¼¼°èÀÇ Å¸À̾î À¯·¡ Æú¸®¸Ó ½ÃÀå ¿¹Ãø(-2032³â) : À¯Çü, Á¦¹ý, À¯Åë ä³Î, ¿ëµµ, ÃÖÁ¾ »ç¿ëÀÚ, Áö¿ªº° ºÐ¼®
Tire-Derived Polymer Market Forecasts to 2032 - Global Analysis By Type, Process Method, Distribution Channel, Application, End User and By Geography
»óǰÄÚµå : 1803049
¸®¼­Ä¡»ç : Stratistics Market Research Consulting
¹ßÇàÀÏ : 2025³â 09¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 200+ Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,150 £Ü 5,786,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 5,250 £Ü 7,320,000
PDF (2-5 User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷Àå¿¡¼­ 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,350 £Ü 8,853,000
PDF & Excel (Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷ÀåÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇÕ´Ï´Ù. Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ¹× Excel ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 7,500 £Ü 10,457,000
PDF & Excel (Global Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 10ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ Å¸À̾î À¯·¡ Æú¸®¸Ó ½ÃÀå ±Ô¸ð´Â 2025³â¿¡ 14¾ï 1,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇÏ°í ¿¹Ãø ±â°£ Áß CAGRÀº 8.5%¸¦ ³ªÅ¸³» 2032³â¿¡´Â 24¾ï 9,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ°í ÀÖ½À´Ï´Ù.

°í¹«ÀÇ °­µµ, À¯¿¬¼º ¹× ³»±¸¼ºÀ» À¯ÁöÇϸ鼭 ¿©·¯ »ê¾÷¿¡¼­ ºñ¿ë È¿À²ÀûÀÎ ¼Ö·ç¼ÇÀ¸·Î ÀÛµ¿ÇÕ´Ï´Ù. ÀÚµ¿Â÷, °Ç¼³, ¼ÒºñÀÚ¿ë Á¦Ç°¿¡ ÀϹÝÀûÀ¸·Î Àû¿ëµÇ´Â TDP´Â Æó±â¹° °¨¼Ò, ÀÚ¿ø Àý¾à, ¼øÈ¯ °æÁ¦ÀÇ ÃßÁø µî Áö¼Ó°¡´É¼ºÀ» Áö¿øÇÏ°í Æó±â ŸÀ̾ ´Ù¾çÇÑ ¿ëµµ¿¡ ÀûÇÕÇÑ °í¼º´É Àç·á·Î È¿°úÀûÀ¸·Î º¯È¯ÇÕ´Ï´Ù.

Áõ°¡Çϴ ȯ°æ ¹®Á¦¿Í ±ÔÁ¦

ȯ°æ ¾ÇÈ­¿¡ ´ëÇÑ ÀǽÄÀÌ ³ô¾ÆÁü¿¡ µû¶ó Æó±â¹° °ü¸®¿Í ÀÚ¿ø ȸ¼ö¿¡ °üÇÑ ±ÔÁ¦ °­È­°¡ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. Á¤ºÎ¿Í »ê¾÷ ´Üü´Â »ç¿ëµÈ ŸÀ̾îÀÇ Áö¼Ó °¡´ÉÇÑ Ã³¸® ¹æ¹ýÀ» Àǹ«È­Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±ÔÁ¦ ¾Ð·ÂÀº ŸÀ̾î À¯·¡ Æú¸®¸ÓÀÇ ÃßÃâ°ú °°Àº ŸÀ̾î ÀçȰ¿ë ±â¼úÀÇ Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ ÀÚ·á´Â ó³à ´ëü¹°¿¡ ºñÇØ ȯ°æ ¹ßÀÚ±¹ÀÌ ³·À¸¸ç ¼øÈ¯ °æÁ¦ÀÇ ¸ñÇ¥¿Í ÀÏÄ¡ÇÕ´Ï´Ù. Áö¼Ó°¡´É¼ºÀÌ »ê¾÷ ÀüüÀÇ ÃÖ¿ì¼± °úÁ¦°¡ µÊ¿¡ µû¶ó ģȯ°æ Æú¸®¸Ó ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ±× °á°ú, ŸÀ̾î À¯·¡ÀÇ Æú¸®¸Ó´Â ´Ù¾çÇÑ ¿ëµµ·Î ½ÇÇà °¡´ÉÇÑ ´ëüǰÀ¸·Î¼­ ÁöÁö¸¦ ¸ðÀ¸°í ÀÖ½À´Ï´Ù.

ÀçȰ¿ë Àç·áÀÇ Ç°ÁúÀÌ ÀÏÁ¤ÇÏÁö ¾ÊÀ½

Àç»ý Æú¸®¸Ó´Â ¿ø·á Á¶¼ºÀ̳ª °¡°ø ¹æ¹ýÀÇ Â÷ÀÌ¿¡ ÀÇÇØ ±â°èÀû Ư¼ºÀÌ ÀÏÁ¤ÇÏÁö ¾ÊÀº °æ¿ì°¡ ¸¹½À´Ï´Ù. ÀÌ Àϰü¼ºÀÌ ¾ø´Â °ÍÀº ÇÏÀ̽ºÆåÇÑ ¿ëµµ·ÎÀÇ ¼º´É¿¡ ¹æÇذ¡ µÇ¾î, ±¤¹üÀ§ÇÑ Ã¤¿ëÀ» Á¦ÇÑÇϰí ÀÖ½À´Ï´Ù. Á¦Á¶¾÷ü´Â Á¦Ç°ÀÇ Ç¥ÁØÈ­°¡ ¾î·Á¿ì¸ç Á¦Ç°ÀÇ ½Å·Ú¼º°ú °í°´ÀÇ ½Å·Ú¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. °Ô´Ù°¡ Áö¿ª °£¿¡ ÅëÀÏµÈ Ç°Áú °ü¸®ÀÇ Æ²ÀÌ ¾ø´Â °ÍÀº ¹®Á¦¸¦ ¾ÇÈ­½Ã۰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¦¾àÀº ÁÖ·ù »ê¾÷¿¡¼­ ŸÀ̾î À¯·¡ Æú¸®¸ÓÀÇ ÀÌ¿ëÀ» È®´ëÇϴµ¥ Å« À庮ÀÌ µÇ°í ÀÖ½À´Ï´Ù.

ȸ¼ö Ä«º»ºí·¢(rCB) ¼ö¿ä Áõ°¡

Æó±â ŸÀ̾¼­ ¾òÀº ȸ¼ö Ä«º»ºí·¢(rCB)Àº ´Ù¾çÇÑ »ê¾÷¿¡¼­ ä¿ëÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. °í¹«, ÇÃ¶ó½ºÆ½ ¹× ÄÚÆÃÁ¦¿¡ ´ëÇÑ »ç¿ëÀº ºñ¿ë È¿°ú¿Í Áö¼Ó°¡´É¼ºÀÇ ÀÌÁ¡À¸·ÎºÎÅÍ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ±â¾÷ÀÌ Ã³³à Ä«º»ºí·¢¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀÌ·Á°í ÇÏ´Â µ¿¾È, rCB´Â µ¿µîÇÑ ¼º´ÉÀ» °¡Áø ¸Å·ÂÀûÀÎ ´ë¾ÈÀ» Á¦°øÇÕ´Ï´Ù. º¸´Ù ȯ°æ ģȭÀûÀÎ °ø±Þ¸ÁÀ» Ãß±¸ÇÏ´Â ¿òÁ÷ÀÓÀº Á¦Á¶¾÷ü°¡ rCB¸¦ ¹èÇÕ¿¡ ÅëÇÕÇϵµ·Ï Ã˱¸Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¿­ºÐÇØ¿Í Á¤Á¦ ±â¼úÀÇ ¹ßÀüÀ¸·Î rCBÀÇ Ç°Áú°ú Àϰü¼ºÀÌ Çâ»óµÇ¾ú½À´Ï´Ù. ÀÌ µ¿ÇâÀº °í°¡Ä¡ ÀÀ¿ë ºÐ¾ß¿¡¼­ ŸÀ̾î À¯·¡ Æú¸®¸ÓÀÇ »õ·Î¿î ±æÀ» ¿­°í ÀÖ½À´Ï´Ù.

´ëü Àç·á ¹× ¿¬·á¿ÍÀÇ °æÀï

»ýºÐÇØ¼º °íºÐÀÚ¿Í Ã·´Ü º¹ÇÕÀç·áÀÇ Çõ½ÅÀº ¿ì¼öÇÑ Æ¯¼ºÀ» Áö´Ñ ¸Å·ÂÀûÀÎ ´ëü Àç·á¸¦ Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ, ÆóŸÀ̾îÀÇ ¿¡³ÊÁö ȸ¼ö·ÎÀÇ ÀüȯÀÌ ÁøÇàµÇ°í ÀÖÀ¸¸ç, Æú¸®¸Ó ÃßÃâÀ» À§ÇÑ ¿ø·á À̿밡´É·®ÀÌ °¨¼ÒÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °æÀï ¿ëµµ´Â ½ÃÀå ¼ºÀå°ú ŸÀ̾î À¯·¡ ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ¸¦ ¾àÈ­½Ãų ¼ö ÀÖ½À´Ï´Ù. °Ô´Ù°¡ Àúź¼Ò Àç·á¿¡ ´ëÇÑ ÁöÇâÀû º¯È­´Â ŸÀ̾î À¯·¡ÀÇ ¼±Åú¸´Ù ´Ù¸¥ ¼Ö·ç¼ÇÀ» ¼±È£ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ °æÀï ±¸µµÀº »ç¾÷ ±Ô¸ðÀÇ È®´ë¸¦ ¸ñÇ¥·Î ÇÏ´Â ½ÃÀå ±â¾÷¿¡°Ô Àü·«Àû °úÁ¦°¡ µË´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

COVID-19ÀÇ ´ëÀ¯ÇàÀº ¼¼°è °ø±Þ¸ÁÀ» È¥¶õ½ÃÄÑ Å¸À̾îÀÇ È¸¼ö¿Í ÀçȰ¿ë »ç¾÷¿¡ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ¿îÀü Á¤Áö¿Í »ê¾÷ Ȱµ¿ ÀúÇϷΠŸÀÌ¾î Æó±â¹° ¹ß»ý·®ÀÌ ÀϽÃÀûÀ¸·Î °¨¼ÒÇß½À´Ï´Ù. ±×·¯³ª ÀÌ À§±â´Â ¶ÇÇÑ Åº·ÂÀûÀ̰í Áö¼Ó °¡´ÉÇÑ Àç·á Á¶´ÞÀÇ Á߿伺À» ºÎ°¢½ÃÄ×½À´Ï´Ù. »ê¾÷ÀÌ È¸º¹µÊ¿¡ µû¶ó ŸÀ̾î À¯·¡ Æú¸®¸Ó¸¦ Æ÷ÇÔÇÑ ¼øÈ¯ °æÁ¦ ¸ðµ¨¿¡ ´ëÇÑ °ü½ÉÀÌ ´Ù½Ã Áõ°¡Çϰí ÀÖ½À´Ï´Ù. À¯Çà ÈÄ Àü·«Àº ÀÚ¿ø È¿À²¼º°ú ȯ°æ ÄÄÇöóÀ̾𽺿¡ ÁßÁ¡À» µÓ´Ï´Ù. ÀÌ·¯ÇÑ º¯È­´Â ´Ü±âÀûÀÎ ÈÄÅð°¡ ÀÖ´õ¶óµµ ŸÀ̾î À¯·¡ Æú¸®¸Ó ½ÃÀåÀÇ Àå±âÀûÀÎ ¼ºÀåÀ» Áö¿øÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È Ŭ·¥ °í¹« ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á

ȯ°æ ģȭÀûÀÎ ÀÀ¿ë ºÐ¾ß, ƯÈ÷ ¼ÒÀ½À» ÁÙÀÌ´Â ³ë¸é°ú ³»±¸¼ºÀÌ ³ôÀº ÀÎÇÁ¶ó¿¡ Àû¿ëÇÔÀ¸·Î½á Ŭ·¥ °í¹« ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±ØÀú¿Â ºÐ¼â ¹× Å»°¡È² ±â¼ú Çõ½ÅÀ¸·Î »ý»ê È¿À²°ú Àç·á ¼º´ÉÀÌ Çâ»óµÇ¾ú½À´Ï´Ù. ¿îµ¿Àå, Àΰø Àܵð, ¼ºÇüǰÀÇ »õ·Î¿î ¿ëµµ´Â ÁøÈ­ÇÏ´Â ½ÃÀå µ¿ÇâÀ» ¹Ý¿µÇÕ´Ï´Ù. ¹ÙÀδõ ±â¼ú°ú Áö¼Ó °¡´ÉÇÑ ÀçȰ¿ë ±â¹ýÀÇ ÃÖ±Ù ¹ßÀüÀº º¸´Ù ¾ö°ÝÇÑ È¯°æ Á¤Ã¥°ú ¼¼°è ÀÎÇÁ¶óÀÇ ¼ºÀå°ú ÇÔ²² °¢ »ê¾÷¿¡¼­ÀÇ Ã¤ÅÃÀ» ´õ¿í °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È Á¢ÂøÁ¦ ¹× ½Ç¶õÆ® ºÎ¹®ÀÇ CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È Á¢ÂøÁ¦ ¹× ½Ç¶õÆ® ºÎ¹®Àº ÀÚµ¿Â÷ ¹× »ê¾÷ ºÐ¾ß¿¡¼­ °¡º±°í ³»±¸¼ºÀÌ ¶Ù¾î³­ Á¢Âø ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁö¸é¼­ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¹ÝÀÀ¼º Á¢ÂøÁ¦ ¹× UV °æÈ­Çü Á¢ÂøÁ¦¿Í °°Àº ÷´Ü ±â¼úÀº °¡È¤ÇÑ Á¶°Ç¿¡¼­ ¼º´ÉÀ» Çâ»ó½Ãŵ´Ï´Ù. »õ·Î¿î µ¿ÇâÀ¸·Î´Â Àü±âÀÚµ¿Â÷ ºÎǰ°ú Áö¼Ó °¡´ÉÇÑ Æ÷Àå¿¡ ÅëÇÕÀÌ Æ÷ÇԵ˴ϴÙ. ÁÖ¿ä ¹ßÀü¿¡´Â ¿¡Æø½Ã¿Í Æú¸®¿ì·¹ÅºÀÇ ¹èÇÕ¿¡ À־ÀÇ ±â¼ú Çõ½Å, ¿­¾ÈÁ¤¼ºÀÇ Çâ»ó, ³·Àº VOC Àç·á¸¦ ÁöÁöÇÏ´Â ±ÔÁ¦ ½ÃÇÁÆ® µîÀÌ ÀÖ¾î, ÀÌµé ¸ðµÎ°¡ °í¼º´É Á¢Âø ½Ã½ºÅÛ¿¡¼­ÀÇ Å¸À̾î À¯·¡ Æú¸®¸ÓÀÇ »ç¿ë È®´ë¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª :

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇÁö¸¸, ÀÌ´Â µµ½Ã °³¹ß ȰȲ, ÀÚµ¿Â÷ »ý»ê·® Áõ°¡, ƯÈ÷ Àεµ¿Í Áß±¹ÀÇ ´ë±Ô¸ð ÀÎÇÁ¶ó ÇÁ·ÎÁ§Æ® ¶§¹®ÀÔ´Ï´Ù. ±ØÀú¿Â ºÐ¼â ¹× Å»°¡È²°ú °°Àº ÃÖ÷´Ü ±â¼úÀº Àç»ý °í¹«ÀÇ È¿À²°ú ǰÁúÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ÀÌ Áö¿ª¿¡¼­´Â Áö¼Ó °¡´ÉÇÑ ´ëü °í¹« ¹× Àü±âÀÚµ¿Â÷ ¿ëÀ¸·Î ¼³°èµÈ Æú¸®¸Ó·ÎÀÇ À̵¿ÀÌ °üÂûµË´Ï´Ù. ÃÖ±ÙÀÇ ÁøÀüÀ¸·Î¼­´Â ȯ°æ¹ýÀÇ ¾ö°ÝÈ­, Á¤ºÎ°¡ Áö¿øÇÏ´Â µµ·Î¿¡ÀÇ ´ëó, ¿¡¾î¸®½º ŸÀ̾ ÀúÀúÇ× Å¸À̾îÀÇ ±â¼ú Çõ½Å µîÀÌ ÀÖ¾î ½ÃÀå ¼ö¿ä¸¦ ¹Ð¾î ¿Ã¸®°í ÀÖ½À´Ï´Ù.

°¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³»´Â Áö¿ª :

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À̴ ȯ°æ ÀÇ½Ä Áõ°¡, Áö¼Ó°¡´É¼º ¸ñÇ¥, °Ç¼³ ¹× ÀÚµ¿Â÷ µîÀÇ ºÐ¾ß¿¡¼­ ÀçȰ¿ë Àç·á ¼ö¿ä Áõ°¡·Î ÀÎÇÑ °ÍÀÔ´Ï´Ù. ¿­ºÐÇØ, Àú¿Â±â¼ú, Å»¹ßÄ¿³ªÀÌÁî µîÀÇ ±â¼ú Çõ½Å¿¡ ÀÇÇØ ȸ¼ö Æú¸®¸ÓÀÇ È¿À²°ú ǰÁúÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ³ì»ö ÀÎÇÁ¶ó¿Í Àü±âÀÚµ¿Â÷ ¿ëµµÀ¸·ÎÀÇ Àüȯµµ º¼ ¼ö ÀÖ½À´Ï´Ù. ¸®»çÀÌŬ Ȱµ¿ÀÇ °­È­, Àú¹èÃâ Á¢ÂøÁ¦ ±â¼úÀÇ °³¹ß, Åä¸ñ¡¤°ø¾÷ ÇÁ·ÎÁ§Æ®¿¡ À־ÀÇ Å¸À̾î À¯·¡ Àç·áÀÇ ÀÌ¿ë È®´ë µî, ÁÖ¸ñÇÒ ¸¸ÇÑ ÁøÀüÀ» º¼ ¼ö ÀÖ½À´Ï´Ù.

¹«·á ÁÖ¹®À» ¹Þ¾Æ¼­ ¸¸µå´Â ¼­ºñ½º :

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

Á¦4Àå Porter's Five Forces ºÐ¼®

Á¦5Àå ¼¼°èÀÇ Å¸À̾î À¯·¡ Æú¸®¸Ó ½ÃÀå : À¯Çüº°

Á¦6Àå ¼¼°èÀÇ Å¸À̾î À¯·¡ Æú¸®¸Ó ½ÃÀå : Á¦¹ýº°

Á¦7Àå ¼¼°èÀÇ Å¸À̾î À¯·¡ Æú¸®¸Ó ½ÃÀå : À¯Åë ä³Îº°

Á¦8Àå ¼¼°èÀÇ Å¸À̾î À¯·¡ Æú¸®¸Ó ½ÃÀå : ¿ëµµº°

Á¦9Àå ¼¼°èÀÇ Å¸À̾î À¯·¡ Æú¸®¸Ó ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

Á¦10Àå ¼¼°èÀÇ Å¸À̾î À¯·¡ Æú¸®¸Ó ½ÃÀå : Áö¿ªº°

Á¦11Àå ÁÖ¿ä ¹ßÀü

Á¦12Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

KTH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

According to Stratistics MRC, the Global Tire-Derived Polymer Market is accounted for $1.41 billion in 2025 and is expected to reach $2.49 billion by 2032 growing at a CAGR of 8.5% during the forecast period.Tire-Derived Polymer (TDP) is an eco-friendly material created by recycling used tires into versatile polymer compounds. It maintains the strength, flexibility, and durability of rubber while serving as a cost-efficient solution for multiple industries. Commonly applied in automotive, construction, and consumer products, TDP supports sustainability by reducing waste, conserving resources, and promoting a circular economy, effectively converting discarded tires into valuable, high-performance materials for diverse applications.

Market Dynamics:

Driver:

Growing environmental concerns and regulations

Heightened awareness of environmental degradation is prompting stricter regulations around waste management and resource recovery. Governments and industry bodies are increasingly mandating sustainable disposal practices for end-of-life tires. This regulatory pressure is driving innovation in tire recycling technologies, including the extraction of tire-derived polymers. These materials offer a lower environmental footprint compared to virgin alternatives, aligning with circular economy goals. As sustainability becomes a core priority across industries, demand for eco-friendly polymer solutions is rising. Consequently, tire-derived polymers are gaining traction as a viable substitute in various applications.

Restraint:

Inconsistent quality of recycled materials

Recycled polymers often exhibit inconsistent mechanical properties due to differences in feedstock composition and processing methods. This inconsistency can hinder their performance in high-spec applications, limiting broader adoption. Manufacturers face difficulties in standardizing outputs, which affects product reliability and customer confidence. Additionally, the lack of uniform quality control frameworks across regions exacerbates the issue. These limitations pose a significant barrier to scaling tire-derived polymer usage in mainstream industries.

Opportunity:

Increasing demand for recovered carbon black (rCB)

Recovered carbon black (rCB), sourced from discarded tires, is experiencing rising adoption across a range of industries.Its use in rubber, plastics, and coatings is expanding due to its cost-effectiveness and sustainability benefits. As companies seek to reduce reliance on virgin carbon black, rCB offers a compelling alternative with comparable performance. The push for greener supply chains is encouraging manufacturers to integrate rCB into their formulations. Moreover, advancements in pyrolysis and refining technologies are improving rCB quality and consistency. This trend is opening new avenues for tire-derived polymers in high-value applications.

Threat:

Competition from alternative materials and fuels

Innovations in biodegradable polymers and advanced composites are offering attractive alternatives with superior properties. Additionally, waste tires are increasingly being diverted toward energy recovery, reducing feedstock availability for polymer extraction. These competing uses can dilute market growth and investment in tire-derived technologies. Furthermore, shifting industry preferences toward low-carbon materials may favor other solutions over tire-derived options. This competitive landscape poses a strategic challenge for market players aiming to scale operations.

Covid-19 Impact

The COVID-19 pandemic disrupted global supply chains, affecting tire collection and recycling operations. Lockdowns and reduced industrial activity led to a temporary decline in tire waste generation. However, the crisis also underscored the importance of resilient and sustainable material sourcing. As industries recover, there is renewed interest in circular economy models, including tire-derived polymers. Post-pandemic strategies are emphasizing resource efficiency and environmental compliance. These shifts are expected to support long-term growth in the tire-derived polymer market, despite short-term setbacks.

The crumb rubber segment is expected to be the largest during the forecast period

The crumb rubbersegment is expected to account for the largest market share during the forecast period, due to its eco-conscious applications, particularly in noise-reducing road surfaces and durable infrastructure. Innovations in cryogenic grinding and devulcanization are enhancing production efficiency and material performance. New uses in playgrounds, synthetic turf, and moulded items reflect evolving market trends. Recent advancements in binder technologies and sustainable recycling practices, coupled with stricter environmental policies and global infrastructure growth, are further accelerating its adoption across industries.

The adhesives & sealantssegment is expected to have the highest CAGR during the forecast period

Over the forecast period, the adhesives & sealantssegment is predicted to witness the highest growth rate, propelled by rising demand for lightweight, durable bonding solutions in automotive and industrial applications. Advanced technologies like reactive and UV-cured adhesives enhance performance under extreme conditions. Emerging trends include their integration into electric vehicle components and sustainable packaging. Key developments involve innovations in epoxy and polyurethane formulations, improved thermal stability, and regulatory shifts favouring low-VOC materials, all contributing to expanded use of tire-derived polymers in high-performance adhesive systems.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market sharedue to booming urban development, rising vehicle production, and large-scale infrastructure projects, particularly in India and China. Cutting-edge techniques like cryogenic grinding and devulcanization are improving the efficiency and quality of recycled rubber. The region is seeing a shift toward sustainable rubber alternatives and polymers designed for electric vehicles. Recent progress includes stricter environmental laws, government-backed road initiatives, and innovations in airless and low-resistance tires that are boosting market demand.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, due to increasing environmental awareness, sustainability goals, and demand for recycled materials in sectors like construction and automotive. Innovations in pyrolysis, cryogenic techniques, and devulcanization are improving the efficiency and quality of recovered polymers. The market is also seeing a shift toward green infrastructure and electric vehicle applications. Notable progress includes enhanced recycling initiatives, development of low-emission adhesive technologies, and broader use of tire-derived materials in civil engineering and industrial projects.

Key players in the market

Some of the key players profiled in the Tire-Derived Polymer Market includeBridgestone Corporation, GreenMan Technologies, Michelin Group, Lehigh Technologies, Continental AG, Genan, Goodyear Tire & Rubber Company, Black Bear Carbon, Kuraray Co., Ltd., Ecolomondo Corporation, ExxonMobil Corporation, Liberty Tire Recycling, JSR Corporation, Umicore, and PetroChina Company Limited.

Key Developments:

In July2025,Bridgestone Corporation and ispace, inc. announced that the companies have signed a basic agreement towards practical application of tires for small and medium-sized lunar rovers.Based on this agreement, ispace and Bridgestone will jointly aim to enhance the performance of small and medium-sized lunar rovers.

In November 2024, ExxonMobil plans to invest more than $200 million to expand its advanced recycling operations at its sites in Baytown and Beaumont, Texas. The new operations are expected to start up in 2026 and can help increase advanced recycling rates and divert plastic from landfills. The company plans to build additional units to reach a global recycling capacity of 1 billion pounds per year.

Types Covered:

Process Methods Covered:

Distribution Channels Covered:

Applications Covered:

End Users Covered:

Regions Covered:

What our report offers:

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

Table of Contents

1 Executive Summary

2 Preface

3 Market Trend Analysis

4 Porters Five Force Analysis

5 Global Tire-Derived Polymer Market, By Type

6 Global Tire-Derived Polymer Market, By Process Method

7 Global Tire-Derived Polymer Market, By Distribution Channel

8 Global Tire-Derived Polymer Market, By Application

9 Global Tire-Derived Polymer Market, By End User

10 Global Tire-Derived Polymer Market, By Geography

11 Key Developments

12 Company Profiling

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â