À⼺À» ÁÙÀÌ°í ³»±¸¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù.

Àü¹Ì°úÇÐÀç´ÜÀÇ Á¶»ç¿¡ µû¸£¸é LiFePO4 ÄÚÆÃ Åº¼Ò¼¶À¯ Àü±ØÀº ÀλóÀûÀÎ Àü±âÈ­ÇÐÀû ¼º´É ÁöÇ¥¸¦ º¸¿©ÁÝ´Ï´Ù. µ¥ÀÌÅÍ¿¡ ÀÇÇϸé, ºñ¿ë·®°ªÀº 0.1C ·¹ÀÌÆ®·Î 144 mA hg-1, 1.0C ·¹ÀÌÆ®·Î 108 mA h g-1·Î, 300 »çÀÌŬ ÈÄÀÇ ¿ë·® À¯ÁöÀ²Àº 0.33C¿¡¼­ 96.4%, 1.0C¿¡¼­ 81.2%·Î ¿ì¼öÇÕ´Ï´Ù. ÀÌ ¿¬±¸´Â ¶ÇÇÑ Åº¼Ò¼¶À¯ ±âÆÇ¿¡ Àû¾îµµ 74%ÀÇ ³ôÀº LiFePO4 ´ãÁöÀ²À» º¸¿©ÁÝ´Ï´Ù.

°¡º±°í ´Ù±â´É ¹èÅ͸® ºÎǰ¿¡ ´ëÇÑ ¼ö¿ä

ÁÖ¿ä ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎÀº ƯÈ÷ Àü±âÀÚµ¿Â÷(EV) ¹× °¡Àü ºÐ¾ß¿¡¼­ °¡º±°í ´Ù±â´É ¹èÅ͸® ºÎǰ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡ÀÔ´Ï´Ù. ź¼Ò¼¶À¯ ±¸Á¶ Àü±Ø(CFSE)Àº ÀüÇÏ´ãü¿Í ³»ÇÏÁßÀç·á ¸ðµÎÀÇ ¿ªÇÒÀ» ÇÔÀ¸·Î½á ÀÌÁß ±â´ÉÀ» Á¦°øÇÏ¿© ½Ã½ºÅÛÀÇ »ó´çÇÑ °æ·®È­¿Í ¿¡³ÊÁö¹ÐµµÀÇ Çâ»óÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÌ ÅëÇÕÀº EVÀÇ Ç×¼Ó °Å¸®¿Í ÀüÀÚÀÇ È޴뼺À» Çâ»ó½ÃŰ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. °Ô´Ù°¡ ¼º´É°ú È¿À²¼ºÀÇ Çâ»óÀÌ ¿ä±¸µÇ°í Àֱ⠶§¹®¿¡ Á¦Á¶¾÷ü´Â ÀÌ Ã·´Ü Àç·á ±â¼úÀ» ä¿ëÇÏÁö ¾ÊÀ» ¼ö ¾ø°í, ±×¿¡ ÀÇÇØ Çõ½ÅÀûÀÎ Á¦Ç° °³¹ßÀ» ÅëÇØ ½ÃÀå °³Ã´ÀÌ °¡¼ÓÇϰí ÀÖ½À´Ï´Ù.

³ôÀº Á¦Á¶ ºñ¿ë°ú Á¦ÇÑµÈ ÀçȰ¿ë¼º

ź¼Ò¼¶À¯ Àü±Ø¿¡ ÇÊ¿äÇÑ Æ¯¼öÇÑ Àü±¸Ã¼³ª ¿¡³ÊÁö Áý¾àÀûÀÎ Á¦Á¶ °øÁ¤°ú °ü·ÃµÈ Á¦Á¶ ºñ¿ëÀÌ ³ôÀº °ÍÀÌ ½ÃÀå µµÀÔÀÇ Å« ÀúÇØ ¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±¸Á¶Àû ±â´É°ú Àü±âÈ­ÇÐÀû ±â´ÉÀÇ º¹ÀâÇÑ ÅëÇÕÀº R&D ºñ¿ëÀ» Áõ°¡½ÃŰ´Â ½É°¢ÇÑ ¿£Áö´Ï¾î¸µ °úÁ¦¸¦ ÃÊ·¡ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Ã·´Ü º¹ÇÕÀç·áÀÇ ¸®»çÀÌŬ °¡´É¼ºÀÌ Á¦ÇѵǾî ÀÖ´Â °ÍÀÌ ´õ¿í ¹®Á¦¸¦ º¹ÀâÇÏ°Ô Çϰí ÀÖ¾î, »ç¿ëÈÄ Á¦Ç°ÀÇ °ü¸®¿¡ »ó´çÇÑ È¯°æÀû¡¤°æÁ¦Àû °úÁ¦¸¦ °¡Á®¿À°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀº ÃѼÒÀ¯ºñ¿ëÀ» Áõ°¡½Ã۱⠶§¹®¿¡ ƯÈ÷ ºñ¿ë¿¡ ¹Î°¨ÇÑ ¿ëµµ¿¡¼­´Â ¼º´É»óÀÇ ÀÌÁ¡ÀÌ ÀÖÀ½¿¡µµ ºÒ±¸ÇÏ°í º¸±ÞÀÌ ÀúÇØµÉ ¼ö ÀÖ½À´Ï´Ù.

µå·Ð ¹× EV¿ë ±¸Á¶ ÀüÁö °³¹ß

Àü±âÇ×°ø, ¹«ÀÎ Ç×°ø±â ¹× Â÷¼¼´ë EVÀÇ ½ÅÈï ¿ëµµ¸¦ À§ÇÑ ±¸Á¶ ¹èÅ͸®ÀÇ °³¹ß¿¡´Â Å« ½ÃÀå °³Ã´ ±âȸ°¡ Á¸ÀçÇÕ´Ï´Ù. ¸Å½º¸®½º ¿¡³ÊÁö ÀúÀåÀ¸·Î ¾Ë·ÁÁø ÀÌ ±â¼úÀº ¿¡³ÊÁö ÀúÀåÀ» Â÷ü ÆÐ³Î ¹× ¼¨½Ã¿Í °°Àº Â÷·® ±¸Á¶¿¡ Á÷Á¢ ÅëÇÕÇÏ¿© »ó´çÇÑ °æ·®È­¿Í Ç×¼Ó °Å¸® ¿¬ÀåÀ» ½ÇÇöÇÕ´Ï´Ù. ÀÌ ÆÐ·¯´ÙÀÓ ½ÃÇÁÆ®´Â Ç×°ø¿ìÁÖ»ê¾÷°ú ÀÚµ¿Â÷»ê¾÷¿¡ ƯÈ÷ ¼³µæ·ÂÀÌ ÀÖ´Â °ÍÀ¸·Î, 1±×·¥ÀÇ Àý¾àµµ ¼º´É°ú È¿À²ÀÇ Çâ»ó¿¡ Á÷°áÇϱ⠶§¹®¿¡ ÷´Ü Àç·á °ø±Þ¾÷ü³ª ¹èÅ͸® Á¦Á¶¾÷ü¿¡ À־ »õ·Î¿î °íºÎ°¡°¡Ä¡ÀÇ ¼öÀÍ¿øÀÌ µË´Ï´Ù.

Àü±Ø ¼³°è¿¡¼­ IP ´ÜÆíÈ­

Çмú±â°ü°ú ½ÅÈï±â¾÷À» Æ÷ÇÔÇÑ ¼ö¸¹Àº ±â¾÷µéÀÌ Áß¿äÇÑ Æ¯Ç㸦 º¸À¯Çϰí ÀÖ¾î º¹ÀâÇϰí ÀáÀçÀûÀ¸·Î Àû´ëÀûÀÎ ¶óÀ̼±½Ì »óȲÀ» ¸¸µé¾î³»°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ´ÜÆíÈ­´Â ºñ¿ëÀÌ ¸¹ÀÌ µå´Â ¼Ò¼ÛÀ» ÅëÇØ ±â¼ú Çõ½ÅÀ» ¹æÇØÇÏ°í ±â¾÷ °£ÀÇ Çù·Â °ü°è¸¦ ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ½ºÄÉÀÏ ¸Þ¸®Æ®¸¦ ½ÇÇöÇÏ´Â µ¥ ÇʼöÀûÀÎ Á¦Á¶ ÇÁ·ÎÅäÄÝÀÇ Ç¥ÁØÈ­¸¦ Áö¿¬½Ãų À§Çèµµ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÅëÀÏµÈ ÁöÀûÀç»ê üÁ¦ÀÇ ºÎÁ·Àº ´ë±Ô¸ð ÅõÀÚ¸¦ ¾ïÁ¦ÇÏ°í ±Ã±ØÀûÀ¸·Î CFSE ±â¼úÀÇ »ê¾÷¿¡ ´ëÇÑ º¸±ÞÀ» Áö¿¬½Ãų ¼ö ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ :

COVID-19ÀÇ ´ëÀ¯ÇàÀº ´çÃÊ ½É°¢ÇÑ °ø±Þ¸ÁÀÇ Áߴܰú Á¦Á¶¡¤¿¬±¸°³¹ß½Ã¼³ÀÇ ÀϽÃÀûÀÎ Á¶¾÷ Á¤Áö¸¦ ÅëÇØ ź¼Ò¼¶À¯ ±¸Á¶ Àü±Ø ½ÃÀåÀ» È¥¶õ½ÃÄ×½À´Ï´Ù. ÁÖ¿ä ¿øÀç·á ºÎÁ·°ú ¹°·ù º´¸ñ Çö»óÀº Á¦Ç° °³¹ß »çÀÌŬ°ú ÆÄÀÏ·µ ÇÁ·ÎÁ§Æ®¸¦ Áö¿¬½ÃÄ×½À´Ï´Ù. ±×·¯³ª ÀÌ À§±â´Â °ø±Þ¸Á Áö¿ªÈ­ÀÇ Àü·«Àû Á߿伺À» µ¸º¸ÀÌ°Ô Çϰí, Àüµ¿¼ºÀ» À§ÇÑ ¼±Áø ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼ÇÀ» Æ÷ÇÔÇÑ ±×¸° Å×Å©³î·¯Áö¿¡ ´ëÇÑ Á¤ºÎ ¹× ¹Î°£ ÅõÀÚ¸¦ °¡¼ÓÈ­ÇÏ°í ¿¹Ãø ±â°£ ÈĹݿ¡ ºñ±³Àû ºü¸¥ ½ÃÀå ȸº¹À» µÞ¹ÞħÇß½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È À½±Ø ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á

¾ç±Ø ºÎ¹®Àº ±¸Á¶ ¹èÅ͸®ÀÇ Àü¹ÝÀûÀÎ ¿¡³ÊÁö ¹Ðµµ¿Í ¼º´ÉÀ» °áÁ¤ÇÏ´Â Áß¿äÇÑ ¿ªÇÒÀ» ´ã´çÇϹǷΠ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Àλêö ¸®Æ¬(LFP) ¹× ´ÏÄÌ ¸Á°£ ÄÚ¹ßÆ®(NMC)¿Í °°Àº ÷´Ü Àç·á¸¦ ±â¹ÝÀ¸·Î ÇÑ ¾ç±ØÀº ³ôÀº ºñ¿ë·®°ú ±¸Á¶Àû ¹«°á¼ºÀ» ´Þ¼ºÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. ¶ÇÇÑ À̿ Àüµµ¼º°ú ±â°èÀû °­µµ¸¦ Çâ»ó½Ã۱â À§ÇØ Åº¼Ò¼¶À¯ ¸ÅÆ®¸¯½º¿Í Á¤±ØÀÇ ÀûÇÕ¼ºÀ» ³ôÀÌ´Â ¿¬±¸°³¹ß¿¡ ÁßÁ¡ÀûÀ¸·Î ÀÓÇϰí ÀÖ´Â °Íµµ ÀÌ ½ÃÀå¿¡¼­ÀÇ ¿ìÀ§¼ºÀ» ³ôÀÌ´Â Áß¿äÇÑ ¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¿¡³ÊÁö ÀúÀå ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ Àü¸Á

¿¹Ãø±â°£ µ¿¾È È¿À²ÀûÀ̰í ÄÞÆÑÆ®ÇÑ ¿¡³ÊÁöÀúÀå½Ã½ºÅÛ¿¡ ´ëÇÑ ¼¼°è ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¿¡³ÊÁöÀúÀå ºÐ¾ß°¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¿©±â¿¡´Â ±×¸®µå ½ºÅ丮Áö, Àç»ý¿¡³ÊÁö ÅëÇÕ ¹× ÈÞ´ë¿ë Àü¿ø °ø±Þ ÀåÄ¡¿¡ ´ëÇÑ ÀÀ¿ëÀÌ Æ÷ÇԵ˴ϴÙ. ¿¡³ÊÁö¸¦ ÀúÀåÇϸ鼭 ±¸Á¶Àû ¹«°á¼ºÀ» Á¦°øÇÏ´Â CFSEÀÇ µ¶Æ¯ÇÑ °¡Ä¡ Á¦¾ÈÀº °ø°£°ú ¹«°Ô°¡ °­Á¶µÇ´Â ÀÌ·¯ÇÑ ºÐ¾ß¿¡¼­ ƯÈ÷ À¯¸®ÇÕ´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ ½Ã½ºÅÛÀÇ ºÎÇÇ ¿¡³ÊÁö ¹Ðµµ¸¦ ³ôÀÌ´Â °ÍÀ» ¸ñÇ¥·Î ÇÏ´Â Çõ½ÅÀÇ Áö¼ÓÀº ÀÌ ºÐ¾ßÀÇ »ó´çÇÑ ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª :

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ·¯ÇÑ ¿ìÀ§¼ºÀº ƯÈ÷ Áß±¹, ÀϺ», Çѱ¹¿¡ À־ ´ë±â¾÷ EV Á¦Á¶¾÷ü, ´ë±â¾÷ °¡Àü Á¦Á¶¾÷ü°¡ È®°íÇÑ Á¸Àç°¨À» ³ªÅ¸³»°í ÀÖ´Â °Í, ÀüÀÚÈ­ ¹× Àç»ý¿¡³ÊÁö µµÀÔÀ» ÇâÇÑ Á¤ºÎÀÇ °­·ÂÇÑ µÞ¹ÞħÀÌ Àֱ⠶§¹®ÀÔ´Ï´Ù. ÀÌ Áö¿ªÀÇ Åº¼Ò¼¶À¯ »ý»ê´É·ÂÀº È®¸³µÇ¾î ÀÖÀ¸¸ç, ¹èÅ͸® ¸Þ°¡°øÀå¿¡ ´ëÇÑ ´ë±Ô¸ð ÅõÀڴ ÷´Ü ±¸Á¶Àü±Ø±â¼úÀÇ Ã¤¿ë¿¡ ÀÌ»óÀûÀÎ »ýŰèÀ» ±¸ÃàÇÏ¿© ÀÌ ½ÃÀåÀÇ ¼öÀÍ ¸®´õ·Î¼­ÀÇ ÁöÀ§¸¦ È®½ÇÈ÷ Çϰí ÀÖ½À´Ï´Ù.

°¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³»´Â Áö¿ª :

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ·¯ÇÑ ¼ºÀå °¡¼ÓÈ­ÀÇ ¹è°æ¿¡´Â Â÷¼¼´ë ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼ÇÀ» À§ÇÑ ¹Î°£ÀÎ ¿¬±¸ °³¹ß¿¡ Àû±ØÀûÀÎ ÅõÀÚ°¡ ÀÖ½À´Ï´Ù. EV Â÷·®ÀÇ ±Þ¼ÓÇÑ È®´ë¿Í Àç»ý¿¡³ÊÁö ÇÁ·ÎÁ§Æ®ÀÇ µµÀÔ È®´ë·Î ÷´Ü ¹èÅ͸® ±â¼úÀÌ ÇÊ¿äÇϸç, CFSE´Â ±Þ¼ÓÇÑ º¸±ÞÀÌ ¿¹»óµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Á¤ºÎÀÇ Áö¿ø Á¤Ã¥°ú ¹èÅ͸® »ý»êÀÇ ±â¼ú ÁÖ±ÇÀ» ÃËÁøÇÏ´Â ÀÌ´Ï¼ÅÆ¼ºê°¡ ÀÌ Áö¿ª ³»¿¡¼­ ÀÌ·ÊÀûÀÎ ¼Óµµ·Î ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù.

»ç¿ëÀÚ Á¤ÀÇ ¹«·á Á¦°ø :

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´¿¡°Ô´Â ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ Á¦°øÇÕ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

Á¦4Àå Porter's Five Forces ºÐ¼®

Á¦5Àå ¼¼°èÀÇ Åº¼Ò¼¶À¯ ±¸Á¶ Àü±Ø ½ÃÀå : Àü±Ø À¯Çüº°

Á¦6Àå ¼¼°èÀÇ Åº¼Ò¼¶À¯ ±¸Á¶ Àü±Ø ½ÃÀå : Àç·á Çü»óº°

Á¦7Àå ¼¼°èÀÇ Åº¼Ò¼¶À¯ ±¸Á¶ Àü±Ø ½ÃÀå : ±â´Éº°

Á¦8Àå ¼¼°èÀÇ Åº¼Ò¼¶À¯ ±¸Á¶ Àü±Ø ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

Á¦9Àå ¼¼°èÀÇ Åº¼Ò¼¶À¯ ±¸Á¶ Àü±Ø ½ÃÀå : Áö¿ªº°

Á¦10Àå ÁÖ¿ä ¹ßÀü

Á¦11Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

KTH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

According to Stratistics MRC, the Global Carbon Fiber Structural Electrodes Market is accounted for $4.89 billion in 2025 and is expected to reach $10.94 billion by 2032 growing at a CAGR of 12.2% during the forecast period. Carbon fiber structural electrodes combine high-strength carbon fiber materials with electrochemical functionality, enabling components to serve as both structural supports and active electrodes. Used in electric vehicles, aerospace, and energy storage systems, they reduce weight while improving energy efficiency. These materials integrate electrical conductivity, mechanical strength, and chemical stability, supporting multifunctional applications. By replacing traditional electrode and support configurations, they streamline design, lower system complexity, and improve durability.

According to National Science Foundation research, LiFePO4-coated carbon fiber electrodes exhibit impressive electrochemical performance metrics. The data indicates specific capacity values of 144 mA h g-1 at 0.1C rate and 108 mA h g-1 at 1.0C rate, with excellent capacity retention of 96.4% at 0.33C and 81.2% at 1.0C after 300 cycles. The research also shows high LiFePO4 loading of at least 74% on carbon fiber substrates.

Market Dynamics:

Driver:

Demand for lightweight, multifunctional battery components

The primary market driver is the escalating demand for lightweight and multifunctional battery components, particularly from the electric vehicle (EV) and consumer electronics sectors. Carbon fiber structural electrodes (CFSEs) provide a dual function by serving as both a charge carrier and a load-bearing material, enabling significant weight reduction and increased energy density in systems. This integration is critical for enhancing the range of EVs and the portability of electronics. Additionally, the imperative for improved performance and efficiency is compelling manufacturers to adopt this advanced materials technology, thereby accelerating market growth through innovative product development.

Restraint:

High production costs and limited recyclability

A significant restraint for market adoption is the high production costs associated with the specialized precursors and energy-intensive manufacturing processes required for carbon fiber electrodes. Moreover, the complex integration of structural and electrochemical functions presents substantial engineering challenges that elevate R&D expenditures. The limited recyclability of these advanced composite materials further compounds the issue, posing a considerable environmental and economic challenge for end-of-life management. These factors collectively increase the total cost of ownership, potentially inhibiting widespread commercialization, especially in cost-sensitive applications, despite the performance benefits offered.

Opportunity:

Development of structural batteries for drones and EVs

A substantial market opportunity exists in the development of structural batteries for emerging applications in electric aviation, drones, and next-generation EVs. This technology, known as massless energy storage, integrates energy storage directly into the vehicle's structure, such as the body panels or chassis, leading to radical weight savings and increased operational range. This paradigm shift is particularly compelling for the aerospace and automotive industries, where every gram saved translates directly into enhanced performance and efficiency, thereby opening new, high-value revenue streams for advanced material suppliers and battery manufacturers.

Threat:

IP fragmentation in electrode design

Numerous entities, including academic institutions and startups, hold critical patents, creating a complex and potentially adversarial licensing landscape. This fragmentation can stifle innovation through costly litigation and hinder cross-company collaboration. Furthermore, it risks slowing down the standardization of manufacturing protocols, which is essential for achieving economies of scale. This lack of a unified IP framework could deter larger investments and ultimately delay the widespread industrial adoption of CFSE technology.

Covid-19 Impact:

The COVID-19 pandemic initially disrupted the carbon fiber structural electrodes market through severe supply chain interruptions and the temporary shutdown of manufacturing and R&D facilities. Key raw material shortages and logistical bottlenecks delayed product development cycles and pilot projects. However, the crisis also underscored the strategic importance of regionalizing supply chains and accelerated government and private investment in green technologies, including advanced energy storage solutions for electric mobility, aiding in a relatively swift market recovery in the latter part of the forecast period.

The cathodes segment is expected to be the largest during the forecast period

The cathodes segment is expected to account for the largest market share during the forecast period due to its critical role in determining the overall energy density and performance of structural batteries. Cathodes based on advanced materials like lithium iron phosphate (LFP) and nickel manganese cobalt (NMC) are essential for achieving high specific capacity and structural integrity. Furthermore, the significant R&D focus on enhancing cathode compatibility with carbon fiber matrices to improve ionic conductivity and mechanical strength is a key factor driving its dominance in the market.

The energy storage segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the energy storage segment is predicted to witness the highest growth rate, driven by the escalating global demand for efficient and compact energy storage systems. This includes applications in grid storage, renewable energy integration, and portable power units. The unique value proposition of CFSEs-providing structural integrity while storing energy-is particularly advantageous in these sectors where space and weight are at a premium. Moreover, continued innovation aimed at increasing the volumetric energy density of these systems is expected to propel significant growth in this segment.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share. This dominance is attributable to the robust presence of leading EV manufacturers, consumer electronics giants, and a strong government push towards electrification and renewable energy adoption, particularly in China, Japan, and South Korea. The region's well-established carbon fiber production capabilities and massive investments in battery mega-factories create an ideal ecosystem for the adoption of advanced structural electrode technologies, securing its position as the revenue leader in this market.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is also anticipated to exhibit the highest CAGR. This accelerated growth is fueled by aggressive investments in research and development from both public and private entities aimed at next-generation energy storage solutions. The rapid expansion of the EV fleet and the increasing deployment of renewable energy projects necessitate advanced battery technologies, positioning CFSEs for rapid adoption. Additionally, supportive governmental policies and initiatives promoting technological sovereignty in battery production are catalyzing market growth at an exceptional rate within the region.

Key players in the market

Some of the key players in Carbon Fiber Structural Electrodes Market include Toray Industries, Inc., SGL Carbon, Teijin Limited, Hexcel Corporation, Mitsubishi Chemical Group Corporation, Zoltek Corporation, Nippon Carbon Co., Ltd., GrafTech International Ltd., Showa Denko K.K., Mige New Material, Liaoning Jingu Carbon Material, CGT Carbon GmbH, Shenyang FLYING Carbon Fiber Co., Ltd., Sichuan Junrui Carbon Fiber Materials Co., Ltd., Zhongfu Shenying Carbon Fiber Co., Ltd., HYOSUNG ADVANCED MATERIALS Corp., Solvay S.A., and Formosa Plastics Corporation.

Key Developments:

In June 2025, SGL Carbon is expanding its product portfolio with a new battery felt for redox flow batteries. The innovative electrode material, marketed under the name SIGRACELL(R) GFX4.8 EA, is characterized by its low electrical resistance and therefore enables optimum electron exchange with an increased surface area.

In March 2023, Teijin Limited announced today that it has developed a gas-diffusion layer (GDL) with a thickness of just 50 micrometers, the industry's thinnest level, by combining the company's ultra-fine fibrous carbon and para-aramid fiber using proprietary papermaking technology. Teijin expects its new GDL to contribute to the realization of smaller, more functional and lower cost fuel cells, the demand for which is expanding.

Type of Electrodes Covered:

Material Forms:

Functionalities Covered:

End Users Covered:

Regions Covered:

What our report offers:

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

Table of Contents

1 Executive Summary

2 Preface

3 Market Trend Analysis

4 Porters Five Force Analysis

5 Global Carbon Fiber Structural Electrodes Market, By Type of Electrode

6 Global Carbon Fiber Structural Electrodes Market, By Material Form

7 Global Carbon Fiber Structural Electrodes Market, By Functionality

8 Global Carbon Fiber Structural Electrodes Market, By End User

9 Global Carbon Fiber Structural Electrodes Market, By Geography

10 Key Developments

11 Company Profiling

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â