¼¼°èÀÇ ¹ÝµµÃ¼ °¡½º ÇÊÅÍ ½ÃÀå ¿¹Ãø(-2032³â) : Á¾·ùº°, ÇÊÅÍ ¿ä¼Òº°, ±¸Á¶º°, ±â¼úº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®
Semiconductor Gas Filter Market Forecasts to 2032 - Global Analysis By Type, Filter Element, Construction, Technology, Application, End User and By Geography
»óǰÄÚµå : 1803123
¸®¼­Ä¡»ç : Stratistics Market Research Consulting
¹ßÇàÀÏ : 2025³â 09¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 200+ Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,150 £Ü 5,822,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 5,250 £Ü 7,365,000
PDF (2-5 User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷Àå¿¡¼­ 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,350 £Ü 8,908,000
PDF & Excel (Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷ÀåÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇÕ´Ï´Ù. Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ¹× Excel ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 7,500 £Ü 10,521,000
PDF & Excel (Global Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 10ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ¹ÝµµÃ¼ °¡½º ÇÊÅÍ ½ÃÀåÀº 2025³â¿¡ 12¾ï ´Þ·¯¸¦ Â÷ÁöÇϰí, ¿¹Ãø ±â°£ µ¿¾È CAGR 8%·Î ¼ºÀåÇÏ¿© 2032³â¿¡´Â 22¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸ÁÀÔ´Ï´Ù.

¹ÝµµÃ¼ °¡½º ÇÊÅÍ´Â ¹ÝµµÃ¼ Á¦Á¶¿¡ »ç¿ëµÇ´Â °øÁ¤ °¡½º¿¡¼­ ÀÔÀÚ, ¼öºÐ, ºÐÀÚ ¿À¿°¹°ÁúÀ» Á¦°ÅÇϱâ À§ÇØ ¼³°èµÈ °í¼øµµ ¿©°ú ÀåÄ¡ÀÔ´Ï´Ù. ÀÌ ÇÊÅÍ´Â ¹Ì·®ÀÇ ºÒ¼ø¹°µµ ¿þÀÌÆÛ ¼öÀ²°ú ¼ÒÀÚ ¼º´É¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ¸®¼Ò±×·¡ÇÇ, ¿¡Äª, ÁõÂø µîÀÇ ÀÀ¿ë ºÐ¾ß¿¡¼­ Áß¿äÇÕ´Ï´Ù. °í±Þ ¸âºê·¹ÀÎ ¶Ç´Â ±Ý¼Ó ¸Åü·Î ±¸¼ºµÇ¾î °í¿Â ¹× °í¾Ð Á¶°Ç¿¡¼­ ¸Å¿ì ±ú²ýÇÑ °¡½º °ø±ÞÀ» º¸ÀåÇÕ´Ï´Ù. ¹ÝµµÃ¼ °¡½º ÇÊÅÍ´Â °¡½ºÀÇ ¼øµµ¸¦ À¯ÁöÇÔÀ¸·Î½á °øÁ¤ÀÇ ½Å·Ú¼º, ÀåºñÀÇ È¿À²¼º, Á¦Ç°ÀÇ Ç°ÁúÀ» Çâ»ó½Ãŵ´Ï´Ù.

÷´Ü ¹ÝµµÃ¼ Ĩ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

¹ÝµµÃ¼ °¡½º ÇÊÅÍ ½ÃÀåÀº AI, 5G ³×Æ®¿öÅ©, ÀÚÀ²ÁÖÇàÂ÷, °í¼º´É ÄÄÇ»ÆÃ¿¡ Àü·ÂÀ» °ø±ÞÇϴ ÷´Ü Ĩ¿¡ ´ëÇÑ ¼ö¿ä ±ÞÁõ¿¡ ÈûÀÔ¾î °­·ÂÇÑ ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀÀ¿ë ºÐ¾ß¿¡¼­´Â °áÇÔ ¾ø´Â ¿þÀÌÆÛ »ý»êÀ» À¯ÁöÇϱâ À§ÇØ Ãʼø¼ö °øÁ¤ °¡½º°¡ ÇÊ¿äÇÕ´Ï´Ù. µð¹ÙÀ̽º°¡ ³ª³ë¹ÌÅÍ ¼öÁØÀÇ Á¤¹Ðµµ·Î °è¼Ó ¼ÒÇüÈ­µÊ¿¡ µû¶ó ¿À¿° Á¦¾î´Â Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. °¡½º ÇÊÅÍ´Â ¹ÌÅ©·Ð ÀÌÇÏÀÇ ¹Ì¸³ÀÚ, ¼öºÐ, ºÐÀÚ ºÒ¼ø¹°À» Á¦°ÅÇÏ´Â µ¥ ÇʼöÀûÀÎ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ±× °á°ú, Â÷¼¼´ë ¹ÝµµÃ¼¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â °í¼º´É °¡½º ¿©°ú ½Ã½ºÅÛÀÇ ½ÃÀå µµÀÔÀ» Á÷Á¢ÀûÀ¸·Î °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù.

³ôÀº ¼³Ä¡ ¹× ±³Ã¼ ºñ¿ë

°­·ÂÇÑ ¼ºÀå Àü¸Á¿¡µµ ºÒ±¸Çϰí, ½ÃÀåÀº °í¼º´É °¡½º ¿©°ú ½Ã½ºÅÛÀÇ ³ôÀº ¼³Ä¡ ¹× ±³Ã¼ ºñ¿ëÀ¸·Î ÀÎÇÑ ¾ïÁ¦¿äÀο¡ Á÷¸éÇϰí ÀÖ½À´Ï´Ù. ¹ÝµµÃ¼ °øÀåÀº ¾ö°ÝÇÑ ¼øµµ ±âÁØÀ» ÁؼöÇϱâ À§ÇØ Æ¯¼ö ÇÊÅÍ, ÇÏ¿ì¡, °ËÁõ ÇÁ·Î¼¼½º¿¡ ¸¹Àº ÅõÀÚ¸¦ ÇØ¾ß ÇÕ´Ï´Ù. ¶ÇÇÑ, ÇÊÅÍ´Â ¿î¿µÀÇ ½Å·Ú¼ºÀ» º¸ÀåÇϱâ À§ÇØ Á¤±âÀûÀÎ ±³Ã¼°¡ ÇÊ¿äÇϸç, Àå±âÀûÀÎ ¿î¿µ ºñ¿ëÀÌ ¸¹ÀÌ ¼Ò¿äµË´Ï´Ù. ¼Ò±Ô¸ð ÆÕÀ̳ª À§Å¹»ý»ê ¾÷üµéÀº ÀÌ·¯ÇÑ ºñ¿ë ºÎ´ã¿¡ ¾î·Á¿òÀ» °Þ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ÀÌ·¯ÇÑ °æÁ¦Àû ºÎ´ãÀº ƯÈ÷ °¡°Ý¿¡ ¹Î°¨ÇÑ Áö¿ª¿¡¼­ ±¤¹üÀ§ÇÑ Ã¤ÅÃÀ» Á¦ÇÑÇϰí Àüü ½ÃÀåÀÇ ¼ºÀå ±Ëµµ¸¦ µÐÈ­½Ã۰í ÀÖ½À´Ï´Ù.

EV, IoT, ¾çÀÚ ÄÄÇ»ÆÃ ÆÕ¿¡ ´ëÇÑ ÅõÀÚ È®´ë

Àü±âÀÚµ¿Â÷, IoT µð¹ÙÀ̽º, ¾çÀÚ ÄÄÇ»ÆÃ¿¡ ´ëÀÀÇÏ´Â ¹ÝµµÃ¼ °øÀå¿¡ ´ëÇÑ Àü ¼¼°èÀûÀÎ ÅõÀÚ È®´ë´Â °¡½ºÇÊÅÍ ½ÃÀå¿¡ Å« ±âȸ¸¦ °¡Á®´Ù ÁÙ °ÍÀÔ´Ï´Ù. Àü±âÀÚµ¿Â÷´Â ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º¿Í ÷´Ü Ĩ¿¡ Å©°Ô ÀÇÁ¸Çϰí, IoT µð¹ÙÀ̽º´Â ¾ö°ÝÇÑ ½Å·Ú¼ºÀ» °®Ãá ĨÀÇ ´ë·® »ý»êÀÌ ÇÊ¿äÇÕ´Ï´Ù. ȯ°æ ºÒ¼ø¹°¿¡ ¹Î°¨ÇÑ ¾çÀÚ ÄÄÇ»ÆÃÀº ÃÊûÁ¤ °¡½º ȯ°æ¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í Áõ°¡½Ãų °ÍÀÔ´Ï´Ù. ¹Ì±¹, À¯·´, ¾Æ½Ã¾Æ¿¡¼­´Â Á¤ºÎ Áö¿ø ÀÚ±Ý Áö¿øÀ¸·Î °øÀå °Ç¼³ÀÌ °¡¼ÓÈ­µÇ°í ¿©°ú ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÅõÀÚÀÇ ¹°°áÀº ¹ÝµµÃ¼ °¡½º ÇÊÅÍ Á¦Á¶¾÷ü¿¡°Ô °­·ÂÇÑ ¼ºÀåÀÇ ±æÀ» Á¦°øÇÕ´Ï´Ù.

¹ÝµµÃ¼ ½ÃÀå »çÀÌŬÀÇ º¯µ¿¼º

¹ÝµµÃ¼ »ê¾÷Àº ¸Å¿ì ÁÖ±âÀûÀ̾ °úÀ× »ý»ê°ú ºÒȲÀÇ ½Ã±â´Â Àåºñ ¹× ¿©°ú ½Ã½ºÅÛ¿¡ ´ëÇÑ ÅõÀÚ¿¡ Á÷Á¢ÀûÀÎ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. ¼ö¿ä°¡ µÐÈ­µÇ¸é ¹ÝµµÃ¼ °øÀåÀº ¼³ºñ ÅõÀÚ¸¦ ´ÊÃ߰ųª Ãà¼ÒÇϰí, °í¼º´É °¡½º ÇÊÅÍÀÇ Á¶´ÞÀ» ÁÙÀÔ´Ï´Ù. ÀÌ·¯ÇÑ º¯µ¿Àº ÇÊÅÍ Á¦Á¶¾÷ü¿¡ ºÒÈ®½Ç¼ºÀ» °¡Á®¿À°í, ¼öÀÍ¿øÀ» ¿¹ÃøÇÒ ¼ö ¾ø°Ô ¸¸µì´Ï´Ù. ¶ÇÇÑ, °Å½Ã°æÁ¦ÀÇ µÐÈ­¿Í °¡ÀüÁ¦Ç° ¼Òºñ °¨¼Ò´Â ÀÌ·¯ÇÑ »çÀÌŬÀ» ´õ¿í ¾ÇÈ­½Ãų ¼ö ÀÖ½À´Ï´Ù. Á¦Á¶¾÷ü°¡ ¾ÖÇø®ÄÉÀÌ¼Ç ±â¹ÝÀ» ´Ù¾çÈ­ÇÏÁö ¾Ê´Â ÇÑ, ¹ÝµµÃ¼ ¼ö¿äÀÇ Áֱ⼺Àº Áö¼ÓÀûÀÎ ½ÃÀå ¼ºÀå¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ À§ÇùÀÌ µÉ °ÍÀÔ´Ï´Ù.

COVID-19ÀÇ ¿µÇâ:

COVID-19 »çÅ´ ¹ÝµµÃ¼ °¡½º ÇÊÅÍ ½ÃÀå¿¡ ´Ù¾çÇÑ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ´çÃÊ °øÀå °Ç¼³ ÇÁ·ÎÁ§Æ®¿Í ¼³ºñ Á¶´ÞÀº °ø±Þ¸Á È¥¶õ°ú °¡µ¿ Áß´ÜÀ¸·Î ÀÎÇÑ Áö¿¬¿¡ Á÷¸éÇß½À´Ï´Ù. ±×·¯³ª ¿ø°Ý ±Ù¹«, Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ, ¼ÒºñÀÚ ÀüÀÚÁ¦Ç°ÀÌ ¹ÝµµÃ¼ ¼Òºñ¸¦ °¡¼ÓÈ­Çϸ鼭 ¼ö¿ä°¡ ±ÞÁõÇß½À´Ï´Ù. ÀÌ ¹Ýµ¿Àº °øÀå¿¡¼­ ½Å·ÚÇÒ ¼ö ÀÖ´Â ¿À¿° Á¦¾îÀÇ Áß¿äÇÑ Çʿ伺À» °­Á¶Çß½À´Ï´Ù. ¶ÇÇÑ, ÆÒµ¥¹ÍÀº °¢±¹ Á¤ºÎ¿¡ °ø±Þ¸Á ¾ÈÀüÀ» À§ÇØ ¹ÝµµÃ¼ »ý»êÀ» Áö¿ªÈ­ÇÒ °ÍÀ» Ã˱¸Çß½À´Ï´Ù. Àü¹ÝÀûÀ¸·Î COVID-19´Â ´Ü±âÀûÀÎ ÆÄ±« ¿äÀΰú Àå±âÀûÀÎ ¼ºÀå Ã˸ÅÁ¦ ¿ªÇÒÀ» ¸ðµÎ ¼öÇàÇß½À´Ï´Ù.

±¤ÇÐ °¡½º ÇÊÅÍ ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀåÀÌ µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

±¤ÇÐ °¡½º ÇÊÅÍ ºÐ¾ß´Â Æ÷Å丮¼Ò±×·¡ÇÇ °øÁ¤À» ¹æÇØÇÒ ¼ö ÀÖ´Â ºû »ê¶õ ¿À¿°¹°ÁúÀ» Á¦°ÅÇÒ ¼ö ÀÖ´Â ³ôÀº Á¤È®µµ·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ÇÊÅÍ´Â ¹Ì·®ÀÇ ±¤ ºÒ¼ø¹°µµ ¿þÀÌÆÛÀÇ ¼öÀ²¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ÷´Ü ¹ÝµµÃ¼ Á¦Á¶¿¡¼­ ƯÈ÷ Áß¿äÇÕ´Ï´Ù. ±¤ÇÐ °¡½º ÇÊÅÍ´Â ¿¡Äª ¹× ¼º¸· ´Ü°èÀÇ ÃÊûÁ¤ °¡½º¸¦ È®º¸ÇÏ¿© °øÁ¤ÀÇ ¾ÈÁ¤¼ºÀ» ³ôÀÔ´Ï´Ù. ½Å·Ú¼º°ú È¿À²¼ºÀ¸·Î ÀÎÇØ ´ë·® »ý»ê °øÀå¿¡¼­ ¼±È£µÇ¸ç, ÀÌ ½ÃÀåÀÇ ÁÖ¿ä ºÎ¹®À¸·Î ÀÚ¸® ¸Å±èÇϰí ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ±Ý¼Ó ÇÊÅÍ ¿ä¼Ò ºÐ¾ß´Â °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ±Ý¼Ó ÇÊÅÍ ¿ä¼Ò ºÐ¾ß´Â ³»±¸¼º, Àç»ç¿ë¼º, ±ØÇÑÀÇ ¿Âµµ¿Í ¾Ð·ÂÀ» °ßµô ¼ö ÀÖ´Â ´É·Â¿¡ ÈûÀÔ¾î °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÏȸ¿ë Æú¸®¸Ó ÇÊÅÍ¿Í ´Þ¸® ±Ý¼Ó ¿ä¼Ò´Â Àç»ýÀÌ °¡´ÉÇÏ¿© Á¦Á¶ °øÀå¿¡ Àå±âÀûÀÎ ºñ¿ë ÀÌÁ¡À» Á¦°øÇÕ´Ï´Ù. ¶Ù¾î³­ ±â°èÀû °­µµ´Â ¾ÈÁ¤ÀûÀÎ ¼º´ÉÀ» ¿ä±¸ÇÏ´Â °¡È¤ÇÑ ¹ÝµµÃ¼ ȯ°æ¿¡ ÀûÇÕÇÕ´Ï´Ù. °øÀåÀÌ º¸´Ù Áøº¸µÈ °øÁ¤À» äÅÃÇÔ¿¡ µû¶ó °ß°íÇϰí Áö¼Ó°¡´ÉÇÑ ¿©°ú ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ ¶§¹®¿¡ ±Ý¼Ó ÇÊÅÍ ¿ä¼Ò´Â ½ÃÀå¿¡¼­ °¡Àå ºü¸£°Ô ¼ºÀåÇÏ´Â ºÐ¾ß°¡ µÇ¾ú½À´Ï´Ù.

ÃÖ´ë Á¡À¯À² Áö¿ª:

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ´ë¸¸, Çѱ¹, Áß±¹, ÀϺ» µîÀÇ ±¹°¡¿¡´Â ´ë±Ô¸ð ÆÕ È®Àå °èȹÀ» °¡Áø ´ëÇü ÆÄ¿îµå¸® ¹× IDMÀÌ ÀÖ½À´Ï´Ù. Á¤ºÎÀÇ ¿ì´ë Á¶Ä¡¿Í ÀüÀÚÁ¦Ç°¿¡ ´ëÇÑ ±¹³» ¼ö¿ä Áõ°¡·Î ÀÎÇØ ¿©°ú ¿ä°ÇÀÌ ´õ¿í °­È­µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±âÁ¸ ¹ÝµµÃ¼ Àåºñ Á¦Á¶¾÷üÀÇ Á¸Àç·Î ÀÎÇØ Áö¿ª °ø±Þ¸ÁÀÌ °­È­µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °­·ÂÇÑ »ýÅÂ°è ´öºÐ¿¡ ¾Æ½Ã¾ÆÅÂÆò¾çÀº ¼¼°è ½ÃÀå¿¡¼­ ¼±µµÀûÀÎ À§Ä¡¸¦ À¯ÁöÇϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª:

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â ±¹³» Ĩ Á¦Á¶¿¡ ´ëÇÑ ´ë±Ô¸ð Á¤ºÎ Áö¿ø ÅõÀÚ¿¡ µû¸¥ °ÍÀÔ´Ï´Ù. ¹Ì±¹ CHIPS ¹ý°ú °°Àº ÀÌ´Ï¼ÅÆ¼ºê´Â ´ë±â¾÷ÀÇ »õ·Î¿î °øÀå °Ç¼³À» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. AI, EV, ¾çÀÚ ÄÄÇ»ÆÃ µî ÷´Ü ±â¼ú¿¡ ÁýÁßÇϰí ÀÖ´Â ÀÌ Áö¿ªÀº °í¼øµµ °¡½º ¿©°ú äÅÃÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ºÏ¹ÌÀÇ ÅºÅºÇÑ R&D »ýŰè´Â ÇÊÅÍ ¼³°è ¹× Àç·áÀÇ ±â¼ú Çõ½ÅÀ» ÃËÁøÇÏ°í ½ÃÀå ¼ºÀåÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ ¼­ºñ½º

º» º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù:

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­·Ð

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

Á¦4Àå Porter's Five Forces ºÐ¼®

Á¦5Àå ¼¼°èÀÇ ¹ÝµµÃ¼ °¡½º ÇÊÅÍ ½ÃÀå : Á¾·ùº°

Á¦6Àå ¼¼°èÀÇ ¹ÝµµÃ¼ °¡½º ÇÊÅÍ ½ÃÀå : ÇÊÅÍ ¿ä¼Òº°

Á¦7Àå ¼¼°èÀÇ ¹ÝµµÃ¼ °¡½º ÇÊÅÍ ½ÃÀå : ±¸Á¶º°

Á¦8Àå ¼¼°èÀÇ ¹ÝµµÃ¼ °¡½º ÇÊÅÍ ½ÃÀå : ±â¼úº°

Á¦9Àå ¼¼°èÀÇ ¹ÝµµÃ¼ °¡½º ÇÊÅÍ ½ÃÀå : ¿ëµµº°

Á¦10Àå ¼¼°èÀÇ ¹ÝµµÃ¼ °¡½º ÇÊÅÍ ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

Á¦11Àå ¼¼°èÀÇ ¹ÝµµÃ¼ °¡½º ÇÊÅÍ ½ÃÀå : Áö¿ªº°

Á¦12Àå ÁÖ¿ä µ¿Çâ

Á¦13Àå ±â¾÷ °³¿ä

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

According to Stratistics MRC, the Global Semiconductor Gas Filter Market is accounted for $1.2 billion in 2025 and is expected to reach $2.2 billion by 2032 growing at a CAGR of 8% during the forecast period. A Semiconductor Gas Filter is a high-purity filtration device designed to remove particles, moisture, and molecular contaminants from process gases used in semiconductor manufacturing. These filters are critical in applications such as lithography, etching, and deposition, where even trace impurities can affect wafer yield and device performance. Built with advanced membrane or metal media, they ensure ultra-clean gas delivery under high temperature and pressure conditions. By maintaining gas purity, semiconductor gas filters enhance process reliability, equipment efficiency, and product quality.

Market Dynamics:

Driver:

Rising demand for advanced semiconductor chips

The Semiconductor Gas Filter market is witnessing robust growth propelled by the surging demand for advanced chips powering AI, 5G networks, autonomous vehicles, and high-performance computing. These applications require ultra-pure process gases to maintain defect-free wafer production. As devices continue to shrink in size with nanometer-level precision, contamination control becomes increasingly critical. Gas filters play an indispensable role in eliminating submicron particles, moisture, and molecular impurities. Consequently, the rising need for next-generation semiconductors directly accelerates market adoption of high-performance gas filtration systems.

Restraint:

High installation and replacement costs

Despite strong growth prospects, the market faces restraints due to high installation and replacement costs of advanced gas filtration systems. Semiconductor fabs must invest heavily in specialized filters, housings, and validation processes to comply with stringent purity standards. Additionally, filters require regular replacement to ensure operational reliability, adding to long-term operating expenses. Smaller fabs and contract manufacturers often struggle to bear such costs. This financial burden restricts broader adoption, particularly in price-sensitive regions, thereby moderating the market's overall growth trajectory.

Opportunity:

Growing investment in fabs for EVs, IoT, and quantum computing

Expanding global investments in semiconductor fabs catering to electric vehicles, IoT devices, and quantum computing present significant opportunities for the gas filter market. EVs rely heavily on power electronics and advanced chips, while IoT devices require mass chip production with stringent reliability. Quantum computing, with its sensitivity to environmental impurities, further drives demand for ultra-clean gas environments. Government-backed funding in the U.S., Europe, and Asia accelerates fab construction, boosting filtration needs. This investment wave provides a strong growth avenue for manufacturers of semiconductor gas filters.

Threat:

Volatility in the semiconductor market cycle

The semiconductor industry is highly cyclical, with periods of overcapacity and downturns directly impacting investments in equipment and filtration systems. When demand slows, fabs delay or scale down capital expenditures, reducing procurement of high-performance gas filters. Such volatility creates uncertainty for filter manufacturers, making revenue streams unpredictable. Furthermore, macroeconomic slowdowns or reduced consumer electronics spending can exacerbate these cycles. Unless manufacturers diversify their application base, the cyclical nature of semiconductor demand remains a persistent threat to sustainable market growth.

Covid-19 Impact:

The COVID-19 pandemic had a mixed impact on the semiconductor gas filter market. Initially, fab construction projects and equipment procurement faced delays due to supply chain disruptions and lockdowns. However, demand surged quickly as remote work, cloud computing, and consumer electronics accelerated semiconductor consumption. This rebound highlighted the critical need for reliable contamination control in fabs. Furthermore, the pandemic spurred governments to localize semiconductor production for supply chain security. Overall, COVID-19 acted as both a short-term disruptor and a long-term growth catalyst.

The optical gas filters segment is expected to be the largest during the forecast period

The optical gas filters segment is expected to account for the largest market share during the forecast period, owing to its precision in removing light-scattering contaminants that can disrupt photolithography processes. These filters are particularly critical in advanced semiconductor manufacturing, where even trace optical impurities impact wafer yield. Optical gas filters enhance process stability by ensuring ultra-clean gases for etching and deposition stages. Their reliability and efficiency make them the preferred choice across high-volume fabs, consolidating their position as the leading segment in this market.

The metallic filter element segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the metallic filter element segment is predicted to witness the highest growth rate impelled by its durability, reusability, and ability to withstand extreme temperatures and pressures. Unlike disposable polymeric filters, metallic elements can be regenerated, offering long-term cost benefits to fabs. Their superior mechanical strength makes them suitable for harsh semiconductor environments requiring consistent performance. As fabs adopt more advanced processes, demand for robust and sustainable filtration solutions rises. This drives metallic filter elements to become the fastest-growing segment in the market.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, driven by the region's dominance in global chip production. Countries such as Taiwan, South Korea, China, and Japan are home to major foundries and IDMs with significant fab expansion plans. Government incentives and rising domestic demand for electronics further boost filtration requirements. Moreover, the presence of established semiconductor equipment manufacturers enhances local supply chains. This strong ecosystem ensures Asia Pacific maintains its leadership position in the global market.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR attributed to large-scale government-backed investments in domestic chip manufacturing. Initiatives like the U.S. CHIPS Act are accelerating new fab construction by leading players. The region's focus on advanced technologies such as AI, EVs, and quantum computing further drives adoption of high-purity gas filtration. Additionally, North America's robust R&D ecosystem fosters innovation in filter design and materials which accelerates the market growth.

Key players in the market

Some of the key players in Semiconductor Gas Filter Market include Entegris, Inc., Porvair Filtration Group, Donaldson Company, Inc., Pall Corporation, Ewald Associates, Inc., Mott Corporation, Valin Corporation, Nippon Seisen Co., Ltd., Parker Hannifin Corporation, WITT-Gasetechnik GmbH & Co. KG, Mycropore Corporation, Teesing B.V., Bronkhorst High-Tech B.V., Pinta Filtration, Schenck Process, Bioconservacion, Camfil, and YESIANG Enterprise.

Key Developments:

In August 2025, Entegris, Inc. introduced its next-generation UltraClean Gas Filtration solution designed to support advanced semiconductor manufacturing, offering enhanced particle retention and longer service life for fabs requiring extreme purity.

In July 2025, Porvair Filtration Group launched its new High-Performance Metallic Gas Filters for semiconductor applications, focusing on increased durability and contaminant removal efficiency for critical gas supply lines.

In June 2025, Donaldson Company, Inc. announced expansion of its Cleanroom Filtration Series with upgraded semiconductor gas filter modules, providing improved flow rates and lower pressure drops for high-volume chip production.

In April 2025, Mott Corporation released its SmartFlow gas filtration system featuring embedded sensors for real-time purity monitoring, suitable for high-throughput semiconductor process tools.

Types Covered:

Filter Elements Covered:

Constructions Covered:

Technologies Covered:

Applications Covered:

End Users Covered:

Regions Covered:

What our report offers:

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

Table of Contents

1 Executive Summary

2 Preface

3 Market Trend Analysis

4 Porters Five Force Analysis

5 Global Semiconductor Gas Filter Market, By Type

6 Global Semiconductor Gas Filter Market, By Filter Element

7 Global Semiconductor Gas Filter Market, By Construction

8 Global Semiconductor Gas Filter Market, By Technology

9 Global Semiconductor Gas Filter Market, By Application

10 Global Semiconductor Gas Filter Market, By End User

11 Global Semiconductor Gas Filter Market, By Geography

12 Key Developments

13 Company Profiling

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â