Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ½Ä¹° À°Á¾ ¹× CRISPR ½Ä¹° ½ÃÀåÀº 2025³â¿¡ 187¾ï 6,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇϰí, ¿¹Ãø ±â°£ µ¿¾È 17.5%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³», 2032³â±îÁö 580¾ï 1,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹»óµÇ°í ÀÖ½À´Ï´Ù.
½Ä¹° À°Á¾ ¹× CRISPR ±â¼úÀº º¸´Ù ¿ì¼öÇÑ ¼öÀ², ȸº¹·Â ¹× ȯ°æ Á¶°Ç¿¡ ´ëÇÑ ÀûÀÀ¼ºÀ» Áö´Ñ ÀÛ¹°À» °ÈÇÏ´Â µ¥ ÁßÁ¡À» µÓ´Ï´Ù. ÀüÅëÀûÀÎ À°Á¾Àº ¼±ÅÃÀû ±³¹è¿¡ ÀÇÁ¸ÇÏ´Â ¹Ý¸é, CRISPR-Cas9´Â ¼±ÅÃÇÑ DNA ¿µ¿ªÀ» ¼öÁ¤ÇÏ¿© Á¤È®ÇÑ À¯ÀüÀÚ ÆíÁýÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù¹ýÀ» °áÇÕÇϸé ÀÛ¹° °³¹ßÀÌ ´õ¿í »¡¶óÁö°í ÈÇй°Áú ÅõÀÔÀ» ÁÙÀÌ°í ½Ä·® ¾Èº¸¸¦ °ÈÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ Çõ½ÅÀº Áö¼Ó °¡´ÉÇÑ ³ó¾÷À» ÃËÁøÇϰí ÇØÃæ, Áúº´, ±âÈÄ º¯È¿Í °°Àº ¹®Á¦¸¦ ÇØ°áÇÏ¸é¼ ¼ºÀåÇÏ´Â ¿µ¾ç ¿ä±¸¸¦ ÃæÁ·½ÃŰ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù.
Nature FoodÁö¿¡ °ÔÀçµÈ NASAÀÇ ¿¬±¸¿¡ µû¸£¸é ¿Â½Ç°¡½º ¹èÃâ·®ÀÌ ¸¹À» °æ¿ì ¿Á¼ö¼ö »ý»ê·®ÀÌ ºü¸£¸é 2030³â±îÁö 24% °¨¼ÒÇÒ °¡´É¼ºÀÌ ÀÖ´Ù°í ÇÕ´Ï´Ù.
³ôÀº ¼öÀ²·Î ¿µ¾ç°¡°¡ ³ôÀº ÀÛ¹°¿¡ ´ëÇÑ ¼¼°è ¼ö¿ä Áõ°¡
¼¼°è ½Ä·® ½Ã½ºÅÛÀº Àα¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó Å« ¾Ð·Â¿¡ ³ëÃâµÇ¾î ³ôÀº »ý»ê¼º°ú ¿µ¾ç °³¼±À» ¸ðµÎ ½ÇÇöÇÏ´Â ÀÛ¹°¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ³ó¾÷ ÀÌÇØ °ü°èÀڴ ȯ°æ ½ºÆ®·¹½º ¿äÀΰú ÇØÃæÀ» °ßµô ¼öÀִ ź·ÂÀÖ´Â ÀÛ¹° ǰÁ¾¿¡ Á¡Á¡ ´«À» µ¹¸®°í ÀÖ½À´Ï´Ù. CRISPR°ú °°Àº ÃÖ÷´Ü À°Á¾ µµ±¸´Â ÀÌ·¯ÇÑ ÇüÁúÀÇ °³¹ßÀ» °¡¼ÓÈÇÏ¿©º¸´Ù Á¤¹ÐÇϰí È¿À²ÀûÀÎ ÀÛ¹° °³¼±À» °¡´ÉÇϰÔÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº À°Á¾ ±â°£À» ´ÜÃàÇϰí À¯ÀüÀû Á¤È®¼ºÀ» ³ôÀ̱â À§ÇØ ´ë±Ô¸ð Àü°³¿¡ ¸Å·ÂÀûÀÔ´Ï´Ù. º¸´Ù °Ç°ÇÑ ½Äǰ ¿É¼Ç¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ °ü½Éµµ ¿µ¾ç°¡°¡ ³ôÀº ÀÛ¹° ǰÁ¾À» Ãß±¸ÇÏ´Â ±â¿î¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ½Ä·® ¾Èº¸°¡ ÃÖ¿ì¼± °úÁ¦°¡ µÊ¿¡ µû¶ó Â÷¼¼´ë ½Ä¹° À¯ÀüÇп¡ ´ëÇÑ ÅõÀÚ´Â Àü ¼¼°èÀûÀ¸·Î °ßÀηÂÀ» ´Ã¸®°í ÀÖ½À´Ï´Ù.
¼Ò±Ô¸ð ³ó°¡ÀÇ Àνİú ä¿ëÀÌ Á¦ÇÑÀû
¸¹Àº ³óºÎµéÀº ½Å·ÚÇÒ ¼ö ÀÖ´Â Á¤º¸, ±³À°, °³¼± º¸±Þ ¼ºñ½º¿¡ ¾×¼¼½ºÇÒ ¼ö ¾øÀ¸¸ç °í±Þ À¯ÀüÀÚ ±â¼úÀ» ÀÌÇØÇÒ ¼ö ¾ø½À´Ï´Ù. ÀÌ·¯ÇÑ Áö½Ä °ÝÂ÷´Â µðÁöÅÐ ¸®ÅÍ·¯½ÃÀÇ ³·À½, ¾ð¾î º®, »ý¸í°øÇÐ ±â¼ú Çõ½Å¿¡ ´ëÇÑ È¸ÀÇÀûÀÎ °üÁ¡¿¡ ÀÇÇØ ´õ¿í ½É°¢ÇØÁö°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ CRISPR ±â¹Ý ¼Ö·ç¼ÇÀº º¹ÀâÇÏ°í ºñ¿ëÀÌ ¸¹ÀÌ µå´Â °ÍÀ¸·Î °£ÁֵǹǷΠƯÈ÷ ÀüÅëÀûÀÎ ³ó¹ýÀÌ Áö¹èÀûÀÎ Áö¿ª¿¡¼´Â µµÀÔÀÌ ¹æÇع޽À´Ï´Ù. ´ë»óÀ» Á¼Èù ¾Æ¿ô¸®Ä¡, Á¾ÇÕÀûÀÎ Á¤Ã¥ Ʋ, Áö¿ª¿¡ »Ñ¸®³»¸° ½ÇÁõ ÇÁ·ÎÁ§Æ®°¡ ¾øÀ¸¸é, ÀÛ¹°ÀÇ È¸º¹·Â°ú »ý»ê¼ºÀ» ³ôÀÌ´Â CRISPRÀÇ º¯È °¡´É¼ºÀº ¾ÆÁ÷ ÃæºÐÈ÷ Ȱ¿ëµÇ°í ÀÖÁö ¾Ê½À´Ï´Ù.
¹ÙÀÌ¿À Æ÷Æ®È ÀÛ¹°¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
¹ÙÀÌ¿ÀÆ÷ƼÇÇÄÉÀÌ¼Ç ÀÛ¹°Àº ¹Ì·® ¿µ¾ç¼Ò °áÇ̰ú ½Î¿ì°í °øÁß º¸°ÇÀ» °³¼±Çϱâ À§ÇÑ Àü·«Àû ÇØ°áÃ¥À¸·Î ¼¼°èÀûÀ¸·Î ÁÖ¸ñÀ» ¹Þ°í ÀÖ½À´Ï´Ù. CRISPRÀº ö, ¾Æ¿¬, ºñŸ¹ÎÀÇ ¼öÁØÀ» ³ôÀÌ´Â °Í°ú °°ÀÌ ÁֽĿ¡ Æ÷ÇÔµÈ ¿µ¾ç ¼ººÐÀÇ Á¤È®ÇÑ °È¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº ½Ä·® Áö¿ø ÇÁ·Î±×·¥, Çб³ ±Þ½Ä ¹× °Ç°¿¡ ÃÊÁ¡À» ¸ÂÃá ³ó¾÷ Á¤Ã¥¿¡ ÅëÇյǰí ÀÖ½À´Ï´Ù. ´ë»ç °øÇÐÀÇ Áøº¸·Î ¼öÈ®·®°ú ¸ÀÀ» ¼Õ»ó½ÃŰÁö ¾Ê°í ÀÛ¹°À» dzºÎÇϰÔÇϱⰡ ½¬¿öÁö°í ÀÖ½À´Ï´Ù. ¼û°ÜÁø ±¾ÁÖ¸²¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁü¿¡ µû¶ó ¹ÙÀÌ¿ÀÆ÷Ʈȴ Áö¼Ó°¡´ÉÇÑ ¿µ¾çÀü·«ÀÇ Áß¿äÇÑ ±âµÕÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. »ý¸í °øÇÐ ±â¼ú Çõ½Å°ú °Ç° ¾÷ÀûÀÇ ¹«°á¼ºÀºÀÌ ºÐ¾ß¿¡ »õ·Î¿î ¼ºÀå ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù.
¾ö°ÝÇÑ ¼¼°è ±ÔÁ¤ ¹× ½ÂÀÎ Áö¿¬
À¯ÀüÀÚ ÀçÁ¶ÇÕ ÀÛ¹°¿¡ ´ëÇÑ ±ÔÁ¦ »óȲÀº ¿©ÀüÈ÷ ´ÜÆíÀûÀÌ¸ç °³¹ßÀÚ¿¡°Ô ºÒÈ®½Ç¼ºÀ» °¡Á®¿À°í ½ÃÀå °³¹ßÀ» ´ÊÃß°í ÀÖ½À´Ï´Ù. ½ÂÀÎ °úÁ¤Àº ƯÈ÷ ±¹°æÀ» ³Ñ¾î Á¾Á¾ Àå±âȵǰí Àϰü¼ºÀÌ ¾ø½À´Ï´Ù. À¯ÀüÀÚ ±â¼úÀ» µÑ·¯½Ñ »çȸÀû ¿ì·Á¿Í À±¸®Àû ³íÀÇ´Â ¿©ÀüÈ÷ Á¤Ã¥ °áÁ¤¿¡ °è¼Ó ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ¸¹Àº Áö¿ª¿¡¼´Â ÅëÀÏµÈ ±âÁØÀÌ ¾ø±â ¶§¹®¿¡ »ó¾÷È¿Í ¹«¿ªÀÌ º¹ÀâÇØÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±ÔÁ¦ º´¸ñ Çö»óÀº ƯÈ÷ ¼Ò±Ô¸ð »ý¸í °øÇÐ ±â¾÷ÀÇ °æ¿ì ºñ¿ëÀ» Áõ°¡½ÃŰ°í ±â¼ú Çõ½ÅÀ» Áö¿¬½Ãŵ´Ï´Ù. º¸´Ù ¸íÈ®Çϰí È¿À²ÀûÀÎ ½ÂÀÎ ÆÐ½º¿þÀ̰¡ ¾øÀ¸¸é Àü ¼¼°èÀûÀÎ µµÀÔ ¼Óµµ°¡ Å©°Ô ÀúÇØµÉ ¼ö ÀÖ½À´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
À¯ÇàÀº ³ó¾÷ ¿¬±¸¿Í °ø±Þ¸ÁÀ» È¥¶õ½Ã۰í CRISPR ±â¹Ý ÀÛ¹°ÀÇ ½ÃÇè°ú ±ÔÁ¦ ½É»ç¸¦ Áö¿¬½ÃÄ×½À´Ï´Ù. À̵¿ Á¦ÇÑ ¹× ´ë¸é ÈÆ·Ã Á¦ÇÑÀ¸·Î ÀÎÇØ ƯÈ÷ °³¹ß µµ»ó Áö¿ªÀÇ ³ó°¡°¡ ½Å±â¼úÀ» ¸¸Áú ¼öÀÖ´Â ±âȸ°¡ Á¦ÇѵǾú½À´Ï´Ù. µ¿½Ã¿¡ ÀÌ À§±â´Â ½ºÆ®·¹½º¸¦ ¹ÞÀº ½Ä·® ½Ã½ºÅÛÀ» ¾ÈÁ¤½Ãų ¼ö Àִ ź·ÂÀûÀÎ ÀÛ¹°ÀÇ Çʿ伺À» ºÎ°¢½ÃÄ×½À´Ï´Ù. ¿ø°Ý Çù¾÷ µµ±¸¿Í µðÁöÅÐ ³óÇÐ Ç÷§ÆûÀº ¿¬±¸ ¹× ¾Æ¿ô¸®Ä¡ Ȱµ¿À» À¯ÁöÇÏ´Â µ¥ µµ¿òÀÌ µÇ¾ú½À´Ï´Ù. ½Ä·® ºÒ¾ÈÀÌ È®»êµÊ¿¡ µû¶ó ¿µ¾çÀÌ Ç³ºÎÇÏ°í º¸Á¸ °¡´ÉÇÑ ÀÛ¹°¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁ³½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È Á¦ÃÊÁ¦ ³»¼º ºÐ¾ß°¡ ÃÖ´ë°¡ µÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
Á¦ÃÊÁ¦ ³»¼º ǰÁ¾Àº »ó¾÷Àû ³ó¾÷¿¡¼ ³Î¸® »ç¿ëµÇ±â ¶§¹®¿¡ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ Ç°Á¾Àº ÀâÃÊ ¹æÁ¦¸¦ ´Ü¼øÈÇÏ°í ³ëµ¿ ¼ö¿ä¸¦ ÁÙÀ̰í ÀüüÀûÀÎ »ý»ê¼ºÀ» ³ôÀÔ´Ï´Ù. CRISPRÀº Á¦ÃÊÁ¦ ³»¼º Ư¼ºÀÇ Á¤È®¼ºÀ» Çâ»ó½ÃÄÑ ÀǵµÆÄ°ü ¾ÊÀº ¿µÇâ°ú ȯ°æ À§ÇèÀ» ÃÖ¼ÒÈÇÕ´Ï´Ù. ³óºÎµéÀº ÀÛ¾÷À» °£¼ÒÈÇÏ°í ¼öÀͼºÀ» ³ôÀ̱â À§ÇØ ÀÌ·¯ÇÑ ÀÛ¹°À» äÅÃÇÏ´Â °ÍÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ´ÙÁ¦ ³»¼º ÇüÁúÀ̳ª ½º¸¶Æ® »ìÆ÷ ½Ã½ºÅÛ°úÀÇ ÅëÇÕ µîÀÇ Çõ½ÅÀûÀÎ ±â¼úÀÌ ÁöÁö¸¦ ¸ðÀ¸°í ÀÖ½À´Ï´Ù. Á¦ÃÊÁ¦ ³»¼ºÀÇ °æÁ¦Àû ¹× ÀÛ¾÷Àû ÀÌÁ¡À¸·Î Á¦ÃÊÁ¦ ³»¼ºÀº ÃֽŠÀÛ¹° °³¹ßÀÇ ÁÖ¿ä Æ¯¼ºÀÔ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È »ý¸í °øÇÐ ±â¾÷ ºÎ¹®ÀÇ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È »ý¸í °øÇÐ ±â¾÷ ºÎ¹®Àº ÷´Ü À¯ÀüÀÚ ÆíÁý ¼Ö·ç¼ÇÀ» ½Å¼ÓÇÏ°Ô Çõ½ÅÇÏ°í ¹èÆ÷ÇÒ ¼ö ÀÖ´Â ´É·ÂÀ¸·Î ÀÎÇØ °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ È¸»çµéÀº À¯Àüü ¸ÅÇΰú ÇÕ¼º »ý¹°ÇÐÀ» ÅëÇØ º¹ÀâÇÑ ÇüÁúÀ» °³¹ßÇÏ´Â ÃÖÀü¼±¿¡ ÀÖ½À´Ï´Ù. Çмú±â°ü°ú ¾Æ±×¸® ºñÁî´Ï½º ¸®´õ¿ÍÀÇ °øµ¿ °³¹ß·Î Á¦Ç° °³¹ß°ú ½ÃÀå °³¹ßÀÌ °¡¼Óȵǰí ÀÖ½À´Ï´Ù. °·ÂÇÑ ÅõÀÚ È帧°ú À¯¸®ÇÑ ÁöÀû Àç»ê ȯ°æÀÌ »ç¾÷ È®´ë¸¦ Áö¿øÇÕ´Ï´Ù. »ý¸í °øÇÐ ±â¾÷Àº ¶ÇÇÑ ±ÔÁ¦ ´ç±¹À» ²ø¾îµé¿© CRISPRÀÇ ¾ÈÀü¼º¿¡ ´ëÇØ ÀÏ¹Ý ´ëÁßÀ» °è¸ùÇÏ´Â ³ë·ÂÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ±×µéÀÇ ¹Îø¼º°ú ±â¼úÀû Àü¹®¼ºÀº °æÀï ±¸µµ¿¡¼ Áö¼ÓÀûÀÎ ¼ºÀåÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº ½Ä·® ¼ö¿ä Áõ°¡¿Í ³ó¾÷ »ý¸í°øÇп¡ ´ëÇÑ Á¤ºÎÀÇ Áö¿øÀ¸·Î ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áß±¹°ú Àεµ¿Í °°Àº ÁÖ¿ä °æÁ¦±¹µéÀº CRISPR Á¶»ç¿Í ÀÛ¹° Çö´ëÈ¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ ´Ù¾çÇÑ ³ó¾÷ ¿ä±¸´Â °î¹°, ¾ßä, Äá·ù¿¡ °ÉÄ£ À¯ÀüÀÚ ÆíÁý ǰÁ¾ÀÇ Ã¤¿ëÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. °ü¹Î ÆÄÆ®³Ê½Ê°ú Á¤Ã¥ °³ÇõÀÌ º¸±ÞÀÇ °¡¼ÓÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. À°Á¾ ÇÁ·Î±×·¥ÀÇ ÇöÁöÈ¿Í ¸ð±¹¾î¿¡ ÀÇÇÑ ³ó°¡¿¡ÀÇ ÀÛ¿ëÀÌ ³ó¾÷¿¡ÀÇ °ü¿©¸¦ ³ôÀ̰í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì´Â °·ÂÇÑ ¿¬±¸ »ýŰè¿Í ÷´Ü ±ÔÁ¦ ÀÚ¼¼·Î ÀÎÇØ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ Áö¿ª¿¡´Â ³ó¾÷ Çõ½ÅÀ» ÃßÁøÇÏ´Â ÁÖ¿ä »ý¸í °øÇÐ ±â¾÷°ú ´ëÇÐÀÌ ÀÖ½À´Ï´Ù. CRISPRÀÇ Ã¤¿ëÀº »óǰ ÀÛ¹°°ú Ư¼ö ÀÛ¹° ¸ðµÎ¿¡¼ È®´ëµÇ¾úÀ¸¸ç µðÁöÅÐ ³ó¾÷ Ç÷§Æû¿¡ ÀÇÇØ Áö¿øµË´Ï´Ù. AI¸¦ Ȱ¿ëÇÑ ÇüÁú ¼±¹ßÀ̳ª Á¤¹ÐÇÑ Ç¥ÇöÇü ÆÇÁ¤ µîÀÇ µ¿ÇâÀº ÀÛ¹° °³¹ßÀ» À籸ÃàÇϰí ÀÖ½À´Ï´Ù. ½Äǰ ȸ»ç¿Í ½ºÆ÷Ã÷ ¿µ¾ç ºê·£µå¿ÍÀÇ Á¦ÈÞ°¡ °È ǰÁ¾ ¼ö¿ä¸¦ µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Plant Breeding and CRISPR Plants Market is accounted for $18.76 billion in 2025 and is expected to reach $58.01 billion by 2032 growing at a CAGR of 17.5% during the forecast period. Plant breeding and CRISPR technology focus on enhancing crops with better yield, resilience, and adaptability to environmental conditions. Conventional breeding depends on selective crossing, whereas CRISPR-Cas9 offers accurate genetic editing by modifying chosen DNA regions. By combining these approaches, crop development becomes faster, reduces chemical inputs, and strengthens food security. This innovation fosters sustainable agriculture, helping meet growing nutritional needs while tackling challenges of pests, diseases, and climate change.
According to a NASA study published in Nature Food, maize production could decline by 24% as early as 2030 under high greenhouse gas emissions.
Rising global demand for high-yield and nutritious crops
Global food systems are under mounting pressure as populations grow, prompting a surge in demand for crops that deliver both high productivity and improved nutrition. Agricultural stakeholders are increasingly turning to resilient crop varieties that can withstand environmental stressors and pests. Advanced breeding tools like CRISPR are accelerating the development of such traits, enabling more precise and efficient crop improvement. These technologies shorten breeding timelines and enhance genetic accuracy, making them attractive for large-scale deployment. Consumer interest in healthier food options is also fueling momentum for nutrient-rich crop varieties. As food security becomes a top priority, investment in next-gen plant genetics is gaining traction worldwide.
Limited awareness and adoption among small-scale farmers
Many farmers lack access to reliable information, training, and extension services that could demystify advanced genetic technologies. This knowledge gap is compounded by low digital literacy, language barriers, and scepticism toward biotech innovations. Additionally, the perceived complexity and cost of CRISPR-based solutions deter uptake, especially in regions where traditional farming practices dominate. Without targeted outreach, inclusive policy frameworks, and localized demonstration projects, the transformative potential of CRISPR in enhancing crop resilience and productivity remains underutilized.
Rising demand for biofortified crops
Biofortified crops are gaining global attention as a strategic solution to combat micronutrient deficiencies and improve public health. CRISPR enables precise enhancement of nutritional content in staple foods, such as boosting iron, zinc, and vitamin levels. These innovations are being integrated into food aid programs, school meals, and health-focused agricultural policies. Advances in metabolic engineering are making it easier to enrich crops without compromising yield or taste. As awareness of "hidden hunger" grows, biofortification is emerging as a key pillar of sustainable nutrition strategies. The alignment of biotech innovation with health outcomes is opening new growth opportunities in this space.
Stringent global regulations and approval delays
The regulatory landscape for gene-edited crops remains fragmented, creating uncertainty for developers and slowing market entry. Approval processes are often lengthy and inconsistent, especially across international borders. Public concerns and ethical debates around genetic technologies continue to influence policy decisions. In many regions, the absence of harmonized standards complicates commercialization and trade. These regulatory bottlenecks increase costs and delay innovation, particularly for smaller biotech firms. Without clearer and more efficient approval pathways, the pace of global adoption may be significantly hindered.
Covid-19 Impact
The pandemic disrupted agricultural research and supply chains, delaying trials and regulatory reviews for CRISPR-based crops. Restrictions on movement and in-person training limited farmers' exposure to new technologies, especially in developing regions. At the same time, the crisis underscored the need for resilient crops that can stabilize food systems under stress. Remote collaboration tools and digital agronomy platforms helped sustain research and outreach efforts. Demand for nutrient-dense, shelf-stable crops rose as food insecurity became more widespread.
The herbicide tolerance segment is expected to be the largest during the forecast period
The herbicide tolerance segment is expected to account for the largest market share during the forecast period, due to their widespread use in commercial agriculture. These varieties simplify weed control, reduce labor demands, and enhance overall productivity. CRISPR is improving the precision of herbicide resistance traits, minimizing unintended effects and environmental risks. Farmers are increasingly adopting these crops to streamline operations and boost profitability. Innovations such as multi-resistance traits and integration with smart spraying systems are gaining traction. The economic and operational advantages of herbicide tolerance make it a leading trait in modern crop development.
The biotech firms segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the biotech firms segment is predicted to witness the highest growth rate, driven by their ability to rapidly innovate and deploy advanced gene-editing solutions. These firms are at the forefront of developing complex traits through genome mapping and synthetic biology. Collaborations with academic institutions and agribusiness leaders are accelerating product development and market access. Strong investment flows and favourable intellectual property environments are supporting expansion. Biotech players are also leading efforts to engage regulators and educate the public on CRISPR safety. Their agility and technical expertise position them for sustained growth in a competitive landscape.
During the forecast period, the Asia Pacific region is expected to hold the largest market share fuelled by rising food demand and government support for agricultural biotechnology. Major economies like China and India are investing heavily in CRISPR research and crop modernization. The region's diverse agricultural needs are driving adoption of gene-edited varieties across grains, vegetables, and pulses. Public-private partnerships and policy reforms are helping accelerate deployment. Localization of breeding programs and farmer outreach in native languages are improving engagement.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, owing to its strong research ecosystem and progressive regulatory stance. The region is home to leading biotech firms and universities driving agricultural innovation. CRISPR adoption is expanding across both commodity and specialty crops, supported by digital farming platforms. Trends like AI-powered trait selection and precision phenotyping are reshaping crop development. Partnerships with food companies and sports nutrition brands are boosting demand for enhanced varieties.
Key players in the market
Some of the key players profiled in the Plant Breeding and CRISPR Plants Market include Bayer CropScience, Tropic Biosciences, Corteva Agriscience, Pairwise, Syngenta Group, Inari Agriculture, BASF Agricultural Solutions, Benson Hill, KWS SAAT SE & Co. KGaA, Enko Chem, Limagrain, DLF Seeds, Rijk Zwaan, Takii & Co., Ltd., and Sakata Seed Corporation.
In February 2025, KWS SAAT SE & Co. KGaA (Germany) introduced new combination varieties that combined the CONVISO SMART system with high Cercospora protection (CR+), solidifying its market position in the sugarbeet seed industry. These varieties were introduced in several European
markets, with further expansion planned.
In January 2025, Syngenta Vegetable Seeds, part of Syngenta Group (Switzerland) signed a global licensing partnership deal with Apricus Seeds (US), that gives Syngenta exclusive access to Apricus' melon, squash, and watermelon germplasm. This partnership enhanced Syngenta's cucurbits portfolio.