Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ¸¸¼º Ä¡·á¿ë ÀÓ»ó ÀÇ»ç°áÁ¤ Áö¿ø ½ÃÀåÀº 2025³â 9¾ï ´Þ·¯¸¦ Â÷ÁöÇϰí 2032³â 22¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¿¹Ãø ±â°£ Áß CAGRÀº 12.5%·Î ¼ºÀåÇÒ Àü¸ÁÀÔ´Ï´Ù.
¸¸¼º Ä¡·á¿ë ÀÓ»ó ÀÇ»ç°áÁ¤ Áö¿ø(CDS)Àº ÀÓ»óÀǰ¡ Àå±âÀûÀÎ º´¸®¸¦ °ü¸®ÇÒ ¼ö ÀÖµµ·Ï ȯÀÚ¿¡°Ô Æ¯ÈµÈ ÀλçÀÌÆ®¸¦ Á¦°øÇÏ´Â Áö´ÉÇü ÀÇ·á IT ½Ã½ºÅÛÀÔ´Ï´Ù. ÀÌ µµ±¸´Â Áõ°Å ±â¹Ý Áöħ, ½Ç½Ã°£ µ¥ÀÌÅÍ ¹× ¿¹Ãø ºÐ¼®À» ÅëÇÕÇÏ¿© Áø´Ü, Ä¡·á °èȹ ¹× ¸ð´ÏÅ͸µÀ» ÃÖÀûÈÇÕ´Ï´Ù. CDS´Â À§ÇèÀ» ÆÄ¾ÇÇÏ°í °³ÀÔÀ» Á¦¾ÈÇÏ¸ç ¿öÅ©Ç÷ο츦 °£¼ÒÈÇÏ¿© ÄɾîÀÇ ÁúÀ» ³ôÀÔ´Ï´Ù. ¸¸¼º Áúȯ °ü¸®´Â Áö¼Ó¼ºÀ» Áö¿øÇϰí, ¿À·ù¸¦ ÁÙÀ̰í, ÀÓ»ó ÇÁ·ÎÅäÄݰú ȯÀÚÀÇ º´·Â¿¡ µû¶ó Àû½Ã¿¡ ¸ÂÃã Ä¡·á °áÁ¤À» ÃËÁøÇÕ´Ï´Ù.
ÀüÀÚ ÀÇ·á ±â·Ï(EHR) ¹× µðÁöÅÐ °Ç° äÅà Ȯ´ë
CDS¸¦ EHR Ç÷§Æû°ú ÅëÇÕÇÏ¸é ½Ç½Ã°£ ÀÓ»ó ÀλçÀÌÆ®°¡ °¡´ÉÇϸç ÀÇ»ç ÀÇ»ç °áÁ¤ÀÌ °£¼Òȵǰí ȯÀÚ °á°ú°¡ °³¼±µË´Ï´Ù. ¸ð¹ÙÀÏ ¾Û°ú Ŭ¶ó¿ìµå ±â¹Ý ¾Ö³Î¸®Æ½½º¸¦ Æ÷ÇÔÇÑ µðÁöÅÐ °Ç° Çõ½ÅÀº CDS ¼Ö·ç¼ÇÀÇ Á¢±Ù¼º°ú È®À强À» ³ôÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº ¸¸¼º ÁúȯÀÇ Á¾´ÜÀûÀÎ ÃßÀûÀ» Áö¿øÇÏ°í ¿¹¹æÀû °³ÀÔÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¶ÇÇÑ, »óÈ£ ¿î¿ë¼º Ç¥ÁØÀÌ ÁøÈÇϰí, ÄÉ¾î ¼³Á¤ °£ÀÇ ¿øÈ°ÇÑ µ¥ÀÌÅÍ ±³È¯À» ÃËÁøÇϰí, CDSÀÇ À¯¿ë¼ºÀ» ´õ¿í Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù.
°æ°í ÇÇ·Î ¹× »ç¿ë¼º ¹®Á¦
CDS ½Ã½ºÅÛÀº ÀÓ»óÀû °¡Ä¡¿¡µµ ºÒ±¸Çϰí Á¾Á¾ °úµµÇÑ °æ°í¸¦ ¹ß»ý½ÃÄÑ °Ç° °ü¸® Á¦°ø¾÷üÀÇ µÐ°¨È·Î À̾îÁý´Ï´Ù. °æ°í ÇǷηΠ¾Ë·ÁÁøÀÌ Çö»óÀº Áß¿äÇÑ °æ°í°¡ °£°úµÇ¾î ȯÀÚÀÇ ¾ÈÀüÀ» ¼Õ»ó½ÃŰ´Â °á°ú¸¦ ÃÊ·¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. °Ô´Ù°¡, »ç¿ëÀÚ ÀÎÅÍÆäÀ̽ºÀÇ ¼³°è°¡ ºÒÃæºÐÇϰí, ¿öÅ©Ç÷ο찡 º¹ÀâÇÏ´Ù´Â °ÍÀº ƯÈ÷ ´ë·®ÀÇ È¯ÀÚ¸¦ ´Ù·ç´Â ÀÓ»ó ÇöÀå¿¡¼ÀÇ ½Ã½ºÅÛ µµÀÔÀ» ¹æÇØÇϰí ÀÖ½À´Ï´Ù. »ç¿ëÀÚ Á¤ÀÇ °úÁ¦¿Í Á÷°üÀûÀΠŽ»öÀÌ ºÎÁ·ÇÏ¸é ºñÁî´Ï½º È¿À²¼ºÀÌ ÀúÇϵ˴ϴÙ.
ȯÀÚ Áß½ÉÀÇ °øÀ¯ ÀÇ»ç °áÁ¤ µµ±¸
À§Çè ±³Á¤ÀÚ, Ä¡·á ºñ±³ ´ë½Ãº¸µå, ¼±È£µµ¿¡ µû¸¥ ¾Ë°í¸®Áò µî °øµ¿ ÀÇ»ç °áÁ¤À» ÃËÁøÇÏ´Â µµ±¸°¡ Àα⸦ ²ø°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº Åõ¸í¼ºÀ» ³ôÀ̰í ȯÀÚ¿Í ÀÇ·á Á¦°ø¾÷ü °£ÀÇ Çù·ÂÀûÀÎ Åä·ÐÀ» ÃËÁøÇÕ´Ï´Ù. ¸¸¼º ÁúȯÀº Àå±â °ü¸®°¡ ÇÊ¿äÇÑ °æ¿ì°¡ ¸¹±â ¶§¹®¿¡ Ä¡·á °èȹ¿¡ ȯÀÚ¸¦ Âü¿©½ÃÅ´À¸·Î½á ¾îµåÈ÷¾î·±½º¿Í ¸¸Á·µµ°¡ Çâ»óµË´Ï´Ù. °¡Ä¡ ±â¹Ý Äɾ Áß¿äÇØÁü¿¡ µû¶ó CDS ÇÁ·¹ÀÓ¿öÅ©¿¡ ȯÀÚ Á᫐ ±â´ÉÀ» ÅëÇÕÇÏ´Â °ÍÀÌ ´õ¿í ÃËÁøµÇ°í ÀÖ½À´Ï´Ù.
»ç¿ëÀÚ µµÀÔ ¹× ¼ö¿ë ºÎÁ·
ÀÓ»ó ÀÚÀ²¼º, µ¥ÀÌÅÍ ½Å·Ú¼º, ¿öÅ©Ç÷οì È¥¶õ¿¡ ´ëÇÑ ¿ì·Á°¡ ä¿ë·üÀÌ ³·¾ÆÁ³½À´Ï´Ù. ¶ÇÇÑ, ºÎÀûÀýÇÑ ±³À°À̳ª Á¶Á÷Àû Áö¿ø ºÎÁ·Àº È¿°úÀûÀÎ µµÀÔÀ» ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. °æ¿ì¿¡ µû¶ó CDS µµ±¸´Â À¯ÀÍÇÑ °Íº¸´Ù ¿ÀÈ÷·Á ºÎ´ãÀÌ Å« °ÍÀ¸·Î Àνĵ˴ϴÙ. ÀÌ·¯ÇÑ À庮À» ±Øº¹Çϱâ À§Çؼ´Â Àû±ØÀûÀÎ ±³À°, ÀÌÇØ°ü°èÀÚ Âü¿©, CDS È¿´É¿¡ ´ëÇÑ Áõ°Å¸¦ ¹ÙÅÁÀ¸·Î °ËÁõÀÌ ÇÊ¿äÇÕ´Ï´Ù.
ÆÒµ¥¹ÍÀº °Ç° °ü¸®ÀÇ µðÁöÅÐ º¯È¯À» °¡¼ÓÈÇÏ°í ¸¸¼º Ä¡·á¿ë ÀÓ»ó ÀÇ»ç°áÁ¤ Áö¿ø ½ÃÀå¿¡ °£Á¢ÀûÀÎ ÀÌÀÍÀ» °¡Á®¿Ô½À´Ï´Ù. ´ë¸é¿¡¼ÀÇ ÁøÂûÀÌ Á¦ÇѵǴ °¡¿îµ¥, ÀÇ·á Á¦°ø¾÷ü´Â ¸¸¼º ÁúȯÀÇ °ü¸®¸¦ ¿ø°Ý ¸ð´ÏÅ͸µÀ̳ª °¡»ó ÀÇ»ç °áÁ¤ Áö¿ø Åø¿¡ ÀÇÁ¸ÇÏ´Â °æ¿ì°¡ ¸¹¾ÆÁ³½À´Ï´Ù. CDS ½Ã½ºÅÛÀº ȯÀÚ Ä¡·á, º¹¿ë ¿ä¹ý ÃÖÀûÈ, °íÀ§ÇèÀÚ ½Äº°¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çß½À´Ï´Ù. ±×·¯³ª IT ÀÎÇÁ¶ó¿Í ÀÚ¿ø ¹èºÐÀÇ Ãʱâ Àå¾Ö·Î ÀÎÇØ ÀϺΠ¹èÆ÷°¡ Áö¿¬µÇ¾ú½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È µ¶¸³Çü CDS ½Ã½ºÅÛ ºÐ¾ß°¡ ÃÖ´ë鵃 Àü¸Á
µ¶¸³Çü CDS ½Ã½ºÅÛ ºÐ¾ß´Â À¯¿¬¼º°ú ´Ù¾çÇÑ °Ç° °ü¸® ȯ°æ¿¡ ´ëÇÑ ÀûÇÕ¼ºÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº EHR°ú µ¶¸³ÀûÀ¸·Î ÀÛµ¿ÇϹǷΠ´Ù¾çÇÑ µ¥ÀÌÅÍ ¼Ò½º ¹× Ÿ»ç ¿ëµµ°ú ÅëÇÕÇÒ ¼ö ÀÖ½À´Ï´Ù. ¸ðµâÇü ¾ÆÅ°ÅØÃ³´Â ¿¹Ãø ºÐ¼® ¹× Áõ°Å ±â¹Ý °¡À̵å¶óÀΰú °°Àº ¸¸¼º Áúȯ °ü¸®¸¦ À§ÇÑ ¸ÂÃãÇü ±â´ÉÀ» Áö¿øÇÕ´Ï´Ù. ÀÌ ºÐ¾ß´Â ¿Ü·¡ ȯÀÚ ¼ö¿ä Áõ°¡·Î ÇýÅÃÀ» ´©¸®¸ç µ¶¸³Çü µµ±¸´Â ºñ¿ë È¿À²ÀûÀ̰í È®Àå °¡´ÉÇÑ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ´ç´¢º´ ¹× ¸¸¼º Áúȯ °ü¸® ºÐ¾ßÀÇ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»ó
¿¹Ãø ±â°£ µ¿¾È ´ç´¢º´ ¹× ¸¸¼º Áúȯ °ü¸® ºÐ¾ß´Â ¼¼°èÀûÀÎ Áúº´ ºÎ´ã Áõ°¡¿Í Áö¼ÓÀûÀÎ ÄÉ¾î ¼Ö·ç¼Ç ¼ö¿ä¿¡ °ßÀÎµÇ¾î °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ºÐ¾ßÀÇ CDS µµ±¸´Â ¸ÂÃã Ä¡·á ±ÇÀå»çÇ×, Åõ¾à ÃßÀû, ¶óÀÌÇÁ½ºÅ¸ÀÏ °³ÀÔÀ» Á¦°øÇÕ´Ï´Ù. ¿þ¾î·¯ºí µð¹ÙÀ̽º ¹× ¸ð¹ÙÀÏ Çコ ¾Û°úÀÇ ÅëÇÕÀ» ÅëÇØ ½Ç½Ã°£ µ¥ÀÌÅÍ ¼öÁýÀÌ °¡´ÉÇÏ¸ç µ¿Àû ÀÇ»ç °áÁ¤À» Áö¿øÇÕ´Ï´Ù. ÀÌ ºÐ¾ß´Â ¶ÇÇÑ µðÁöÅÐ Ä¡·á¿Í ¸¸¼º±â °ü¸®ÀÇ Á¶Á¤À» ÃËÁøÇÏ´Â Á¤ºÎÀÇ ÀÌ´Ï¼ÅÆ¼ºêÀ¸·ÎºÎÅÍ ÇýÅÃÀ» ´©¸®°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº °Ç° °ü¸® ÀÎÇÁ¶óÀÇ È®´ë¿Í ¸¸¼º Áúȯ À¯º´·ü Áõ°¡·Î ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áß±¹, Àεµ, ÀϺ»°ú °°Àº ±¹°¡µéÀº CDS¿Í ±¹°¡ EHR ÇÁ·Î±×·¥ °£ÀÇ ÅëÇÕÀ» Æ÷ÇÔÇÑ µðÁöÅÐ °Ç° »ýŰ迡 ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀº ȯÀÚ Àα¸°¡ ¸¹°í ¿ø°Ý ÀÇ·á µµÀÔÀÌ Áõ°¡Çϰí Àֱ⠶§¹®¿¡ È®Àå °¡´ÉÇÑ ÀÇ»ç °áÁ¤ Áö¿ø µµ±¸¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ±ÔÁ¦ °³Çõ°ú °ü¹Î ÆÄÆ®³Ê½ÊÀÌ ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì´Â °í±Þ °Ç° °ü¸® µðÁöÅÐÈ¿Í ÀÓ»ó Çõ½Å¿¡ ´ëÇÑ °·ÂÇÑ Á¤Ã¥ Áö¿øÀ¸·Î °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ Áö¿ªÀº ¼º¼÷ÇÑ EHR ȯ°æÀ» ÀÚ¶ûÇÏ¸ç º´¿ø ¹× Ŭ¸®´Ð Àüü¿¡ ¿øÈ°ÇÏ°Ô CDS °³¹ßÀ» ÃËÁøÇÕ´Ï´Ù. ÀΰøÁö´É°ú ¸Ó½Å·¯´×ÀÇ Áö¼ÓÀûÀÎ ¿¬±¸´Â ƯÈ÷ ¸¸¼º ÁúȯÀÇ ¿¹Ãø°ú °ü¸®¸¦ À§ÇÑ CDS ¾Ë°í¸®ÁòÀÇ Á¤±³¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. °¡Ä¡ ±â¹Ý Äɾ Áö¿øÇÏ´Â »óȯ ¸ðµ¨Àº °á°ú¸¦ °³¼±ÇÏ°í ºñ¿ëÀ» Àý°¨ÇÏ´Â CDS µµ±¸ÀÇ µµÀÔÀ» °ø±ÞÀÚ¿¡°Ô Ã˱¸ÇÕ´Ï´Ù.
According to Stratistics MRC, the Global Clinical Decision Support (CDS) for Chronic Care Market is accounted for $0.9 billion in 2025 and is expected to reach $2.2 billion by 2032 growing at a CAGR of 12.5% during the forecast period. Clinical Decision Support (CDS) for Chronic Care is to intelligent health IT systems that deliver patient-specific insights to aid clinicians in managing long-term conditions. These tools integrate evidence-based guidelines, real-time data, and predictive analytics to optimize diagnosis, treatment planning, and monitoring. CDS enhances care quality by identifying risks, suggesting interventions, and streamlining workflows. In chronic disease management, it supports continuity, reduces errors, and promotes timely, personalized care decisions aligned with clinical protocols and patient history
Growing adoption of electronic health records (EHRs) and digital health
Integration of CDS with EHR platforms enables real-time clinical insights, streamlining decision-making for physicians and improving patient outcomes. Digital health innovations, including mobile apps and cloud-based analytics, are enhancing the accessibility and scalability of CDS solutions. These technologies support longitudinal tracking of chronic conditions, enabling proactive interventions. Moreover, interoperability standards are evolving to facilitate seamless data exchange across care settings, further boosting CDS utility.
Alert fatigue and usability issues
Despite their clinical value, CDS systems often generate excessive alerts, leading to desensitization among healthcare providers. This phenomenon, known as alert fatigue, can result in critical warnings being overlooked, compromising patient safety. Additionally, poorly designed user interface and complex workflows hinder system adoption, especially in high-volume clinical environments. Customization challenges and lack of intuitive navigation reduce operational efficiency.
Patient-centered and shared decision-making tools
Tools that facilitate shared decision-making-such as risk calculators, treatment comparison dashboards, and preference-sensitive algorithms-are gaining traction. These systems enhance transparency and foster collaborative discussions between patients and providers. As chronic conditions often require long-term management, engaging patients in treatment planning improves adherence and satisfaction. The growing emphasis on value-based care is further encouraging the integration of patient-centric functionalities into CDS frameworks.
Lack of user adoption and acceptance
Concerns about clinical autonomy, data reliability, and workflow disruption contribute to low adoption rates. Additionally, insufficient training and lack of institutional support can hinder effective implementation. In some cases, CDS tools are perceived as burdensome rather than beneficial, especially when they fail to align with existing clinical practices. Overcoming these barriers requires targeted education, stakeholder engagement, and evidence-based validation of CDS efficacy.
The pandemic accelerated digital transformation in healthcare, indirectly benefiting the CDS market for chronic care. With in-person consultations limited, providers increasingly relied on remote monitoring and virtual decision support tools to manage chronic conditions. CDS systems played a crucial role in triaging patients, optimizing medication regimens, and identifying high-risk individuals. However, initial disruptions in IT infrastructure and resource allocation delayed some deployments.
The standalone CDS systems segment is expected to be the largest during the forecast period
The standalone CDS systems segment is expected to account for the largest market share during the forecast period due to their flexibility and compatibility with diverse healthcare environments. These systems operate independently of EHRs, allowing integration with various data sources and third-party applications. Their modular architecture supports tailored functionalities for chronic disease management, including predictive analytics and evidence-based guidelines. The segment benefits from growing demand in outpatient settings, where standalone tools offer cost-effective and scalable solutions.
The diabetes & chronic disease management segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the diabetes & chronic disease management segment is predicted to witness the highest growth rate driven by rising global disease burden and demand for continuous care solutions. CDS tools in this domain offer personalized treatment recommendations, medication tracking, and lifestyle interventions. Integration with wearable devices and mobile health apps enables real-time data capture, supporting dynamic decision-making. The segment is also benefiting from government initiatives promoting digital therapeutics and chronic care coordination.
During the forecast period, the Asia Pacific region is expected to hold the largest market share attributed to expanding healthcare infrastructure and rising chronic disease prevalence. Countries like China, India, and Japan are investing heavily in digital health ecosystems, including CDS integration with national EHR programs. The region's large patient population and increasing adoption of telemedicine are driving demand for scalable decision support tools. Regulatory reforms and public-private partnerships are further catalyzing market growth.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR fueled by advanced healthcare digitization and strong policy support for clinical innovation. The region boasts a mature EHR landscape, facilitating seamless CDS deployment across hospitals and clinics. Ongoing research in AI and machine learning is enhancing the sophistication of CDS algorithms, particularly for chronic disease prediction and management. Reimbursement models favoring value-based care are incentivizing providers to adopt CDS tools that improve outcomes and reduce costs.
Key players in the market
Some of the key players in Clinical Decision Support (CDS) for Chronic Care Market include Epic Systems Corporation, Cerner Corporation (Oracle Health), IBM Watson Health, Siemens Healthineers, Koninklijke Philips N.V., Wolters Kluwer Health, Allscripts Healthcare Solutions, McKesson Corporation, GE HealthCare, Agfa-Gevaert Group, Athenahealth, Inc., NextGen Healthcare, Inc., Elsevier Clinical Solutions, Medical Information Technology, Inc. (MEDITECH), Carestream Health, eClinicalWorks, Health Catalyst, and Zynx Health.
In June 2025, Siemens Healthineers announced a theranostics research collaboration with a leading U.S. hospital to create a Therapy Command Center using advanced imaging (long-field-of-view PET/CT). The collaboration aims to accelerate theranostics research, optimize treatment pathways and provide clinicians integrated imaging+lab data to tailor therapies.
In June 2025, IBM unveiled watsonx AI Labs in New York City to co-create generative AI solutions with clients, startups and the local talent ecosystem. The initiative includes developer resources, partnerships (including acquisition activity to support the lab) to accelerate enterprise AI use cases in healthcare and other industries.
In April 2025, McKesson completed the acquisition of an 80% controlling interest in PRISM Vision Holdings (ophthalmology/retina services). McKesson said the transaction expands its specialty clinical services footprint and strengthens distribution/clinical reach in ophthalmology.