Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ÀüÀÚÆó±â¹° Ãâó ½ÃÀåÀº 2025³â 20¾ï ´Þ·¯·Î ÃßÁ¤µÇ°í, ¿¹Ãø ±â°£ µ¿¾È CAGR 13.5%·Î ¼ºÀåÇÒ Àü¸ÁÀ̸ç, 2032³â¿¡´Â 50¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
ÀüÀÚÆó±â¹° Ãâó¶õ Æó±âµÈ ÀüÀÚ±â±âÀÇ Ãâó, ¼ÒÀ¯ ÀÌ·Â, ¶óÀÌÇÁ»çÀÌŬÀ» ÅëÇÑ À̵¿À» ¸»ÇÕ´Ï´Ù. Á¦Á¶ÀÚ¿Í ¼ÒºñÀڷκÎÅÍ ÀçȰ¿ë¾÷ÀÚ ¹× Æó±â ½Ã¼³¿¡ À̸£±â±îÁö ÀüÀÚÆó±â¹°ÀÇ Ãâó¸¦ ÃßÀûÇÔÀ¸·Î½á ÀüÀÚÆó±â¹°ÀÇ ¹ß»ý, ó¸®, Ãë±ÞÀÇ Åõ¸í¼ºÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. Áõ¸í µ¥ÀÌÅÍ´Â ºÒ¹ý Åõ±â¸¦ ÆÄ¾ÇÇϰí, ±¹°æÀ» ³Ñ¾î ¼±ÀûÀ» ¸ð´ÏÅ͸µÇϸç, À±¸®Àû ÀçȰ¿ë °üÇàÀ» º¸ÀåÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀüÀÚÆó±â¹°ÀÇ È帧À» ¸ÅÇÎÇÔÀ¸·Î½á ÀÌÇØ°ü°èÀڴ ȯ°æ À§ÇèÀ» Æò°¡Çϰí, ±ÔÁ¦¸¦ °ÈÇϸç, ¼øÈ¯Çü °æÁ¦ Àü·«À» ¼³°èÇÒ ¼ö ÀÖ½À´Ï´Ù. Ãâó ½Ã½ºÅÛÀº Á¾Á¾ ÁøÁ¤¼º ¹× ÃßÀû¼ºÀ» °ËÁõÇϱâ À§ÇØ µðÁöÅРűë, ºí·ÏüÀÎ ¶Ç´Â °¨»ç ÃßÀû¿¡ ÀÇÁ¸Çϸç Ã¥ÀÓÀÖ´Â ÀüÀÚÆó±â¹° °ü¸® ¹× ¼¼°è Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ³ë·Â¿¡ ÇʼöÀûÀÔ´Ï´Ù.
Ãà¼ÒµÇ´Â ÀüÀÚ±â±âÀÇ ¼ö¸í
±Þ¼ÓÇÑ ±â¼ú Çõ½Å, °èȹÀûÀÎ ¾÷±×·¹À̵å, »ç¿ëÀÚ ¼±È£µµÀÇ º¯È·Î ÀÎÇØ °¡ÀüÁ¦Ç°ÀÇ ±Þ¼ÓÇÑ ÁøºÎȰ¡ ÁøÇàµÇ°í ÀÖÀ¸¸ç, ¼¼°èÀûÀ¸·Î ÀüÀÚÆó±â¹°ÀÇ ¹ß»ýÀÌ °¡¼Óȵǰí ÀÖ½À´Ï´Ù. ÀÌ ¶óÀÌÇÁ»çÀÌŬÀÇ Ãà¼Ò´Â ÀåÄ¡ÀÇ ±â¿ø°ú Æó±â °æ·Î¸¦ ÃßÀûÇÏ´Â Áõ¸í ½Ã½ºÅÛÀÇ Çʿ伺À» Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ÀåÄ¡°¡ Æó±âµÇ´Â ºóµµ°¡ ³ô¾ÆÁü¿¡ µû¶ó ÀÌÇØ°ü°èÀÚ´Â À±¸®ÀûÀÎ ÀçȰ¿ëÀ» º¸ÀåÇϰí, ºÒ¹ý Åõ±â¸¦ ¹æÁöÇϸç, ¼øÈ¯ °æÁ¦ ¸ðµ¨À» Áö¿øÇϱâ À§ÇØ °ß°íÇÑ ÃßÀû¼ºÀÌ ÇÊ¿äÇÕ´Ï´Ù. µû¶ó¼ Áõ¸í ±â¼úÀº ´Ü¸íȰ¡ ÁøÇàµÇ´Â ÀüÀÚ Á¦Ç°ÀÇ È¯°æ ¹ßÀÚ±¹À» °ü¸®ÇÏ´Â µ¥ ÇʼöÀûÀÎ µµ±¸ÀÔ´Ï´Ù.
³ôÀº ÀÚº» Áý¾àµµ
³ôÀº ÀÚº» Áý¾àµµ´Â ½Å±Ô Âü°¡ÀÚ¿Í ¼Ò±Ô¸ð ±â¾÷¿¡ Å« À繫Àû À庮À» °¡Á®¿Í ÀüÀÚÆó±â¹° Ãâó ½ÃÀå¿¡ ¾Ç¿µÇâÀ» ¹ÌĨ´Ï´Ù. °í±Þ ÃßÀû ±â¼ú, ¾ÈÀüÇÑ µ¥ÀÌÅÍ °ü¸® ½Ã½ºÅÛ ¹× Ư¼ö ÀÎÇÁ¶ó°¡ ÇÊ¿äÇϱ⠶§¹®¿¡ ¸¹Àº ¾çÀÇ ¼±Çà ÅõÀÚ°¡ ÇÊ¿äÇÕ´Ï´Ù. ±×·¯¹Ç·Î ±â¼ú Çõ½ÅÀÌ ÀúÇØµÇ°í °æÀïÀÌ Á¦ÇÑµÇ¸ç ½ÃÀå µµÀÔÀÌ Áö¿¬µÇ¹Ç·Î ÀÌ ºÐ¾ßÀÇ Àü¹ÝÀûÀÎ ¼ºÀå°ú È®À强ÀÌ ÀúÇØµË´Ï´Ù.
±ÔÁ¦ ¾Ð·Â ¹× ±ÔÁ¤ Áؼö Àǹ«
ÀüÀÚÆó±â¹°ÀÇ À§Ç輺¿¡ ´ëÇÑ ¼¼°èÀûÀÎ ÀÇ½Ä Áõ°¡´Â º¸´Ù ¾ö°ÝÇÑ ±ÔÁ¦¿Í ÄÄÇöóÀ̾ð½ºÀÇ Àǹ«È¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. Á¤ºÎ¿Í ±¹Á¦±â±¸´Â ÃßÀû¼º ±âÁØÀ» ½ÃÇàÇϰí Áõ¸í ±â¼úÀÇ Ã¤ÅÃÀ» Àå·ÁÇÕ´Ï´Ù. È®´ë »ý»êÀÚ Ã¥ÀÓ(EPR) ¹ý¿¡¼ µðÁöÅÐ °¨»ç ¿ä°Ç±îÁö ±ÔÁ¦ ¾Ð·ÂÀº ½ÃÀå ¼ºÀåÀ» À§ÇÑ ºñ¿ÁÇÑ Åä¾çÀ» »ý»êÇϰí ÀÖ½À´Ï´Ù. Ãâó ½Ã½ºÅÛÀº ÀÌÇØ°ü°èÀÚ°¡ ÄÄÇöóÀ̾𽺠º¥Ä¡¸¶Å©¸¦ ÃæÁ·Çϰí, ¹úÄ¢À» ÇÇÇϸç, ȯ°æ ½ºÆ©¾îµå½ÊÀ» ÀÔÁõÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù.
´ÜÆíÀûÀ̰í Á¶Á÷ȵÇÁö ¾ÊÀº ȸ¼ö ä³Î
´ÜÆíȵǰí Á¶Á÷ȵÇÁö ¾ÊÀº ȸ¼ö ä³ÎÀº Æó±â¹° ÃßÀûÀÇ ºñÈ¿À²¼º, Àϰü¼º ¾ø´Â µ¥ÀÌÅÍ, Á¦ÇÑµÈ Åõ¸í¼ºÀ» âÃâÇϰí ÀüÀÚÆó±â¹° Ãâó ½ÃÀå¿¡ ¾Ç¿µÇâÀ» ¹ÌĨ´Ï´Ù. ºñ°ø½ÄÀûÀÎ °ü½ÀÀº Ç¥ÁØÈµÈ ÀçȰ¿ë ¹× ÀûÀýÇÑ ¹®¼È¸¦ ¹æÇØÇÏ¿© ºÒ¹ý Åõ±â Áõ°¡¿Í ±ÍÁßÇÑ Àç·áÀÇ ¼Õ½Ç·Î À̾îÁý´Ï´Ù. ÀÌ·¯ÇÑ ±¸Á¶ÀÇ ºÎÁ·Àº Áõ¸í ±â¼úÀÇ Ã¤¿ëÀ» Á¦ÇÑÇÏ°í ±ÔÁ¦ Áؼö¸¦ ¾àÈÇϸç ÀüÀÚÆó±â¹° °ü¸® »ýŰèÀÇ Áö¼Ó °¡´ÉÇÑ ¼ºÀåÀ» ¹æÇØÇÕ´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
COVID-19ÀÇ ´ëÀ¯ÇàÀº °ø±Þ¸ÁÀ» È¥¶õ½º·´°Ô Çϰí, ÀçȰ¿ë ÀÛ¾÷À» Áö¿¬½Ã۸ç, ³ëµ¿·ÂÀÇ ÀÌ¿ëÀ» Á¦ÇÑÇÔÀ¸·Î½á, ÀüÀÚÆó±â¹° Ãâó ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ¸®¸ðÆ® ¿öÅ© ¹× µðÁöÅÐ ÀÇÁ¸ Áõ°¡´Â ÀüÀÚ±â±âÀÇ ¼Òºñ¸¦ °¡¼ÓÈÇÏ¿© ÀüÀÚÆó±â¹°·®ÀÇ ±ÞÁõÀ¸·Î À̾îÁ³½À´Ï´Ù. ±×·¯³ª ȸ¼ö¿Í 󸮿¡ ´ëÇÑ ÇѰè´Â ÃßÀû¼º ³ë·ÂÀ» ¹æÇØÇÕ´Ï´Ù. ÆÒ´ë¹Í ÀÌÈÄÀÇ È¸º¹Àº Áö¼Ó °¡´ÉÇÑ ÀüÀÚ Æó±â¹° °ü¸®¸¦ °Á¶Çϰí Åõ¸í¼º°ú ±ÔÁ¤ Áؼö¸¦ º¸ÀåÇÏ´Â Áõ¸í ±â¼ú ¼ö¿ä¸¦ µÞ¹ÞħÇÕ´Ï´Ù.
¿¹Ãø ±â°£ Áß ÀçȰ¿ë ¹× Àç·á ȸ¼ö ºÐ¾ß°¡ ÃÖ´ë°¡ µÉ Àü¸Á
ÀÚ¿ø È¿À²¼º ¹× À±¸®Àû Æó±â¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ÀçȰ¿ë ¹× Àç·á ȸ¼ö ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áõ¸í ½Ã½ºÅÛÀº ÀçȰ¿ë ¾÷ü°¡ ÀåÄ¡ÀÇ ±â¿øÀ» È®ÀÎÇϰí ȯ°æ ±âÁØÀ» ÁؼöÇϸç Àç·á ÃßÃâÀ» ÃÖÀûÈÇÒ ¼ö ÀÖ½À´Ï´Ù. ÈñÅä·ù ±Ý¼Ó°ú Áß¿äÇÑ ºÎǰÀÌ Èñ¼ÒÇØÁü¿¡ µû¶ó ÃßÀû¼ºÀº ȸ¼öÀ²À» ³ôÀÌ°í Æó¼â ·çÇÁ °ø±Þ¸ÁÀ» Áö¿øÇÕ´Ï´Ù. ÀÌ ºÎ¹®Àº Áö¼Ó °¡´ÉÇÑ ÀüÀÚ ÀåÄ¡¿¡ ´ëÇÑ ±ÔÁ¦ Àμ¾Æ¼ºê¿Í ¼ÒºñÀÚ ÀÇ½Ä Áõ°¡·Î ÀÌÀÍÀ» ¾ò½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ ºÐ¾ßÀÇ CAGRÀÌ °¡Àå ³ô¾ÆÁú Àü¸Á
¿¹Ãø ±â°£ µ¿¾È Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ ºÐ¾ß´Â È®À强, ½Ç½Ã°£ µ¥ÀÌÅÍ ¾×¼¼½º, IoT ¹× ºí·ÏüÀÎ Ç÷§Æû°úÀÇ ÅëÇÕÀ» ÅëÇØ °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Ŭ¶ó¿ìµå ÀÎÇÁ¶ó¿¡¼ È£½ºÆÃµÇ´Â ÇÁ·Îº£³Í½º ¼Ö·ç¼ÇÀº Áö¿ªÀ» ³Ñ¾î ¿øÈ°ÇÑ ÃßÀûÀ» °¡´ÉÇÏ°Ô Çϰí, ´ë±â ½Ã°£À» ´ÜÃàÇϸç, °¨»ç °¡´É¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý ½Ã½ºÅÛÀº µ¿Àû ¾÷µ¥ÀÌÆ®, ¿¹Ãø ºÐ¼® ¹× ¿ø°Ý ¸ð´ÏÅ͸µÀ» Áö¿øÇÏ¸ç º¹ÀâÇÑ ÀüÀÚ Æó±â¹° È帧À» °ü¸®ÇÏ´Â µ¥ ÀÌ»óÀûÀÔ´Ï´Ù. µðÁöÅÐ º¯È¯ÀÌ °¡¼ÓÈµÇ¸é¼ Å¬¶ó¿ìµå ÄÄÇ»ÆÃÀº ¹ÎøÇϰí Åõ¸íÇÑ ÀüÀÚÆó±â¹° Áõ¸í ³×Æ®¿öÅ©ÀÇ ¹éº»ÀÌ µË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº ÀüÀÚ±â±âÀÇ ´ë·® ¼Òºñ, Á¦Á¶ ±â¹Ý, ±ÔÁ¦ Áõ°¡·Î ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áß±¹, Àεµ, ÀϺ» µîÀÇ ±¹°¡µéÀº µðÁöÅÐ Æó±â¹° ÃßÀû ¹× ¼øÈ¯ °æÁ¦¿¡ ´ëÇÑ ³ë·Â¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ Áß°£Ãþ Áõ°¡ ¹× ±Þ¼ÓÇÑ µµ½ÃÈ´Â ÀüÀÚÆó±â¹°·® Áõ°¡¿¡ ±â¿©Çϸç È®Àå °¡´ÉÇÑ Áõ¸í ¼Ö·ç¼ÇÀÌ ÇÊ¿äÇÕ´Ï´Ù. Á¤ºÎ°¡ Áö¿øÇÏ´Â ÇÁ·Î±×·¥°ú °ü¹Î ÆÄÆ®³Ê½ÊÀÌ Ã¤¿ëÀ» ´õ¿í ÃËÁøÇÏ°í ¾Æ½Ã¾ÆÅÂÆò¾çÀ» ÀüÀÚÆó±â¹° ÃßÀû¼ºÀÇ ¼¼°èÀû ¸®´õ·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì´Â °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´Â °í±Þ µðÁöÅÐ ÀÎÇÁ¶ó, °·ÂÇÑ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©, ESG ÁÖµµ ±â¾÷ ÀÌ´Ï¼ÅÆ¼ºê ¶§¹®ÀÔ´Ï´Ù. ¹Ì±¹°ú ij³ª´Ù´Â ºí·ÏüÀÎ ÆÄÀÏ·µ, Ŭ¶ó¿ìµå ±â¹Ý ÃßÀû, È®´ë »ý»êÀÚ Ã¥ÀÓÀÇ Àǹ«È¸¦ ÅëÇØ ÀüÀÚ Æó±â¹°ÀÇ Åõ¸í¼ºÀ» ¿ì¼±½ÃÇϰí ÀÖ½À´Ï´Ù. ¼ÒºñÀÚÀÇ ³ôÀº Àǽİú ±â¼ú¿¡ Àͼ÷ÇÑ ÀçȰ¿ë ¾÷ü°¡ Áõ¸íÀÇ Ã¤¿ëÀ» °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù. °Ô´Ù°¡ Áö¼Ó°¡´ÉÇÑ ÀüÀÚ±â±â Æó±â¿¡ ´ëÇÑ ¿¬¹æÁ¤ºÎ¿Í ÁÖ ¼öÁØÀÇ Àμ¾Æ¼ºê°¡ Çõ½ÅÀ» ÃËÁøÇÏ°í ºÏ¹Ì´Â ½ÇÁõ±â¼úÀÌ ±Þ¼ºÀåÇÏ´Â ÇÖ½ºÆÌÀÌ µÇ°í ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global E-Waste Provenance Market is accounted for $2.0 billion in 2025 and is expected to reach $5.0 billion by 2032 growing at a CAGR of 13.5% during the forecast period. E-waste provenance refers to the origin, ownership history, and movement of discarded electronic devices throughout their lifecycle. It encompasses tracking the source of e-waste-from manufacturers and consumers to recyclers and disposal facilities-enabling transparency in how electronic waste is generated, handled, and processed. Provenance data helps identify illegal dumping, monitor cross-border shipments, and ensure ethical recycling practices. By mapping e-waste flows, stakeholders can assess environmental risks, enforce regulations, and design circular economy strategies. Provenance systems often rely on digital tagging, blockchain, or audit trails to verify authenticity and traceability, making them vital for responsible e-waste management and global sustainability efforts.
Shrinking Lifespan of Electronics
The rapid obsolescence of consumer electronics-driven by fast-paced innovation, planned upgrades and shifting user preferences-is accelerating e-waste generation globally. This shrinking lifecycle intensifies the need for provenance systems to track device origins and disposal pathways. As devices are discarded more frequently, stakeholders require robust traceability to ensure ethical recycling, prevent illegal dumping, and support circular economy models. Provenance technologies thus become essential tools in managing the environmental footprint of increasingly short-lived electronic products.
High Capital Intensity
High capital intensity negatively impacts the E-Waste Provenance Market by creating significant financial barriers for new entrants and smaller players. The need for advanced tracking technologies, secure data management systems, and specialized infrastructure demands heavy upfront investments. This discourages innovation, limits competition, and slows market adoption, thereby hindering overall growth and scalability in the sector.
Regulatory Pressure & Compliance Mandates
Rising global awareness of e-waste hazards is prompting stricter regulations and compliance mandates. Governments and international bodies are enforcing traceability standards, incentivizing adoption of provenance technologies. From extended producer responsibility (EPR) laws to digital audit requirements, regulatory pressure is creating fertile ground for market growth. Provenance systems help stakeholders meet compliance benchmarks, avoid penalties, and demonstrate environmental stewardship-unlocking new opportunities for tech providers and recyclers aligned with ESG goals.
Fragmented & Unorganized Collection Channels
Fragmented and unorganized collection channels negatively impact the e-waste provenance market by creating inefficiencies in waste tracking, inconsistent data, and limited transparency. Informal practices hinder standardized recycling and proper documentation, leading to increased illegal dumping and loss of valuable materials. This lack of structure restricts adoption of provenance technologies, weakens regulatory compliance, and obstructs sustainable growth of the e-waste management ecosystem.
Covid-19 Impact
The Covid-19 pandemic significantly impacted the E-Waste Provenance market by disrupting supply chains, delaying recycling operations, and limiting workforce availability. Increased remote working and digital dependency accelerated electronic consumption, leading to a surge in e-waste volumes. However, restrictions on collection and processing hindered traceability efforts. Post-pandemic recovery emphasizes sustainable e-waste management, boosting demand for provenance technologies to ensure transparency and regulatory compliance.
The recycling & material recovery segment is expected to be the largest during the forecast period
The recycling & material recovery segment is expected to account for the largest market share during the forecast period, due to growing demand for resource efficiency and ethical disposal. Provenance systems enable recyclers to verify device origins, ensure compliance with environmental standards, and optimize material extraction. As rare earth metals and critical components become scarcer, traceability enhances recovery yields and supports closed-loop supply chains. This segment benefits from regulatory incentives and rising consumer awareness around sustainable electronics.
The cloud computing segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the cloud computing segment is predicted to witness the highest growth rate, due to its scalability, real-time data access, and integration with IoT and blockchain platforms. Provenance solutions hosted on cloud infrastructure enable seamless tracking across geographies, reducing latency and improving auditability. Cloud-based systems support dynamic updates, predictive analytics, and remote monitoring-making them ideal for managing complex e-waste flows. As digital transformation accelerates, cloud computing becomes the backbone of agile, transparent e-waste provenance networks.
During the forecast period, the Asia Pacific region is expected to hold the largest market share due to its massive electronics consumption, manufacturing base, and rising regulatory focus. Countries like China, India, and Japan are investing in digital waste tracking and circular economy initiatives. The region's growing middle class and rapid urbanization contribute to high e-waste volumes, necessitating scalable provenance solutions. Government-backed programs and public-private partnerships further drive adoption, positioning APAC as a global leader in e-waste traceability.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, owing to advanced digital infrastructure, strong regulatory frameworks, and ESG-driven corporate initiatives. The U.S. and Canada are prioritizing e-waste transparency through blockchain pilots, cloud-based tracking, and extended producer responsibility mandates. High consumer awareness and tech-savvy recyclers accelerate provenance adoption. Additionally, federal and state-level incentives for sustainable electronics disposal are catalyzing innovation, making North America a hotspot for rapid growth in provenance technologies.
Key players in the market
Some of the key players profiled in the E-Waste Provenance Market include Circulor, Circularise, Everledger, OriginTrail, VeChain, Provenance, IBM, Klean Industries (KleanLoop), Recykal, Veolia, Sims Lifecycle Services, Umicore, Quantum Lifecycle Partners, Dell Technologies and HP Inc.
In July 2025, IBM and Moderna collaborated on a groundbreaking case study that applied variational quantum algorithms and Conditional Value at Risk (CVaR) using IBM's Heron r2 quantum processor to significantly enhance mRNA structure modeling for drug development.
In March 2025, Microsoft selected OriginTrail to present its Decentralized Knowledge Graph at the ChangeNOW Summit, spotlighting its potential to enhance AI systems by ensuring data integrity and transparency-emphasizing the growing importance of decentralized, trustworthy data frameworks.