Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ½Ä¹° À¯ÀüüÇÐ ½ÃÀåÀº 2025³â¿¡ 115¾ï ´Þ·¯·Î ÃßÁ¤µÇ°í, ¿¹Ãø ±â°£ µ¿¾È CAGR 8.01%·Î ¼ºÀåÇÒ Àü¸ÁÀ̸ç, 2032³â¿¡´Â 197¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
½Ä¹° À¯ÀüüÇÐÀº À¯ÀüÀÚ ±¸Á¶¸¦ ÀÌÇØÇÏ°í ³ó¾÷ »ý»ê¼ºÀ» Çâ»ó½Ã۱â À§ÇØ ½Ä¹° À¯ÀüüÇÐÀÇ ±¸Á¶, ±â´É, ÁøÈ, ¸ÅÇÎ ¹× ÆíÁýÀ» Á¾ÇÕÀûÀ¸·Î ¿¬±¸ÇÏ´Â °ÍÀÔ´Ï´Ù. ¼öÀ², º´ÇØ ÀúÇ×¼º, ½ºÆ®·¹½º ³»¼º, ¿µ¾ç°¡ µîÀÇ ÇüÁú¿¡ °ü¿©ÇÏ´Â À¯ÀüÀÚ¸¦ ƯÁ¤Çϱâ À§ÇØ, ½Ä¹° DNAÀÇ ½ÃÄö½Ì, ºÐ¼®, ºñ±³¸¦ ½Ç½ÃÇÕ´Ï´Ù. ºÐÀÚ »ý¹°ÇÐ, »ýü Á¤º¸ÇÐ ¹× »ý¸í °øÇÐÀ» ÅëÇÕÇÔÀ¸·Î½á ½Ä¹° À¯ÀüüÇÐ °úÇÐÀº ¸¶Ä¿ Áö¿ø À°Á¾, À¯ÀüÀÚ µµÀÔ Á¢±Ù¹ý, CRISPR°ú °°Àº À¯ÀüÀÚ ÆíÁý µµ±¸·Î À¯ÀüÀÚ °³¼± ÀÛ¹°À» °³¹ßÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¾ß´Â Áö¼Ó °¡´ÉÇÑ ³ó¾÷À» Áö¿øÇÏ°í ½Ä·® ¾Èº¸¸¦ °ÈÇÏ°í ±âÈÄ º¯È, ÀÚ¿ø ºÎÁ·, Àα¸ ¼ö¿ä Áõ°¡ µî ¼¼°èÀû °úÁ¦¸¦ ÇØ°áÇÕ´Ï´Ù.
Á¶»ç¿¡ ÀÇÇϸé, ½É°¢ÇÑ ´Ü¹éÁú ¹× Ä®·Î¸® ¿µ¾ç ½ÇÁ¶´Â °³¹ßµµ»ó±¹ÀÇ 1¼¼ºÎÅÍ 9¼¼±îÁöÀÇ ¾ÆÀÌÀÇ ¾à 2-10%¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù.
±ÞÁõÇÏ´Â ½Ä·® ¼ö¿ä ¹× Àα¸ Áõ°¡
¼¼°èÀûÀÎ ½Ä·® ¼ö¿ä ±ÞÁõ ¹× ±Þ¼ÓÇÑ Àα¸ Áõ°¡°¡ ½Ä¹° À¯ÀüüÇÐ ½ÃÀåÀÇ ±â¼ú Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¾Ð·ÂÀº ³ôÀº ¼öÀ²·Î ±âÈÄ º¯È¿¡ °ÇÑ ÀÛ¹°¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇϰí Á¤¹ÐÀ°Á¾À» À§ÇÑ À¯Àüü ÅøÀÇ Ã¤¿ëÀ» °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù. Á¤ºÎ¿Í ¾Æ±×¸®ÅØ ±â¾÷Àº Áö¼Ó°¡´ÉÇÑ ³ó¾÷À» ¼±È£Çϰí À¯ÀüÀÚ ÆíÁý°ú ÇüÁú ¸ÅÇÎÀÇ ¿¬±¸ °³¹ßÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. Àα¸µ¿ÅÂÀÇ º¯È¿¡ µû¶ó ½Ä·® ½Ã½ºÅÛÀÌ ¿Ö°îµÇ´Â °¡¿îµ¥, ½Ä¹° À¯Àüü °úÇÐÀº ´Ù¾çÇÑ Áö¿ª¿¡ °ÉÃÄ »ý»ê¼º, ¿µ¾ç°¡, »ýŰèÀÇ È¸º¹·ÂÀ» ³ôÀÌ´Â º¯ÇõÀû ¼Ö·ç¼ÇÀ¸·Î¼ ´ëµÎÇØ ½ÃÀå È®´ëÀÇ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù.
³ôÀº ºñ¿ë ¹× °æÁ¦Àû À庮
³ôÀº ºñ¿ë ¹× °æÁ¦Àû À庮Àº ÷´Ü ½ÃÄö½Ì ±â¼ú°ú »ý¹° Á¤º¸ÇÐ µµ±¸¿¡ ´ëÇÑ Á¢±ÙÀ» Á¦ÇÑÇÔÀ¸·Î½á ½Ä¹° À¯ÀüüÇÐ ½ÃÀåÀÇ ¼ºÀåÀ» Å©°Ô ÀúÇØÇϰí ÀÖ½À´Ï´Ù. ƯÈ÷ ½ÅÈï±¹ÀÇ Áß¼Ò±â¾÷Àº ¿¬±¸°³¹ß ÅõÀÚ¿¡ °í¹ÎÇϰí ÀÖÀ¸¸ç ±â¼ú Çõ½Å°ú »ó¾÷Ȱ¡ Áö¿¬µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¦¾àÀº ¶ÇÇÑ ÇмúÀû °øµ¿ ¿¬±¸¿Í °ü¹Î ÆÄÆ®³Ê½ÊÀ» ¹æÇØÇÏ¿© ÀÛ¹° °³·®, Áö¼Ó°¡´É¼º, ½Ä·® ¾Èº¸ÀÇ Áøº¸¸¦ Á¤Ã¼½Ãŵ´Ï´Ù.
Áö¼Ó°¡´ÉÇÑ Á¤¹Ð³ó¾÷ ±ÞÁõ
Áö¼Ó°¡´ÉÇϰí Á¤¹Ð³ó¾÷ÀÇ ±ÞÁõÀº ½Ä¹° À¯ÀüüÇÐ ½ÃÀåÀÇ Æø¹ßÀûÀÎ ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù. ±âÈÄ º¯È¿¡ °Çϰí, ¿µ¾çÀÌ Ç³ºÎÇÏ¸ç º´ÇØÃæ¿¡ °ÇÑ ÀÛ¹°ÀÇ Ç°Á¾ °³·®À» °¡´ÉÇÏ°Ô ÇÏ´Â À¯ÀüüÇÐÀº ȯ°æ¿¡ ¹è·ÁÇÑ ³ó¾÷ÀÇ ¸ñÇ¥¿¡ ¿ÏÀüÇÏ°Ô ÇÕÄ¡Çϰí ÀÖ½À´Ï´Ù. CRISPRÀ̳ª À¯Àüü ¼±¹ß°ú °°Àº Á¤¹Ðµµ±¸´Â ÇüÁú ¹ß°ßÀ» °¡¼ÓÈÇϰí ÅõÀÔ¹° ÀÇÁ¸À» ÁÙÀÌ¸ç ¼öÀ² ¿¹Ãø °¡´É¼ºÀ» ³ôÀÔ´Ï´Ù. ÀÌ ½Ã³ÊÁö È¿°ú´Â ƯÈ÷ ¾Æ½Ã¾ÆÅÂÆò¾ç°ú ¾ÆÇÁ¸®Ä«¿¡¼ »õ·Î¿î ÅõÀÚÀÇ ±æÀ» ¿¾îÁÖ´Â µ¿½Ã¿¡ ½Ä·® ¾Èº¸¿Í ȯ°æÀÇ Áö¼Ó°¡´É¼ºÀ» ÃËÁøÇÏ¿© ½Ä¹° À¯ÀüüÇÐÀÌ Â÷¼¼´ë ³ó¾÷ÀÇ Ãʼ®ÀÌ µË´Ï´Ù.
±ÔÁ¦ »óÀÇ Àå¾Ö¹° ¹× ¼¼°èÀû ´ÜÆíÈ
±ÔÁ¦ »óÀÇ Àå¾Ö¹° ¹× ¼¼°èÀûÀÎ ºÐ´ÜÀº ½Ä¹° À¯ÀüüÇÐ ½ÃÀå¿¡ ºÎÁ¤ÀûÀÌ°í ¾ïÁ¦ÀûÀÎ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. ´Ù¸¥ Áö¿ª °£¿¡ ¾ö°ÝÇϰí Àϰü¼ºÀÌ ¾ø´Â ±ÔÁ¦´Â Á¦Ç° ½ÂÀÎ Áö¿¬À» ÃÊ·¡Çϰí, Çõ½ÅÀ» ¹æÇØÇϸç, ±â¾÷ÀÇ ÄÄÇöóÀ̾𽺠ºñ¿ëÀ» Áõ°¡½Ãŵ´Ï´Ù. ±¹Á¦ÀûÀ¸·Î Á¶ÈµÈ Á¤Ã¥ÀÌ ¾ø±â ¶§¹®¿¡ °øµ¿ ¿¬±¸, µ¥ÀÌÅÍ °øÀ¯, ±¹°æÀ» ³ÑÀº ¿¬±¸°¡ ´õ¿í º¹ÀâÇØÁý´Ï´Ù. ÀÌ·¯ÇÑ °úÁ¦´Â ÷´Ü À¯Àüü ±â¼úÀÇ Ã¤ÅÃÀ» ´ÊÃß°í ½ÃÀå È®´ë¸¦ Á¦ÇÑÇÏ¸ç ³ó¾÷ Çõ½ÅÀ» ÃßÁøÇÏ´Â ÀÌ ºÐ¾ßÀÇ ÀáÀç·ÂÀ» ÀúÇØÇϰí ÀÖ½À´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
COVID-19´Â ½Ä¹° À¯ÀüüÇÐ ½ÃÀå¿¡ ´Ù¾çÇÑ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. óÀ½¿¡´Â °ø±Þ¸Á È¥¶õ, ¿¬±¸ Ȱµ¿ Á¦ÇÑ, ³ó¾÷ ÇÁ·ÎÁ§Æ® Áö¿¬ÀÌ ½ÃÀå ¼ºÀåÀ» ¹æÇØÇß½À´Ï´Ù. ±×·¯³ª ÆÒµ¥¹ÍÀº ź·Â¼º ÀÖ´Â ½Ä·® ½Ã½ºÅÛÀÇ Á߿伺À» ºÎ°¢½ÃÄÑ ½Ä·® ¾Èº¸¸¦ À§ÇÑ ÀÛ¹° ¿¬±¸ ¹× ¼±Áø À¯Àüü¿¡ ´ëÇÑ ÅõÀÚ¸¦ °¡¼ÓȽÃÄ×½À´Ï´Ù. Áö¼Ó°¡´ÉÇÑ ³ó¾÷, ³»º´¼º ÀÛ¹°, »ý»ê¼º Çâ»ó¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â °á±¹ ½ÃÀåÀ» ȸº¹À¸·Î ÇâÇÏ°Ô ÇÏ¿© Çõ½Å¿¡ »õ·Î¿î ÁÖ·ÂÀ» Ã˱¸Çß½À´Ï´Ù.
¹ÙÀÌ¿ÀÀÎÆ÷¸Åƽ½º ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë°¡ µÉ Àü¸Á
¹ÙÀÌ¿ÀÀÎÆ÷¸Åƽ½º ºÐ¾ß´Â ±× ÅëÇÕ¿¡ ÀÇÇØ À¯Àüü ½ÃÄö½ÌÀÌ °¡¼Óȵǰí, ÀÛ¹°ÀÇ Åº·Â¼º ¸ðµ¨¸µÀÌ °ÈµÇ¸ç, À¯ÀüÀÚ ÆíÁý ¿öÅ©Ç÷ο찡 °£¼ÒȵDZ⠶§¹®¿¡ ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¹ÙÀÌ¿ÀÀÎÆ÷¸Åƽ½º´Â º¹ÀâÇÑ ½Ä¹° À¯ÀüüÇÐÀ» ºü¸£°í Á¤È®ÇÏ°Ô ÇØµ¶ÇÔÀ¸·Î½á ¿¬±¸ÀÚ°¡ ±âÈÄ¿¡ ÀûÀÀÇÑ °í¼ö·® ǰÁ¾À» °³¹ßÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ÀÌ µ¥ÀÌÅÍ Áß½ÉÀÇ Á¢±Ù ¹æ½ÄÀº ³ó¾÷, »ý¸í°øÇÐ ¹× ½Ä·®¾ÈÀü ºÐ¾ß¿¡¼ »õ·Î¿î »ó¾÷Àû ¿ëµµ¸¦ °³Ã´Çϰí, »ý¹°Á¤º¸ÇÐÀº ½Ä¹° À¯ÀüüÇÐÀÇ Çõ½Å ¹× Áö¼Ó°¡´ÉÇÑ ¿µÇâÀ» ½ÇÇöÇÏ´Â ¸Å¿ì Áß¿äÇÑ ¼ö´ÜÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È °ïÃæ ÀúÇ×¼º ºÐ¾ßÀÇ CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È À¯Àü °øÇÐ ¹× CRISPR ±â¹Ý ÀÛ¹° º¸È£ ±â¼ú Çõ½ÅÀº °ïÃæ ÀúÇ×¼º ºÐ¾ß°¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ³ó¾à ÀÇÁ¸¼ºÀ» ÁÙÀÌ°í ¼öÀ²ÀÇ ¾ÈÁ¤¼ºÀ» ³ôÀÓÀ¸·Î½á °ïÃæ ÀúÇ×¼º ÇüÁúÀº À¯ÀüÀÚ º¯Çü ÀÛ¹°°ú À¯ÀüÀÚ ÆíÁý ÀÛ¹°ÀÇ Ã¤¿ëÀ» °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù. ÀÌ ºÐ¾ß´Â ƯÈ÷ ±âÈÄ·Î ÀÎÇÑ ÇØÃæÀÇ ¾Ð·Â¿¡ Á÷¸éÇÏ´Â Áö¿ª¿¡¼ °í±Þ ¿À¹Í Ç÷§Æû°ú Á¤¹Ð À°Á¾ µµ±¸¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇÕ´Ï´Ù. ±× ¿µÇâÀº ź·ÂÀûÀÎ °í¼º´É ÀÛ¹° ǰÁ¾À» ÅëÇØ Áö¼Ó°¡´É¼º, ³óºÎÀÇ ¼öÀͼº ¹× ¼¼°è ½Ä·®¾Èº¸¸¦ Çâ»ó½ÃŰ´Â Çõ½ÅÀûÀÎ °ÍÀÔ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´Â ½Ä·®¾Èº¸ ¹× ±âÈÄ ÀûÀÀÇü ³ó¾÷¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁö°í, À¯ÀüüÇп¡ ÀÇÇÑ Á¤¹ÐÀ°Á¾, ´Ù¾çÇÑ ÀÛ¹°¿¡ °ÉÄ£ º´ÇØÀúÇ×¼º µîÀÌ ÀÌÀ¯ÀÔ´Ï´Ù. Áö¿ª Á¤ºÎ¿Í ¿¬±¸ ±â°üÀº Àü·«Àû ÅõÀÚ¿Í °øµ¿ ¿¬±¸¸¦ ÅëÇØ ±â¼ú Çõ½ÅÀ» °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¿îÀº ģȯ°æ ½ÇõÀ» ÃËÁøÇϰí, ÈÇй°Áú¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀ̸ç, µ¥ÀÌÅÍ ÁÖµµ ¼Ö·ç¼ÇÀ¸·Î ³ó°¡¿¡ ÈûÀ» ÁÖ¾î, ¾Æ½Ã¾ÆÅÂÆò¾çÀ» ³ó¾÷ »ý¸í°øÇÐÀÇ Áøº¸ÀÇ ¿ªµ¿ÀûÀÎ Çãºê·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´Â »ý¸í°øÇÐÀÇ Áøº¸, Á¤ºÎÀÇ Áö¿ø ÀÌ´Ï¼ÅÆ¼ºê, È®¸³µÈ ³ó¾÷ ºÎ¹® ¶§¹®ÀÔ´Ï´Ù. ³óºÎ ¹× ¿¬±¸Àڵ鿡 ÀÇÇÑ À¯Àüü µµ±¸ÀÇ Ã¤¿ëÀÌ Áõ°¡ÇÏ¿© ÀÛ¹°ÀÇ ¼öÀ², ǰÁú, Áúº´ ¹× ȯ°æ ½ºÆ®·¹½º¿¡ ´ëÇÑ ³»¼ºÀÌ Çâ»óµÇ¾ú½À´Ï´Ù. ¿¬±¸±â°ü ¹× ³ó¾÷±â¼ú ±â¾÷ÀÇ ¿¬°è°¡ Çõ½ÅÀ» ´õ¿í °¡¼ÓȽÃ۰í, ÀÌ Áö¿ªÀ» Á¤¹Ð³ó¾÷ÀÇ ¸®´õ·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀÌ °áÇÕµÇ¾î ºÏ¹ÌÀÇ ½Ä·®¾Èº¸ ¹× Áö¼Ó°¡´ÉÇÑ ³ó¾÷ÀÌ °ÈµË´Ï´Ù.
According to Stratistics MRC, the Global Plant Genomics Market is accounted for $11.5 billion in 2025 and is expected to reach $19.7 billion by 2032 growing at a CAGR of 8.01% during the forecast period. Plant genomics is the comprehensive study of the structure, function, evolution, mapping, and editing of plant genomes to understand genetic makeup and improve agricultural productivity. It involves sequencing, analyzing, and comparing plant DNA to identify genes responsible for traits such as yield, disease resistance, stress tolerance, and nutritional value. By integrating molecular biology, bioinformatics, and biotechnology, plant genomics enables the development of genetically improved crops through marker-assisted breeding, transgenic approaches, and genome editing tools like CRISPR. This field supports sustainable agriculture, enhances food security, and addresses global challenges such as climate change, resource scarcity, and increasing population demands.
According to surveys, severe protein-calorie malnutrition affected about 2-10% of children from one to nine years in developing countries.
Skyrocketing Food Demand & Population Growth
Surging global food demand and rapid population growth are catalyzing innovation in the plant genomics market. These pressures are driving investments in high-yield, climate-resilient crops and accelerating adoption of genomic tools for precision breeding. Governments and agritech firms are prioritizing sustainable agriculture, boosting R&D in gene editing and trait mapping. As food systems strain under demographic shifts, plant genomics emerges as a transformative solution-enhancing productivity, nutritional value, and ecological resilience across diverse geographies, thus it driving market expansion.
High Costs & Financial Barriers
High costs and financial barriers significantly hinder the growth of the plant genomics market by limiting access to advanced sequencing technologies and bioinformatics tools. Small and mid-sized enterprises, especially in emerging economies, struggle to invest in R&D, slowing innovation and commercialization. These constraints also deter academic collaborations and public-private partnerships, stalling progress in crop improvement, sustainability, and food security-ultimately widening the gap between potential and practical application.
Sustainable & Precision Agriculture Surge
The surge in sustainable and precision agriculture is catalyzing explosive growth in the plant genomics market. By enabling targeted breeding of climate-resilient, nutrient-rich, and pest-resistant crops, genomics aligns perfectly with eco-conscious farming goals. Precision tools like CRISPR and genomic selection accelerate trait discovery, reduce input dependency, and enhance yield predictability. This synergy is unlocking new investment avenues, especially in APAC and Africa, while driving food security and environmental sustainability-making plant genomics a cornerstone of next-gen agriculture.
Regulatory Hurdles & Global Fragmentation
Regulatory hurdles and global fragmentation exert a negative and hindering impact on the plant genomics market. Stringent and inconsistent regulations across different regions create delays in product approvals, discourage innovation, and increase compliance costs for companies. The lack of harmonized international policies further complicates collaboration, data sharing, and cross-border research. These challenges slow the adoption of advanced genomic technologies, limiting market expansion and impeding the sector's potential to drive agricultural innovation.
Covid-19 Impact
Covid-19 had a mixed impact on the Plant Genomics Market. Initially, disruptions in supply chains, restricted research activities, and delays in agricultural projects hindered market growth. However, the pandemic underscored the importance of resilient food systems, accelerating investments in crop research and advanced genomics to ensure food security. Growing demand for sustainable agriculture, disease-resistant crops, and enhanced productivity ultimately pushed the market toward recovery and renewed focus on innovation.
The bioinformatics segment is expected to be the largest during the forecast period
The bioinformatics segment is expected to account for the largest market share during the forecast period because its integration accelerates genome sequencing, enhances crop resilience modeling, and streamlines gene-editing workflows. By decoding complex plant genomes with speed and accuracy, bioinformatics empowers researchers to develop climate-adaptive, high-yield varieties. This data-driven approach is unlocking new commercial applications across agriculture, biotechnology, and food security-positioning bioinformatics as a pivotal enabler of innovation and sustainable impact in plant genomics.
The insect resistance segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the insect resistance segment is predicted to witness the highest growth rate, due to innovation in genetic engineering and CRISPR-based crop protection. By reducing pesticide dependency and enhancing yield stability, insect-resistant traits are accelerating adoption of transgenic and genome-edited crops. This segment fuels demand for advanced omics platforms and precision breeding tools, especially in regions facing climate-driven pest pressures. Its impact is transformative-boosting sustainability, farmer profitability, and global food security through resilient, high-performance crop varieties.
During the forecast period, the Asia Pacific region is expected to hold the largest market share due to rising demand for food security and climate-adaptive farming, genomics enables precision breeding and disease resistance across diverse crops. Regional governments and research institutions are accelerating innovation through strategic investments and collaborations. This momentum is fostering eco-friendly practices, reducing chemical dependency, and empowering farmers with data-driven solutions-positioning Asia Pacific as a dynamic hub for agricultural biotechnology advancement.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, owing to advancements in biotechnology, supportive government initiatives, and a well-established agricultural sector. Increasing adoption of genomic tools by farmers and researchers enhances crop yield, quality, and resistance to diseases and environmental stresses. Collaboration between research institutions and agri-tech companies further accelerates innovation, positioning the region as a leader in precision agriculture. These factors collectively strengthen food security and sustainable farming practices in North America.
Key players in the market
Some of the key players profiled in the Plant Genomics Market include Illumina, Inc., Agilent Technologies, Inc., Eurofins Scientific SE, Thermo Fisher Scientific, Inc., Qiagen N.V., BGI Genomics Co., Ltd., KeyGene N.V., Neogen Corporation, Novogene Co., Ltd., LC Sciences, LLC, NRGene Ltd., Oxford Nanopore Technologies plc, Pacific Biosciences of California, Inc., TraitGenetics GmbH, Floragenex, Inc., DNA LandMarks Inc, Illumina Cambridge Ltd., Genewiz, Inc, AgBiome, Inc. and Genotypic Technology Pvt. Ltd.
In July 2025, Thermo Fisher expanded its strategic bond with Sanofi by acquiring the Ridgefield, New Jersey sterile fill-finish and packaging facility. This strengthens U.S. drug-manufacturing capacity, retains over 200 skilled employees, and deepens collaboration to meet rising pharma and biotech demand.
In June 2025, Cellular Origins has joined hands with Thermo Fisher to fuse proven cell-culture processing tools with the Constellation CGT robotic platform, forging around-the-clock industrial-scale production that boosts output per square metre, slashes labour sixteen-fold, and cuts CGT costs by over 51 %.