Stratistics MRC¿¡ µû¸£¸é, ¼¼°èÀÇ ÅðºñÈ °¡´É ÀüÀÚ±â±â ÄÉÀÌ½Ì ½ÃÀåÀº 2025³â¿¡ 4¾ï 6,000¸¸ ´Þ·¯·Î ÃßÁ¤µÇ°í, ¿¹Ãø ±â°£ Áß 19.5%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÒ Àü¸ÁÀ̸ç, 2032³â±îÁö´Â 16¾ï 2,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù. ÅðºñÈ °¡´É ÀüÀÚ±â±â ÄÉÀ̽ÌÀº ÀüÀÚ ºÎǰÀ» ¼ö³³Çϵµ·Ï ¼³°èµÈ »ýºÐÇØ¼º ÀÎŬ·ÎÀúÀÔ´Ï´Ù. PLA(Æú¸®À¯»ê)¿Í °°Àº ¹ÙÀÌ¿À Æú¸®¸Ó¿Í ±î´Ù·Î¿î »ê¾÷¿ë ÅðºñÈ ±âÁØÀ» ÃæÁ·ÇÏ´Â º¹ÇÕÀç·á·Î Á¦Á¶µË´Ï´Ù. ÀüÅëÀûÀÎ ÇÃ¶ó½ºÆ½°ú´Â ´Þ¸®, ÀÌ·¯ÇÑ ÇÏ¿ì¡Àº Á¦¾îµÈ ÅðºñÈ È¯°æ¿¡¼ ƯÁ¤ ½Ã°£ ÇÁ·¹ÀÓ ³»¿¡¼ ¹°, ÀÌ»êÈź¼Ò, ¹ÙÀÌ¿À¸Å½º·Î ¿ÏÀüÈ÷ ºÐÇØµÇµµ·Ï ¼³°èµÇ¾úÀ¸¸ç, µ¶¼º ÀÜ·ù¹°À» ³²±âÁö ¾Ê°í ¼øÈ¯Çü Æó±â¹° Á¦·Î °æÁ¦¸¦ Áö¿øÇÏ´Â »ç¿ëµÈ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù.
Áõ°¡ÇÏ´Â Áö¼Ó°¡´É¼ºÀÇ Àǹ«È
Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ±ÔÁ¦ Áõ°¡´Â ÅðºñÈ °¡´É ÀüÀÚ±â±â ÄÉÀÌ½Ì ½ÃÀåÀÇ ÁÖ¿ä Ã˸ÅÁ¦·Î¼ ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. Á¤ºÎ¿Í ±ÔÁ¦±â°üÀÌ º¸´Ù ¾ö°ÝÇÑ È¯°æ ÄÄÇöóÀ̾𽺠±ÔÄ¢À» ½ÃÇàÇϰí, ÀüÀÚ±â±â Á¦Á¶¾÷ü¿¡ »ýºÐÇØ¼º ¼ÒÀ糪 ÅðºñÈ °¡´É ¼ÒÀçÀÇ Ã¤¿ëÀ» Ã˱¸Çϰí ÀÖ½À´Ï´Ù. ÀüÀÚ±â±â Æó±â¹°°ú ź¼Ò Á߸³ ¸ñÇ¥¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ÀǽĿ¡ ÈûÀÔ¾î ¼¼°èÀûÀÎ ºê·£µå´Â ÄÉÀ̽ÌÀÇ Àç·á »ç¿ëÀ» Àç°íÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àǹ«È´Â ±â¾÷ÀÇ ESG Àü·«¿¡µµ ºÎÇÕÇÏ¸ç ´ë±Ô¸ð ä¿ë¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ±× °á°ú Áö¼Ó°¡´É¼º Á¤Ã¥ÀÌ ±¸Á¶ÀûÀÎ ¿øµ¿·ÂÀÌ µÇ¾î Àå±âÀûÀÎ ¼ºÀå ±Ëµµ¸¦ À籸ÃàÇϰí ÀÖ½À´Ï´Ù.
ÇÃ¶ó½ºÆ½¿¡ ºñÇØ ³»±¸¼ºÀÌ ³·À½
ÅðºñÈ °¡´É ÀüÀÚ±â±â ÄÉÀÌ½Ì ½ÃÀåÀÇ ÁÖ¿ä ¾ïÁ¦¿äÀÎÀº ±âÁ¸ ÇÃ¶ó½ºÆ½¿¡ ºñÇØ ³»±¸¼ºÀÌ ³·´Ù´Â °ÍÀÔ´Ï´Ù. ÅðºñÈ °¡´ÉÇÑ Àç·á´Â ±â°èÀû °µµ¿Í ³»¿¼ºÀÌ ³·Àº °æ¿ì°¡ ¸¹À¸¸ç °í¼º´É Àåºñ¿¡ ´ëÇÑ Ã¤¿ëÀÌ Á¦Çѵ˴ϴÙ. ƯÈ÷ °í±Þ ÀüÀÚ±â±â¿¡¼´Â Àå±â°£ »ç¿ë¿¡ ÀÖ¾î¼ ±¸Á¶Àû ¹«°á¼º È®º¸°¡ °úÁ¦°¡ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ì·Á¿¡ ÈûÀÔ¾î ¸¹Àº OEMÀº ÆÄÀÏ·µ ÇÁ·ÎÁ§Æ® ÀÌ»óÀÇ Ã¤¿ëÀ» ¸Á¼³À̰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ³»±¸¼º ¹®Á¦´Â ±³È¯ »çÀÌŬÀ» Áõ°¡½ÃŰ°í ¼ÒºñÀÚÀÇ ½Å·Ú¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. ÀÌ Á¦¾àÀº ÁÖ·ù »ó¾÷ȸ¦ ´Þ¼ºÇϱâ À§ÇØ ¿©ÀüÈ÷ Áß½ÉÀûÀÎ Àå¾Ö¹°ÀÌ µÇ°í ÀÖ½À´Ï´Ù.
¼øÈ¯ °æÁ¦ ¸ðµ¨°úÀÇ ÅëÇÕ
¼øÈ¯ °æÁ¦ ¸ðµ¨°úÀÇ ÅëÇÕÀº ÅðºñȰ¡ °¡´ÉÇÑ ÀüÀÚ±â±â ÄÉÀÌ½Ì ½ÃÀå¿¡ Å« ±âȸ°¡ µË´Ï´Ù. ±â¾÷Àº ÀçȰ¿ë, Àç»ç¿ë, ¿ÏÀü ¼øÈ¯ Àü·«¿¡ ´ëÇÑ Çù·ÂÀ» °ÈÇϰí ÀÖÀ¸¸ç, »ýºÐÇØ¼º ÄÉÀ̽ÌÀº °Å±â¿¡ ¿Ïº®ÇÏ°Ô ÀûÀÀÇÕ´Ï´Ù. ¼¼°èÀûÀÎ Áö¼Ó°¡´É¼ºÀÇ ¸Í¼¼¿¡ ÀÚ±ØÀ» ¹Þ¾Æ ÀüÀÚ ºê·£µå´Â ÅðºñÈ °¡´É ÄÉÀ̽ÌÀ» Ȱ¿ëÇÏ¿© ±×¸° ¹ë·ù üÀÎÀ» °ÈÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ Æó±â¹° °ü¸® »ýŰè¿ÍÀÇ Çù·ÂÀº Á¦Ç° ¼ö¸íÁÖ±â ÃÖÀûȸ¦ ÃËÁøÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Çù·ÂÀº ÀüÀÚ Æó±â¹°À» ÁÙÀÌ´Â °Í»Ó¸¸ ¾Æ´Ï¶ó ȯ°æ ÀǽÄÀÌ ³ôÀº ¼ÒºñÀÚ¿¡ ´ëÇÑ ºê·£µå Æ÷Áö¼Å´×À» Çâ»ó½Ãŵ´Ï´Ù.
¼ÒºñÀÚÀÇ ¼º´É ȸÀÇÁÖÀÇ
ÅðºñÈ °¡´É ÀüÀÚ±â±â ÄÉÀÌ½Ì ½ÃÀå¿¡¼´Â ¼ÒºñÀÚÀÇ ¼º´É ȸÀÇ·ÐÀÌ ÇöÀúÇÑ À§ÇùÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¸¹Àº »ç¿ëÀÚ´Â »ýºÐÇØ¼º ÄÉÀ̽ÌÀÌ °ß°í¼ºÀÌ ³·´Ù´Â °ÍÀ» ¾Ë°í ÀÖÀ¸¸ç Á¦Ç° ¼ö¸í ¹× Àåºñ ¾ÈÀü¿¡ ´ëÇÑ ¿ì·Á¸¦ ºÎÃß±â°í ÀÖ½À´Ï´Ù. ±úÁö±â ½¬¿î ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½ÀÇ °ú°Å °æÇèÀÌ ¹ÚÂ÷¸¦ °¡ÇØ ¼ÒºñÀÚÀÇ ÁÖÀúÇÔÀÌ Ã¤¿ëÀ²À» µÐȽÃŵ´Ï´Ù. ¶ÇÇÑ ºÎÁ¤ÀûÀÎ ÀνÄÀº ¼Ò¼È ¹Ìµð¾î °ËÅ並 ÅëÇØ °ÈµÇ°í ´ëÁß ½ÃÀå¿¡¼ÀÇ ÀúÇ×°¨À» ÁõÆø½Ãų ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÇÁ¸®¹Ì¾ö ±¸¸ÅÀڴ ǰÁú Æ®·¹ÀÌµå ¿ÀÇÁÀÇ ¿ì·Á·Î ¿¡ÄÚ ÄÉÀ̽ÌÀÇ Ã¤Åÿ¡ ÀúÇ×°¨À» ³ªÅ¸³¾ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ È¸ÀÇ·ÐÀº Çõ½ÅÀ¸·Î ´ëóÇÏÁö ¾ÊÀ¸¸é ½ÃÀå ½Å·Ú¸¦ ¼Õ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.
COVID-19ÀÇ À¯ÇàÀº ÅðºñÈ °¡´É ÀüÀÚ±â±â ÄÉÀÌ½Ì ½ÃÀå¿¡ ÀÌÁß ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ÇÑÆí, °ø±Þ¸ÁÀÇ È¥¶õÀº ¹ÙÀÌ¿ÀÆú¸®¸Ó ¼ÒÀçÀÇ °³¹ß°ú Á¶´ÞÀ» ´ÊÃß°í ÇÁ·ÎÁ§Æ®ÀÇ Àü°³¸¦ ´ÊÃß¾ú½À´Ï´Ù. µ¿½Ã¿¡ ¼ÒºñÀÚÀÇ °ü½ÉÀº ÇÕ¸®ÀûÀÎ °¡°ÝÀ¸·Î À̵¿ÇÏ¿© Áö¼Ó °¡´ÉÇÑ ÇÁ¸®¹Ì¾ö ÀåÄ¡¿¡ ´ëÇÑ ¼ö¿ä°¡ °¨¼ÒÇß½À´Ï´Ù. ±×·¯³ª ÆÒµ¥¹ÍÀº ±â¾÷ÀÇ ESG ¹× Áö¼Ó°¡´É¼ºÀÇ ¿ì¼±¼øÀ§¸¦ °¡¼ÓȽÃÄÑ Àå±âÀûÀÎ Àü¸ÁÀ» °ÈÇÏ¿´½À´Ï´Ù. ÆÒµ¥¹Í ÈÄ, ³ì»ö Çõ½Å°ú ź·ÂÀÖ´Â °ø±Þ¸Á¿¡ ´Ù½Ã ÁÖ¸ñÀ» ¹Þ°í ÅðºñÈ °¡´É ÄÉÀÌ½Ì Ã¤ÅÃÀÌ °¡¼Ó µÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
Æú¸®À¯»ê(PLA) ÄÉÀÌ½Ì ºÎ¹®ÀÌ ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë°¡ µÉ Àü¸Á
Æú¸®À¯»ê(PLA) ÄÉÀÌ½Ì ºÎ¹®Àº È®À强, ºñ¿ë È¿°ú ¹× ±â°èÀû ÀûÀÀ¼ºÀ¸·Î ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. PLA´Â °¡Àå ³Î¸® »ç¿ëµÇ´Â ¹ÙÀÌ¿À Æú¸®¸Ó Áß ÇϳªÀ̸ç ÀÌ¹Ì ¿©·¯ °¡Áö Áö¼Ó °¡´ÉÇÑ ÆÐŰ¡ ¼Ö·ç¼Ç¿¡ ÅëÇյǾî ÀÖ½À´Ï´Ù. À¯¸®ÇÑ °¡°ø Ư¼ºÀ¸·Î ÀÎÇØ ÀüÀÚ ±â±â Á¦Á¶¾÷ü´Â »ýºÐÇØ¼º ÄÉÀÌ½Ì ÀÔ±¸·Î PLA¸¦ äÅÃÇϰí ÀÖ½À´Ï´Ù. »ê¾÷¿ë ÅðºñÈ ÀÎÇÁ¶ó¿ÍÀÇ ÀûÇÕ¼ºÀº ½ÃÀå ħÅõ¸¦ ´õ¿í ÃËÁøÇÕ´Ï´Ù.
¿þ¾î·¯ºí ½º¸¶Æ® µð¹ÙÀ̽º ÄÉÀÌ½Ì ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀÌ ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¿þ¾î·¯ºí ½º¸¶Æ® µð¹ÙÀ̽º ÄÉÀÌ½Ì ºÐ¾ß´Â ÇÇÆ®´Ï½º Æ®·¡Ä¿, ½º¸¶Æ® ¿öÄ¡, À̾îÆù, Ä¿³ØÆ¼µå µð¹ÙÀ̽ºÀÇ Ã¤¿ë ±ÞÁõ¿¡ ÈûÀÔ¾î °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÄÄÆÑÆ®ÇÑ Æû ÆÑÅÍ¿Í ½Å¼ÓÇÑ Á¦Ç° »çÀÌŬ¿¡ ÈûÀÔ¾î ºê·£µå´Â ÀÌ ¹üÁÖ¿¡¼ ÅðºñÈ °¡´ÉÇÑ ÄÉÀ̽ÌÀ» Àû±ØÀûÀ¸·Î ½ÃµµÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ È¯°æ ÀǽÄÀÌ ³ôÀº ¹Ð·¹´Ï¾ó ¼¼´ë¿Í Z ¼¼´ë ¼ÒºñÀÚµéÀº ¶óÀÌÇÁ ½ºÅ¸ÀÏ ÀüÀÚ Á¦Ç°ÀÇ Áö¼Ó °¡´ÉÇÑ ´ëüǰ¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀÎÀº °æ·® ¹ÙÀÌ¿À¸ÓƼ¸®¾óÀÇ ¿¬±¸°³¹ßÀÇ Áøº¸¿Í ÇÔ²² ¿þ¾î·¯ºíÀÇ Ã¤¿ëÀ» °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº Áß±¹, Çѱ¹, ´ë¸¸, ÀϺ»ÀÇ ÀüÀÚÁ¦Ç° °ÅÁ¡¿¡ °ßÀεǾî ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ³ì»ö±â¼ú äÅÃÀ» Àå·ÁÇÏ´Â Á¤ºÎ Á¤Ã¥¿¡ ÈûÀÔ¾î ¾Æ½Ã¾ÆÅÂÆò¾ç Á¦Á¶¾÷üµéÀº Áö¼Ó °¡´ÉÇÑ ÄÉÀ̽̿¡ ´ëÇÑ ÅõÀÚ¸¦ ´Ã¸®°í ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀº ¶ÇÇÑ ºñ¿ë È¿À²ÀûÀÎ ¹ÙÀÌ¿ÀÆú¸®¸Ó »ý»ê°ú ¼ÒºñÀÚ ÀÏ·ºÆ®·Î´Ð½º ¼ö¿ä·ÎºÎÅÍ ÇýÅÃÀ» ´©¸®°í ÀÖ½À´Ï´Ù. °ø±Þ¸ÁÀÌ °ß°íÇÏ°Ô ÅëÇյǾî ÅðºñÈ °¡´ÉÇÑ ÄÉÀ̽ÌÀÇ ´ë±Ô¸ð ¹èÄ¡°¡ °¡´ÉÇÕ´Ï´Ù. ±× °á°ú ¾Æ½Ã¾ÆÅÂÆò¾çÀº ½ÃÀå Á¡À¯À²¿¡¼ ¼¼°è ÁöµµÀÚ·Î ºÎ»óÇß½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È À¯·´Àº °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´Â EU ±×¸° °Å·¡ ¹× WEEE Áöħ°ú °°Àº ¾ö°ÝÇÑ Áö¼Ó°¡´É¼º ±ÔÁ¤ÀÌ Àֱ⠶§¹®ÀÔ´Ï´Ù. À¯·´ÀÇ ¼ÒºñÀÚµéÀº ģȯ°æ ÀüÀÚ ±â±â¿¡ ´ëÇÑ ÁöºÒ ÀÇÇâÀÌ ³ô°í, ÅðºñÈ °¡´É ÄÉÀ̽ÌÀÇ Ã¤¿ëÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ±ÔÁ¦ Àμ¾Æ¼ºê¿Í ±â¾÷ÀÇ ESG Çå½Å¿¡ ÈûÀÔ¾î Á¦Á¶¾÷üµéÀº ÀÌ Áö¿ª¿¡¼ ¹ÙÀÌ¿ÀÆú¸®¸Ó ÄÉÀ̽ÌÀ» ºü¸£°Ô ½ÃÇèÀûÀ¸·Î µµÀÔÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ À¯·´ÀÇ °·ÂÇÑ ¼øÈ¯Çü °æÁ¦ ÀÎÇÁ¶ó´Â ½ÃÀå ħÅõ¸¦ °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Compostable Electronics Casings Market is accounted for $0.46 billion in 2025 and is expected to reach $1.62 billion by 2032 growing at a CAGR of 19.5% during the forecast period. Compostable electronics casings are biodegradable enclosures designed to house electronic components. They are manufactured from bio-based polymers, such as PLA (polylactic acid), or compounded materials that meet stringent industrial composting standards. Unlike conventional plastic, these housings are engineered to fully decompose into water, carbon dioxide, and biomass within a specific timeframe in a controlled composting environment, leaving no toxic residue and thus offering an end-of-life solution that supports a circular, zero-waste economy.
Rising sustainability mandates
Rising sustainability mandates are acting as a primary catalyst for the compostable electronics casings market. Governments and regulatory agencies are enforcing stricter environmental compliance rules, compelling electronics manufacturers to adopt biodegradable and compostable materials. Fueled by consumer awareness of e-waste and carbon neutrality goals, global brands are rethinking material usage in casings. These mandates also align with corporate ESG strategies, spurring large-scale adoption. Consequently, sustainability policies are becoming a structural driver, reshaping long-term growth trajectories.
Limited durability compared to plastics
A key restraint for the compostable electronics casings market lies in limited durability compared to conventional plastics. Compostable materials often demonstrate lower mechanical strength and heat resistance, restricting adoption in high-performance devices. Manufacturers face challenges in ensuring structural integrity under prolonged use, particularly in premium electronics. Spurred by these concerns, many OEMs hesitate to scale adoption beyond pilot projects. Moreover, durability issues increase replacement cycles, impacting consumer trust. This constraint remains a central hurdle in achieving mainstream commercialization.
Integration with circular economy models
Integration with circular economy models presents a strong opportunity for the compostable electronics casings market. Companies are increasingly aligning with recycling, reuse, and cradle-to-cradle strategies, where biodegradable casings fit seamlessly. Motivated by global sustainability pledges, electronics brands can leverage compostable casings to strengthen green value chains. Furthermore, collaborations with waste management ecosystems enhance product lifecycle optimization. This alignment not only reduces e-waste but also improves brand positioning with eco-conscious consumers.
Performance skepticism among consumers
Performance skepticism among consumers stands as a notable threat in the compostable electronics casings market. Many users perceive biodegradable casings as less robust, fueling concerns about product longevity and device safety. Spurred by past experiences with fragile bioplastics, consumer hesitation slows adoption rates. Negative perceptions may also intensify through social media reviews, amplifying resistance in mass markets. In addition, premium buyers may resist eco-casing adoption due to quality trade-off fears. Such skepticism can undermine market confidence if not addressed with innovation.
The Covid-19 pandemic had a dual impact on the compostable electronics casings market. On one side, supply chain disruptions slowed the development and sourcing of biopolymer materials, delaying project rollouts. Simultaneously, consumer focus shifted toward affordability, dampening demand for premium sustainable devices. However, the pandemic also accelerated ESG and sustainability priorities among corporations, strengthening long-term prospects. Post-pandemic, renewed focus on green innovation and resilient supply chains is expected to accelerate compostable casings adoption.
The polylactic acid (PLA) casings segment is expected to be the largest during the forecast period
The polylactic acid (PLA) casings segment is expected to account for the largest market share during the forecast period, owing to its scalability, cost-effectiveness, and mechanical adaptability. PLA is among the most widely available biopolymers, already integrated into multiple sustainable packaging solutions. Motivated by favorable processing characteristics, electronics manufacturers are adopting PLA as the entry point for biodegradable casings. Its compatibility with industrial composting infrastructure further enhances market penetration.
The wearables & smart device casings segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the wearables & smart device casings segment is predicted to witness the highest growth rate, impelled by surging adoption of fitness trackers, smartwatches, earbuds, and connected devices. Spurred by the compact form factor and rapid product cycles, brands are actively experimenting with compostable casings in this category. Moreover, eco-conscious millennials and Gen Z consumers drive demand for sustainable alternatives in lifestyle electronics. These factors, combined with R&D advances in lightweight biomaterials, accelerate adoption in wearables.
During the forecast period, the Asia Pacific region is expected to hold the largest market share, driven by its dominant electronics manufacturing base in China, South Korea, Taiwan, and Japan. Fueled by government policies encouraging green technology adoption, APAC manufacturers are increasingly investing in sustainable casings. The region also benefits from cost-efficient biopolymer production and high consumer electronics demand. Strong integration across supply chains enables large-scale deployment of compostable casings. Consequently, APAC emerges as the global leader in market share.
Over the forecast period, the Europe region is anticipated to exhibit the highest CAGR attributed to its stringent sustainability regulations, including the EU Green Deal and WEEE directive. European consumers demonstrate higher willingness to pay for eco-friendly electronics, driving adoption of compostable casings. Spurred by regulatory incentives and corporate ESG commitments, manufacturers are rapidly piloting biopolymer casings in this region. Furthermore, Europe's strong circular economy infrastructure supports faster market penetration.
Key players in the market
Some of the key players in Compostable Electronics Casings Market include Amcor, Ball Corporation, BASF, Berry Global, Biome Bioplastics, BioBag, Braskem, Corbion, EcoEnclose, International Paper, Mondi, Placon, Smurfit Kappa, Tetra Pak and WestRock.
In March 2025, Amcor unveiled a new line of compostable electronics casings made from plant-based polymers, engineered to break down in industrial composting environments and launched in collaboration with key electronics brands.
In March 2025, Berry Global scaled up production capacity for compostable anti-static films and molded trays designed for electronics packaging, enabling safer device transport and reducing supply chain plastic waste for their partners.
In February 2025, Biome Bioplastics advanced its PLA-based bioplastic casings for small electronics, improving durability and scalability for wearables, smart sensors, and medical devices, with expanded distribution to European OEMs.