Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ 4D ÇÁ¸°Æ® º¹ÇÕÀç·á ½ÃÀåÀº 2025³â¿¡ 1¾ï 7,140¸¸ ´Þ·¯¿¡ ´ÞÇϸç, ¿¹Ãø ±â°£ Áß CAGR 32.3%·Î ¼ºÀåÇϸç, 2032³â±îÁö´Â 12¾ï 1,640¸¸ ´Þ·¯¿¡ ´ÞÇÒ Àü¸ÁÀÔ´Ï´Ù.
4D ÇÁ¸°ÆÃ º¹ÇÕÀç·á´Â ¿, ½À±â, ºû µîÀÇ ¿ÜºÎ Àڱؿ¡ ³ëÃâµÇ¸é ½Ã°£ÀÌ Áö³²¿¡ µû¶ó ÇüÅÂ, ±â´É, Ư¼ºÀ» º¯È½Ãų ¼ö ÀÖ´Â ÀûÃþ Á¦Á¶·Î ¸¸µé¾îÁø ÷´Ü ¼ÒÀçÀÔ´Ï´Ù. ÀÌ·¯ÇÑ º¹ÇÕÀç·á´Â ½º¸¶Æ®Çϰí ÇÁ·Î±×·¡¹Ö °¡´ÉÇÑ Àç·á¸¦ ¼¶À¯ °È Àç·á¿Í ÅëÇÕÇÏ¿© ÀûÀÀÇü ±¸Á¶Àû ÀÀ´äÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ º¹ÇÕÀç·á´Â Ç×°ø¿ìÁÖ, ÀÚµ¿Â÷, »ý¹° ÀÇÇÐ ºÐ¾ß¿¡¼ °¡º±°í ³»±¸¼ºÀÌ ¶Ù¾î³ª¸ç Àڱ⠹ÝÀÀÇü ¼Ö·ç¼ÇÀ» Á¦°øÇϴ ȹ±âÀûÀÎ ¿ëµµÀÔ´Ï´Ù.
PMCÀÇ Á¶»ç¿¡ µû¸£¸é 25VÀÇ Àü¾ÐÀ» °¡Çϸé 47ÃÊ À̳»¿¡ 80¡É±îÁö °¡¿ÇÒ ¼ö ÀÖÀ¸¸ç, 16ÃÊ À̳»¿¡ Çü»óÀ» ȸº¹ÇÒ ¼ö ÀÖ´Ù°í ÇÕ´Ï´Ù.
°æ·®-°í¼º´É ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
Ç×°ø¿ìÁÖ, ÀÚµ¿Â÷, ÀÇ·á »ê¾÷¿¡¼ °æ·®È ¹× °í¼º´É ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, ÀÌ´Â ½ÃÀåÀÇ ÁÖ¿ä ÃËÁø¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ÀÌ ºÐ¾ß¿¡¼´Â È¿À²¼º°ú ±â´É¼ºÀ» ³ôÀ̱â À§ÇØ ¿ì¼öÇÑ °µµ ´ë Áß·®ºñ¿Í ¸ÂÃãÇü Ư¼ºÀ» Á¦°øÇÏ´Â ºÎǰÀ» ²÷ÀÓ¾øÀÌ Ãß±¸Çϰí ÀÖ½À´Ï´Ù. 3D ÇÁ¸°ÆÃ º¹ÇÕÀç·á´Â ȯ°æÀû Àڱؿ¡ ¹ÝÀÀÇÏ´Â ½º¸¶Æ®Çϰí ÀûÀÀ·Â ÀÖ´Â ±¸Á¶¸¦ Á¦°øÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ¿ä±¸¿¡ ºÎÀÀÇϰí, °æ·®È ¹× Àü·Ê ¾ø´Â µðÀÚÀÎ °¡´É¼ºÀ» ½ÇÇöÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Ã·´Ü ¼ÒÀç ¼Ö·ç¼ÇÀÇ Ãß±¸´Â º¹ÇÕÀç·á ½ÃÀå¿¡¼ 3D ÇÁ¸°ÆÃ ±â¼úÀÇ Ã¤Åðú ¹ßÀüÀ» Å©°Ô ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
¿øÀÚÀç ¹× Àμ⠽ýºÅÛÀÇ ³ôÀº ºñ¿ë
Ư¼öÇÑ ¿øÀç·á¿Í ÷´Ü Àμ⠽ýºÅÛ¿¡ µû¸¥ ³ôÀº ºñ¿ëÀÌ ½ÃÀå º¸±ÞÀ» °¡·Î¸·°í ÀÖ½À´Ï´Ù. 4D ÇÁ¸°ÆÃ¿¡ ÇÊ¿äÇÑ ½º¸¶Æ® Æú¸®¸Ó ¹× º¹ÇÕÀç·á ¿ø·á´Â ´ëºÎºÐ µ¶ÀÚÀûÀÎ ¼ÒÀçÀÎ °æ¿ì°¡ ¸¹°í, ÇÕ¼ºÀÌ º¹ÀâÇϹǷΠÀç·áºñ »ó½ÂÀ¸·Î À̾îÁö°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÌ·¯ÇÑ Ã·´Ü º¹ÇÕÀç·á¸¦ °¡°øÇÒ ¼ö ÀÖ´Â ÀûÃþÁ¦Á¶ ½Ã½ºÅÛÀº ¸·´ëÇÑ ¼³ºñÅõÀÚ°¡ ÇÊ¿äÇϹǷΠÁß¼Ò±â¾÷ÀÇ ÁøÀÔÀ庮ÀÌ ³ô°í, ½ÃÀå ¼ºÀåÀº ÀڱݷÂÀÌ ÀÖ´Â ±â¾÷¿¡°Ô¸¸ Á¦ÇѵǾî ÀÖ½À´Ï´Ù.
R&D ÅõÀÚ Áõ°¡
¹Î°ü ¾çÃøÀÇ ¿¬±¸°³¹ß¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡´Â ½ÃÀå È®´ëÀÇ Å« ±âȸ°¡ µÉ °ÍÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ÀÚ±ÝÀº Àç·áÀÇ ÇѰè¿Í Àμâ Á¤È®µµ µî ÇöÀçÀÇ ±â¼úÀû °úÁ¦¸¦ ±Øº¹ÇÏ°í ±â¼ú ¼º¼÷À» °¡¼ÓÈÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ¶ÇÇÑ ¿¬±¸°³¹ß Ȱµ¿ÀÇ È°¼ºÈ´Â ÇÁ·Î±×·¡¸Óºí ¼ÒÀç ½Ã½ºÅÛ ¹× ´ÙÁß ¼ÒÀç Àμ⠰øÁ¤ÀÇ ±â¼ú Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº »õ·Î¿î ¿ëµµ¸¦ °³¹ßÇϰí Àüü »ý»ê ºñ¿ëÀ» Àý°¨ÇÏ¿© »õ·Î¿î ¼öÀÔ¿øÀ» âÃâÇϰí, 4D ÇÁ¸°ÆÃ º¹ÇÕÀç·áÀÇ »ó¾÷Àû Ÿ´ç¼ºÀ» È®´ëÇÒ ¼ö ÀÖÀ» °ÍÀ¸·Î ±â´ëµË´Ï´Ù.
±â¼úÀû º¹À⼺°ú Á¦ÇÑµÈ È®À强
°íÀ¯ÇÑ ±â¼úÀû º¹À⼺°ú ÇöÀç »ý»ê °øÁ¤ÀÇ Á¦ÇÑµÈ È®À强À¸·Î ÀÎÇØ ½ÃÀå ¼ºÀåÀ» ¾ïÁ¦Çϰí ÀÖ½À´Ï´Ù. ¿¹Ãø °¡´ÉÇÑ Çü»ó º¯È °Åµ¿À» ´Þ¼ºÇϱâ À§ÇØ ½º¸¶Æ® Àç·á¿Í Á¤¹ÐÇÑ Àμ⠸Ű³ º¯¼ö¸¦ ÅëÇÕÇÏ´Â °ÍÀº ¸Å¿ì º¹ÀâÇÑ ÀÛ¾÷ÀÔ´Ï´Ù. ¶ÇÇÑ ½ÇÇè½Ç¿¡¼ÀÇ ¼º°øÀ» ´ë·® »ý»êÀ¸·Î ¿¬°áÇϰí ÀçÇö¼º ÀÖ´Â Á¦Á¶¸¦ ÇÏ´Â °ÍÀº ¿©ÀüÈ÷ ¾î·Á¿î °úÁ¦ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ È¿À²ÀûÀÎ ½ºÄÉÀϾ÷ÀÌ ºÒ°¡´ÉÇÏ´Ù´Â Á¡Àº ´ë±Ô¸ð »ê¾÷À¸·ÎÀÇ Ã¤ÅÃÀ» ¹æÇØÇÏ°í ½ÃÀå ħÅõ¸¦ Áö¿¬½Ãų ¼ö ÀÖ½À´Ï´Ù.
COVID-19´Â Ãʱ⿡´Â ¿øÀÚÀç °ø±Þ¸Á¿¡ È¥¶õÀ» ÀÏÀ¸ÄÑ Á¦Á¶ ¾÷¹«¿¡ Â÷ÁúÀ» ºú¾î ÇÁ·ÎÁ§Æ®°¡ Áö¿¬µÇ°í 3D ÇÁ¸°ÆÃ ºÐ¾ß¿¡ ´ëÇÑ ÅõÀÚ°¡ ÀϽÃÀûÀ¸·Î °¨¼ÒÇß½À´Ï´Ù. ±×·¯³ª ÀÌ À§±â´Â Ã˸ÅÁ¦ ¿ªÇÒµµ ÇßÀ¸¸ç, ƯÈ÷ ÇコÄÉ¾î ºÐ¾ß¿¡¼´Â ½º¸¶Æ® ÀΰøÈ£Èí±â ¹× ¹ÝÀÀ¼ºÀÌ ³ôÀº °³Àκ¸È£±¸(PPE)¿Í °°Àº ¿ëµµ¿¡¼ Çõ½ÅÀûÀ̰í ÀûÀÀ·Â ÀÖ´Â ¼ÒÀçÀÇ Çʿ伺À» ºÎ°¢½ÃÄ×½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀû ȸº¹·Â¿¡ ´ëÇÑ ÀçÁ¶¸íÀº ÀÌÈÄ ¿¬±¸°³¹ß Ȱµ¿À» ÀÚ±ØÇÏ¿© ÃÊ±â Æó¼â ´Ü°è ÀÌÈÄ ²ÙÁØÇÑ ½ÃÀå ȸº¹À» µµ¿Ô½À´Ï´Ù.
¿¹Ãø ±â°£ Áß ¿¬¼Ó ¼¶À¯ º¹ÇÕÀç·á ºÐ¾ß°¡ °¡Àå Ŭ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¿¹Ãø ±â°£ Áß ¿¬¼Ó ¼¶À¯ º¹ÇÕÀç·á ºÐ¾ß°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´Â Ç×°ø¿ìÁÖ ¹× ÀÚµ¿Â÷ »ê¾÷¿¡¼ ±î´Ù·Î¿î ¿ëµµ¿¡ ÇʼöÀûÀÎ ¶Ù¾î³ °¼º, °µµ, ³»ÇÏÁß µî ¿ì¼öÇÑ ±â°èÀû Ư¼ºÀ¸·Î ÀÎÇÑ °ÍÀÔ´Ï´Ù. ÀÌ·¯ÇÑ º¹ÇÕÀç·á´Â Á¤¹ÐÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â Çü»ó º¯ÇüÀÌ ÇÊ¿äÇÑ ºÎǰ¿¡ ÇÊ¿äÇÑ ±¸Á¶Àû ¹«°á¼ºÀ» Á¦°øÇÕ´Ï´Ù. ±âÁ¸ º¹ÇÕÀç ¿ëµµ¿¡¼ ÀÔÁõµÈ ¼º´ÉÀº ÷´Ü 3D ÇÁ¸°ÆÃ¿¡ ÀÚ¿¬½º·´°Ô Àû¿ëµÉ ¼ö ÀÖ´Â ±æÀ» ¿¾îÁÖ¸ç, ±â¼úÀÌ ¹ßÀüÇÔ¿¡ µû¶ó ÃÖ°íÀÇ Á¡À¯À²À» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ Áß ÇÏÀ̵å·Î°Ö ºÐ¾ß´Â °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¿¹Ãø ±â°£ Áß ÇÏÀ̵å·Î°Ö ºÐ¾ß´Â ¾à¹°Àü´Þ ½Ã½ºÅÛ, Á¶Á÷ °øÇÐ, ¼ÒÇÁÆ® ·Îº¿°ú °°Àº ¹ÙÀÌ¿À¸ÞµðÄà ¿ëµµ¿¡¼ ±¤¹üÀ§ÇÑ ÀáÀç·ÂÀ¸·Î ÀÎÇØ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ³ôÀº ¼öºÐ ÇÔ·®°ú »ýü ÀûÇÕ¼ºÀ¸·Î ÀÎÇØ ¹Î°¨ÇÑ »ý¸®Àû ȯ°æ¿¡¼ »ç¿ëÇϱ⿡ ÀÌ»óÀûÀÔ´Ï´Ù. ¶ÇÇÑ pH ¹× ¿Âµµ¿Í °°Àº Àڱؿ¡ ´ëÇÑ ¶Ù¾î³ ¹ÝÀÀ¼ºÀ¸·Î ÀÎÇØ ÀÇ·á±â±â ¹× ÀÓÇöõÆ®ÀÇ Áß¿äÇÑ ¿ä±¸ »çÇ×ÀÎ °íµµ·Î Á¦¾îµÇ°í °¡¿ªÀûÀÎ ¸ðÇÎÀÌ °¡´ÉÇÏ¿© ÀÌ ºÐ¾ß¿¡ ´ëÇÑ ¸¹Àº ¿¬±¸ °ü½É°ú ÅõÀÚ°¡ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ Áß ºÏ¹Ì°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´Â ÁÖ¿ä Ç×°ø¿ìÁÖ ¹× ¹æÀ§»ê¾÷üµéÀÇ °·ÂÇÑ Á¸Àç°¨, ÷´Ü Á¦Á¶ ¿¬±¸¸¦ À§ÇÑ Á¤ºÎÀÇ ¸·´ëÇÑ ÀÚ±Ý Áö¿ø, ÀûÃþ Á¦Á¶¿¡ Æ¯ÈµÈ ±â¼ú ½ºÅ¸Æ®¾÷°ú Çмú±â°üÀÇ ÅºÅºÇÑ »ýŰ迡 ÈûÀÔÀº ¹Ù Å®´Ï´Ù. ÀÌ Áö¿ªÀÇ Ã·´Ü ±â¼úÀÇ Á¶±â µµÀÔÀº °ø°ø ¹× ¹Î°£ ºÎ¹®ÀÇ ³ôÀº R&D ºñ¿ë°ú °áÇÕÇÏ¿© 4D ÇÁ¸°ÆÃ º¹ÇÕÀç·áÀÇ °³¹ß ¹× »ó¿ëȸ¦ À§ÇÑ °·ÂÇÑ ±â¹ÝÀ» ±¸ÃàÇÏ¿© ¼¼°è ½ÃÀå¿¡¼ Áö¹èÀûÀÎ ÁöÀ§¸¦ È®º¸Çϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ Áß ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´Â »ê¾÷ »ý»ê±â¹ÝÀÇ ±Þ¼ÓÇÑ È®´ë, ÷´Ü Á¦Á¶ ±â¼úÀ» ÃËÁøÇÏ´Â Á¤ºÎ ±¸»ó Áõ°¡, Ç×°ø¿ìÁÖ ¹× ÀÚµ¿Â÷ ºÐ¾ß¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡¿¡ ±âÀÎÇÕ´Ï´Ù. ¶ÇÇÑ Àúºñ¿ë Á¦Á¶°¡ °¡´ÉÇÑ ½ÅÈï °æÁ¦±¹ÀÇ Á¸Àç¿Í ÇコÄɾî Çõ½Å¿¡ ´ëÇÑ °ü½É Áõ°¡´Â 3D ÇÁ¸°ÆÃ ±â¼úÀ» äÅÃÇÒ ¼ö ÀÖ´Â ºñ¿ÁÇÑ Åä¾çÀ» Á¶¼ºÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ªµ¿ÀûÀÎ °æÁ¦ »óȲ°ú »ê¾÷ Çö´ëÈÀÇ ÁøÀüÀº ÀÌ Áö¿ªÀÇ ¼ºÀå·ü °¡¼ÓÈÀÇ ÁÖ¿ä ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global 4D-Printed Composites Market is accounted for $171.4 million in 2025 and is expected to reach $1216.4 million by 2032 growing at a CAGR of 32.3% during the forecast period. 4D-printed composites are advanced materials created through additive manufacturing that can change shape, function, or properties over time when exposed to external stimuli such as heat, moisture, or light. These composites integrate smart, programmable materials with fiber reinforcements, enabling adaptive structural responses. They hold transformative applications across aerospace, automotive, and biomedical sectors, offering lightweight, durable, and self-responsive solutions.
According to research from PMC, 4D-printed materials can achieve temperature increases to 80°C in 47 seconds under 25V voltage application, with shape recovery occurring within 16 seconds.
Growing demand for lightweight, high-performance materials
The growing demand for lightweight, high-performance materials across aerospace, automotive, and medical industries is a primary market driver. These sectors relentlessly pursue components that offer superior strength-to-weight ratios and customizable properties to enhance efficiency and functionality. 4D-printed composites meet this need by providing smart, adaptive structures that respond to environmental stimuli, enabling weight reduction and unprecedented design possibilities. This pursuit of advanced material solutions is significantly propelling the adoption and development of 4D printing technologies within the composites market.
High cost of raw materials and printing systems
The high cost associated with specialized raw materials and advanced printing systems is hindering widespread market adoption. The smart polymers and composite feedstocks required for 4D printing are often proprietary and complex to synthesize, leading to elevated material expenses. Moreover, the additive manufacturing systems capable of processing these advanced composites represent a substantial capital investment, creating a high barrier to entry for small and medium-sized enterprises and limiting market growth to well-funded entities.
Increasing investments in R&D
Increasing investments in research and development from both public and private entities present a substantial opportunity for expansion. This funding is crucial for overcoming current technical challenges, such as material limitations and printing precision, thereby accelerating technology maturation. Additionally, heightened R&D activities are fostering innovation in programmable material systems and multi-material printing processes. These advancements are expected to unlock novel applications and reduce overall production costs, creating new revenue streams and broadening the commercial viability of 4D-printed composites.
Technological complexities and limited scalability
The inherent technological complexities and the current limited scalability of production processes are suppressing the market growth. The integration of smart materials with precise printing parameters to achieve predictable shape-changing behavior is a highly intricate task. Furthermore, translating laboratory successes into high-volume, repeatable manufacturing runs remain a formidable challenge. This inability to scale efficiently could deter large-scale industrial adoption and delay market penetration.
The COVID-19 pandemic initially disrupted the global supply chain for raw materials and hindered manufacturing operations, causing project delays and temporarily reduced investment in the 4D printing sector. However, the crisis also acted as a catalyst, highlighting the need for innovative and adaptive materials, particularly in the healthcare field for applications like smart ventilators and responsive personal protective equipment. This renewed focus on technological resilience has subsequently stimulated R&D activities, aiding in a steady market recovery post the initial lockdown phases.
The continuous fiber composites segment is expected to be the largest during the forecast period
The continuous fiber composites segment is expected to account for the largest market share during the forecast period, which is attributed to its superior mechanical properties, including exceptional stiffness, strength, and load-bearing capabilities, which are critical for demanding applications in aerospace and automotive industries. These composites provide the necessary structural integrity for components that must undergo precise and reliable shape transformation. Their proven performance in traditional composite applications creates a natural pathway for adoption in advanced 4D printing, ensuring their leading market share as the technology evolves.
The hydrogels segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the hydrogels segment is predicted to witness the highest growth rate due to its extensive potential in biomedical applications, such as drug delivery systems, tissue engineering, and soft robotics. Their high water content and biocompatibility make them ideal for use in sensitive physiological environments. Moreover, their pronounced responsiveness to stimuli like pH and temperature allows for highly controlled and reversible morphing, a key requirement for medical devices and implants, driving significant research interest and investment in this segment.
During the forecast period, the North America region is expected to hold the largest market share, fueled by the strong presence of major aerospace and defense contractors, substantial government funding for advanced manufacturing research, and a robust ecosystem of technology startups and academic institutions specializing in additive manufacturing. The region's early adoption of cutting-edge technologies, coupled with high R&D expenditure from both public and private sectors, establishes a strong foundation for the development and commercialization of 4D-printed composites, securing its dominant position in the global market.
Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR, driven by rapidly expanding industrial manufacturing bases, increasing government initiatives promoting advanced manufacturing technologies, and growing investments in aerospace and automotive sectors. Additionally, the presence of emerging economies with low-cost manufacturing potential and a rising focus on healthcare innovation creates a fertile ground for adopting 4D printing technologies. This dynamic economic landscape and escalating industrial modernization are key factors contributing to the region's accelerated growth rate.
Key players in the market
Some of the key players in 4D-Printed Composites Market include 3D Systems, Autodesk, CT CoreTechnologie Group, Dassault Systemes, EOS GMBH, EnvisionTEC, HP, Markforged, Materialise, Organovo Holdings, Poietis, Stratasys, Vartega, and Zortrax.
In November 2024, 3D Systems announced several new products it will showcase at Formnext 2024 including advanced printing technologies and materials engineered to help customers meet a variety of application needs and accelerate innovation. The company is introducing next generation products in its Stereolithography (SLA) and Figure 4(R) portfolios PSLA 270 full solution including the Wash 400/Wash 400F and Cure 400, Figure 4 Rigid Composite White and Accura(R) AMX Rigid Composite White to address true production applications and accelerate the time to part.
In July 2024, HP Introduced HP 3D HR PA 12 S material with Arkema, establishing new benchmarks in surface finish and cost-efficiency for polymer production.