¼¼¶ó¹Í Ä¿ÆÐ½ÃÅÍ ½ÃÀå ¿¹Ãø(-203³â) : À¯Çüº°, Á¤Àü¿ë·®º°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®
Ceramic Capacitor Market Forecasts to 2032 - Global Analysis By Type (Multilayer Ceramic Chip Capacitor (MLCC), Ceramic Disc Capacitor, Feedthrough Ceramic Capacitor and Ceramic Power Capacitor), Capacitance Value, End User and By Geography
»óǰÄÚµå : 1798084
¸®¼­Ä¡»ç : Stratistics Market Research Consulting
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 200+ Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,150 £Ü 5,841,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 5,250 £Ü 7,389,000
PDF (2-5 User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷Àå¿¡¼­ 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,350 £Ü 8,937,000
PDF & Excel (Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷ÀåÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇÕ´Ï´Ù. Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ¹× Excel ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 7,500 £Ü 10,556,000
PDF & Excel (Global Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 10ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Stratistics MRC¿¡ ÀÇÇϸé, ¼¼¶ó¹Í Ä¿ÆÐ½ÃÅÍ ¼¼°è ½ÃÀåÀº 2025³â¿¡ 186¾ï 5,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇϰí, ¿¹Ãø ±â°£ Áß¿¡ CAGR 14.58%·Î ¼ºÀåÇÏ¿© 2032³â¿¡´Â 483¾ï 4,000¸¸ ´Þ·¯¿¡ À̸¦ Àü¸ÁÀÔ´Ï´Ù.

¼¼¶ó¹Í Ä¿ÆÐ½ÃÅÍ´Â ÀϹÝÀûÀÎ ÀüÀÚ ºÎǰÀ¸·Î, ¼¼¶ó¹ÍÀ» À¯Àüü·Î »ç¿ëÇÏ¿© ȸ·Î ³» Àü±â ¿¡³ÊÁö¸¦ ÀúÀåÇÏ°í ¹æÃâÇÏ´Â ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¼¼¶ó¹Í Ä¿ÆÐ½ÃÅÍ´Â ¼ÒÇü, Àúºñ¿ë, °í½Å·Ú¼ºÀ¸·Î ÀÎÇØ °¡ÀüÁ¦Ç°ºÎÅÍ »ê¾÷ ¹× ÀÚµ¿Â÷ ½Ã½ºÅÛ±îÁö ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¼¼¶ó¹Í Ä¿ÆÐ½ÃÅÍ¿¡´Â ´ÜÃþÇü°ú ÄÄÆÑÆ®ÇÑ ÇüÅ·Π³ôÀº Ä¿ÆÐ½ÃÅϽº¸¦ Á¦°øÇÏ´Â ÀûÃþ ¼¼¶ó¹Í Ä¿ÆÐ½ÃÅÍ(MLCC) µî ¿©·¯ À¯ÇüÀÌ ÀÖ½À´Ï´Ù. ÀÌ ¼¼¶ó¹Í Ä¿ÆÐ½ÃÅÍ´Â ¿ì¼öÇÑ Á֯ļö Ư¼º, ±â»ý È¿°ú ÃÖ¼ÒÈ­, °í¿Â ¹× °íÀü¾Ð ȯ°æ¿¡¼­ÀÇ È¿°úÀûÀÎ ÀÛµ¿ ´É·ÂÀ¸·Î À¯¸íÇÕ´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ Æ¯¼ºÀ¸·Î ÀÎÇØ ½Åȣó¸®, Ä¿Çøµ, µðÄ¿Çøµ, ³ëÀÌÁî ÇÊÅ͸µ µî ´Ù¾çÇÑ ÀüÀÚ±â±â ¿ëµµ¿¡ ÇʼöÀûÀÎ Ä¿ÆÐ½ÃÅÍ·Î »ç¿ëµÇ°í ÀÖ½À´Ï´Ù.

JEITAÀÇ '¼¼°è ÀüÀÚÁ¦Ç° »ý»ê ¿¹Ãø'¿¡ µû¸£¸é, ÀϺ» ÀüÀÚ IT ±â¾÷ÀÇ ÀüÀÚºÎǰ »ý»êÀº ÀÚµ¿Â÷¿ë ÀÏ·ºÆ®·Î´Ð½º, ¹ÝµµÃ¼, ¼Ö·ç¼Ç ¼­ºñ½º ¼ö¿ä¿¡ ÈûÀÔ¾î 2024³â¿¡´Â Àü³â ´ëºñ 6% ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµÇ°í ÀÖ½À´Ï´Ù.

°¡ÀüÁ¦Ç° ¼ö¿ä Áõ°¡¿Í ¼ÒÇüÈ­ Ãß¼¼

¼¼¶ó¹Í Ä¿ÆÐ½ÃÅÍ ½ÃÀå È®´ë¸¦ À̲ô´Â ÁÖ¿ä ¿äÀÎ Áß Çϳª´Â ÀüÀÚÁ¦Ç°ÀÇ ¼ÒÇüÈ­°¡ Áö¼ÓÀûÀ¸·Î ÃßÁøµÇ°í ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ¿þ¾î·¯ºí, ³ëÆ®ºÏ, ÅÂºí¸´, ½º¸¶Æ®Æù, AR/VR ±â±â µî Ãֽбâ±â¿¡¼­´Â ´õ ÀÛ°í ´õ °­·ÂÇÑ ºÎǰÀÌ Á¡Á¡ ´õ ¸¹ÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. ƯÈ÷ ÀûÃþ ¼¼¶ó¹Í Ä¿ÆÐ½ÃÅÍ(MLCC)´Â ¼ÒÇü ÆÐŰ¡À¸·Î ³ôÀº Á¤Àü ¿ë·®À» Á¦°øÇϹǷΠ¼³°èÀÚ°¡ ´õ ¾ãÀº ±â±â¿¡ ´õ ¸¹Àº ±â´ÉÀ» ÅëÇÕÇÒ ¼ö ÀÖ½À´Ï´Ù. ½º¸¶Æ®Æù¿¡¸¸ 1,000°³¿¡ °¡±î¿î Ä¿ÆÐ½ÃÅͰ¡ »ç¿ëµÇ¸ç, Ç÷¡±×½Ê ¸ðµ¨¿¡´Â RF ¸ðµâ, Ä«¸Þ¶ó, ¿Àµð¿À ½Ã½ºÅÛ, È­¸éÀ» Áö¿øÇϱâ À§ÇØ 1,000°³ ÀÌ»óÀÇ Ä¿ÆÐ½ÃÅͰ¡ »ç¿ëµË´Ï´Ù. ¼ÒºñÀÚ ±â±â¿¡ 5G, AI, IoT ±â´ÉÀÌ Å¾ÀçµÊ¿¡ µû¶ó ÃʼÒÇü °í¼º´É MLCC¿¡ ´ëÇÑ ¼ö¿ä´Â °è¼Ó Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

°¡°Ý º¯µ¿°ú °ø±Þ¸Á Á¦¾à

¿øÀÚÀç °¡°Ý º¯µ¿°ú °ø±Þ¸Á Áß´ÜÀº ¼¼¶ó¹Í Ä¿ÆÐ½ÃÅÍ ½ÃÀåÀ» Á¦ÇÑÇÏ´Â µÎ °¡Áö ÁÖ¿ä ¿äÀÎÀÔ´Ï´Ù. ¹Ù·ý ƼŸ³×ÀÌÆ®³ª ÆÈ¶óµã°ú °°Àº ÈñÅä·ù ¿ø¼Ò´Â ¸ðµÎ ¼¼°è °ø±Þ º¯µ¿¿¡ ¿µÇâÀ» ¹ÞÁö¸¸, ¼¼¶ó¹Í Ä¿ÆÐ½ÃÅÍ¿¡ ¾ø¾î¼­´Â ¾È µÉ Çʼö ¿ä¼ÒÀÔ´Ï´Ù. ÁöÁ¤ÇÐÀû ±äÀå, ¼öÃâ ±ÔÁ¦, Áß±¹, ·¯½Ã¾Æ µîÀÇ Ã¤±¼ Á¦ÇÑÀ¸·Î ÀÎÇØ ¾ÇÈ­µÇ´Â °¡¿ë¼º ¹®Á¦·Î ÀÎÇØ °¡°ÝÀÌ ºÒ¾ÈÁ¤ÇÕ´Ï´Ù. ¶ÇÇÑ, MLCC Á¦Á¶¿¡´Â °íµµ·Î Á¤±³ÇÑ Á¦Á¶±â¼úÀÌ ÇÊ¿äÇÏ°í °ø±Þ¾÷ü°¡ Àû¾î ¼ö¿ä°¡ ¸¹Àº ½Ã±â¿¡´Â º´¸ñÇö»óÀÌ ¹ß»ýÇϱ⵵ ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¾àÁ¡Àº Äڷγª19 »çÅ·ΠÀÎÇØ µå·¯³ª°Ô µÇ¾ú½À´Ï´Ù. Á¦Ç° ºÎÁ·Àº ÀÚµ¿Â÷, »ê¾÷, °¡ÀüÁ¦Ç° ºÎ¹®ÀÇ »ý»êÀ» Áö¿¬½ÃŰ°í ½ÃÀåÀÇ ¾ÈÁ¤À» ÀúÇØÇ߱⠶§¹®ÀÔ´Ï´Ù.

ÀÚÀ²ÁÖÇàÂ÷¿Í Àü±âÀÚµ¿Â÷ÀÇ ¼ºÀå

¼¼¶ó¹Í Ä¿ÆÐ½ÃÅÍ ½ÃÀåÀº Àü±âÀÚµ¿Â÷ÀÇ ±Þ¼ÓÇÑ º¸±Þ°ú ÀÚÀ²ÁÖÇàÂ÷ÀÇ Áö¼ÓÀûÀÎ ¹ßÀüÀ¸·Î Å« ÀáÀç·ÂÀ» °¡Áö°í ÀÖ½À´Ï´Ù. ¹èÅ͸® °ü¸®, ÀιöÅÍ, DC-DC ÄÁ¹öÅÍ, ÀÎÆ÷Å×ÀÎ¸ÕÆ®, ÀÚµ¿Â÷ ÃæÀü±â µîÀÇ ½Ã½ºÅÛÀ» Áö¿øÇϱâ À§ÇØ Àü±âÀÚµ¿Â÷¿¡´Â ¼öõ °³ÀÇ Ä¿ÆÐ½ÃÅͰ¡ ÇÊ¿äÇÕ´Ï´Ù. °íÀü¾Ð, °í½Å·Ú¼º MLCCÀÇ Çʿ伺Àº ƯÈ÷ Áß±¹, À¯·´, ºÏ¹Ì µî Àü ¼¼°èÀûÀ¸·Î Àü±âÂ÷ º¸±ÞÀÌ È®´ëµÊ¿¡ µû¶ó ´õ¿í ³ô¾ÆÁú °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÚÀ²ÁÖÇàÂ÷´Â ·¹ÀÌ´õ, LiDAR, Ä«¸Þ¶ó ½Ã½ºÅÛ, ÷´Ü ¿îÀü º¸Á¶ ±â´ÉÀÌ ½ÅÈ£ ÇÊÅ͸µ°ú Àü·Â ¾ÈÁ¤¼ºÀ» À§ÇØ Ä¿ÆÐ½ÃÅÍ¿¡ Å©°Ô ÀÇÁ¸Çϰí Àֱ⠶§¹®¿¡ ÀÌ ¿ä°ÇÀ» ´õ¿í °­È­ÇÒ °ÍÀÔ´Ï´Ù. ¼¼¶ó¹Í Ä¿ÆÐ½ÃÅÍ Á¦Á¶¾÷ü´Â Á¤ºÎ°¡ Àü±âÂ÷ µµÀÔ¿¡ ´ëÇÑ Àμ¾Æ¼ºê¸¦ Á¦°øÇϰí Àü ¼¼°èÀûÀ¸·Î ¹è±â°¡½º ±ÔÁ¦°¡ °­È­µÊ¿¡ µû¶ó Å« ÀÌÀÍÀ» ¾òÀ» ¼ö ÀÖ´Â À§Ä¡¿¡ ÀÖ½À´Ï´Ù.

¿ø·á ºÎÁ·°ú ÈñÅä·ù ÀÇÁ¸µµ

¼¼¶ó¹Í Ä¿ÆÐ½ÃÅÍ ½ÃÀåÀº ÆÈ¶óµã°ú °°Àº ±Í±Ý¼Ó°ú ¹Ù·ý ƼŸ³×ÀÌÆ®¿Í °°Àº ÈñÅä·ù ¿ø¼Ò¿¡ ´ëÇÑ ÀÇÁ¸À¸·Î ÀÎÇØ ½É°¢ÇÑ À§ÇùÀ» ¹Þ°í ÀÖ½À´Ï´Ù. À̵é ÀÚ¿øÀº Áß±¹°ú ·¯½Ã¾Æ¸¦ Áß½ÉÀ¸·Î ÇÑ ¼Ò¼öÀÇ ±¹°¡¿¡ ÁýÁߵǾî ÀÖ¾î ¹«¿ª ¸®½ºÅ©¿Í ÁöÁ¤ÇÐÀû ¸®½ºÅ©°¡ Á¸ÀçÇÕ´Ï´Ù. ä±¼ Á¦ÇÑ, ¼öÃâ Á¦ÇÑ, Á¤Ä¡Àû ºÒ¾È µîÀÌ ¹ß»ýÇÏ¸é ¼¼°è °ø±Þ¸ÁÀº ½É°¢ÇÑ È¥¶õ¿¡ ºüÁú ¼ö ÀÖ½À´Ï´Ù. Ä¿ÆÐ½ÃÅÍÀÇ °¡°Ý°ú ¼öÀͼºÀº ¿øÀç·á°¡ Á¦Á¶ ¿ø°¡ÀÇ »ó´ç ºÎºÐÀ» Â÷ÁöÇϱ⠶§¹®¿¡ ±Þ°ÝÇÑ °¡°Ý »ó½Â¿¡ Á÷Á¢ÀûÀÎ ¿µÇâÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, MLCC Á¦Á¶¾÷ü´Â ÃÖ±Ù ÆÈ¶óµã °¡°Ý º¯µ¿À¸·Î ÀÎÇØ °ø±ÞÀÌ ºÒ¾ÈÁ¤ÇØÁ³½À´Ï´Ù. Àå±âÀûÀÎ Áö¼Ó°¡´É¼ºÀÇ ¹®Á¦´Â ÀÌ·¯ÇÑ À¯ÇÑÇÑ ÀÚ¿ø¿¡ ´ëÇÑ °úµµÇÑ ÀÇÁ¸À¸·Î ÀÎÇØ ¹ß»ýÇÕ´Ï´Ù.

Äڷγª19ÀÇ ¿µÇâ

Äڷγª19 »çÅ´ ¼¼¶ó¹Í Ä¿ÆÐ½ÃÅÍ ½ÃÀå¿¡ µÎ °¡Áö ¿µÇâÀ» ¹ÌÃÆ´Ù: ù°, Å« È¥¶õÀ» ÀÏÀ¸Ä×°í, µÑ°, ȸº¹°ú È®ÀåÀÇ ±âȸ¸¦ âÃâÇß½À´Ï´Ù. MLCC ºÎÁ·°ú ÀüÀÚ, ÀÚµ¿Â÷, »ê¾÷ »ý»ê Áö¿¬Àº Ãʱ⠴ܰ迡 Áß±¹, ÀϺ», Çѱ¹ µî ÁÖ¿ä Á¦Á¶ °ÅÁ¡ÀÇ °øÀå °¡µ¿ Áß´ÜÀ¸·Î ÀÎÇÑ °á°úÀ̸ç, ÀÌ´Â Àü ¼¼°è °ø±Þ¸Á¿¡ Å« ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ¼Ò¸Å¾÷ÀÇ ÆÇ¸Å µÐÈ­·Î ÀÎÇØ °¡ÀüÁ¦Ç° ¼ö¿ä°¡ ÀϽÃÀûÀ¸·Î °¨¼ÒÇß°í, ÀÚµ¿Â÷ »ê¾÷¿¡¼­´Â ÀÚµ¿Â÷ »ý»ê·®ÀÌ ±Þ°¨Çß½À´Ï´Ù. ±×·¯³ª ÆÒµ¥¹ÍÀº µðÁöÅÐ ÀüȯÀ» °¡¼ÓÈ­ÇÏ¿© ³ëÆ®ºÏ, ½º¸¶Æ®Æù, IoT ±â±â, ÀÇ·á¿ë ÀüÀÚ±â±â µî ¼¼¶ó¹Í Ä¿ÆÐ½ÃÅÍ¿¡ Å©°Ô ÀÇÁ¸ÇÏ´Â ±â±â ¼ö¿ä¸¦ Áõ°¡½ÃÄ×½À´Ï´Ù.

ÀûÃþ ¼¼¶ó¹Í Ĩ Ä¿ÆÐ½ÃÅÍ(MLCC) ºÎ¹®ÀÌ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀåÀ¸·Î ºÎ»óÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÀûÃþ ¼¼¶ó¹Í Ĩ Ä¿ÆÐ½ÃÅÍ(MLCC) ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. MLCC´Â ÀÛÀº Å©±â, ³ôÀº Ä¿ÆÐ½ÃÅϽº °ª, ½Å·Ú¼º, Àú·ÅÇÑ °¡°ÝÀ¸·Î ÀÎÇØ ¿þ¾î·¯ºí ±â¼ú, ÀÚµ¿Â÷ ÀüÀÚ, Åë½Å, »ê¾÷ Àåºñ, ½º¸¶Æ®Æù, ³ëÆ®ºÏ, ÅÂºí¸´ ¹× ±âŸ ÀåÄ¡¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¿¡³ÊÁö ÀúÀå, ÇÊÅ͸µ, µðÄ¿Çøµ µîÀÇ ¸ñÀûÀ¸·Î Çö´ë ÀüÀÚ±â±â¿¡´Â ¼ö¹é¿¡¼­ ¼öõ °³ÀÇ MLCC°¡ ÀÚÁÖ ³»ÀåµÇ¾î ÀÖ½À´Ï´Ù. ƯÈ÷ 5G, IoT, Àü±âÀÚµ¿Â÷ÀÇ ÃâÇö°ú ÇÔ²² ¼ÒÇü ¼³°è·Î ¿ì¼öÇÑ Á֯ļö Ư¼º°ú ¾ÈÁ¤¼ºÀ» Á¦°øÇÒ ¼ö ÀÖ¾î ³Î¸® äÅõǰí ÀÖ½À´Ï´Ù. µû¶ó¼­ MLCC´Â ½ÃÀåÀÇ ¼±µÎÁÖÀÚÀÌÀÚ ¸ðµç ºÎ¹®¿¡¼­ ¼ºÀåÀÇ ÁÖ¿ä ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ´Â ÀÚµ¿Â÷ ºÎ¹®

¿¹Ãø ±â°£ µ¿¾È ÀÚµ¿Â÷ ºÎ¹®ÀÌ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Àü±âÀÚµ¿Â÷(EV), ÇÏÀ̺긮µå ÀÚµ¿Â÷, ÀÎÆ÷Å×ÀÎ¸ÕÆ®¿Í ÷´Ü¿îÀüÀÚº¸Á¶½Ã½ºÅÛ(ADAS)ÀÇ ÅëÇÕ È®´ë°¡ ÀÌ·¯ÇÑ ¼ºÀåÀÇ ÁÖ¿ä ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¼öõ °³ÀÇ ¼¼¶ó¹Í Ä¿ÆÐ½ÃÅÍ´Â ¹èÀü ½Ã½ºÅÛ, ÀιöÅÍ, ÀÚµ¿Â÷ ÃæÀü±â, ¸ðµç EVÀÇ ¹èÅ͸® °ü¸® µî Áß¿äÇÑ ºÎǰ¿¡ ÇÊ¿äÇÕ´Ï´Ù. °íÀü¾Ð, °í½Å·Ú¼º MLCC´Â Àüµ¿È­ Ãß¼¼¿Í Ä¿³ØÆ¼µåÄ« ¹× ÀÚÀ²ÁÖÇàÂ÷ ¼ö¿ä Áõ°¡·Î ÀÎÇØ ±× Çʿ伺ÀÌ ´õ¿í Ä¿Áö°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ģȯ°æ ¸ðºô¸®Æ¼¸¦ ÃËÁøÇϱâ À§ÇÑ ¼¼°è °¢±¹ Á¤ºÎÀÇ ÀÌ´Ï¼ÅÆ¼ºê¿Í ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀÇ Àü±âÂ÷ ±â¼ú¿¡ ´ëÇÑ ´ë±Ô¸ð ÅõÀÚ·Î ÀÎÇØ ÀÚµ¿Â÷ »ê¾÷Àº ¾ÕÀ¸·Îµµ °¡Àå ºü¸¥ ¼Óµµ·Î ¼ºÀåÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´Â ´Ù¾çÇÑ »ê¾÷¿¡¼­ ³ôÀº ¼Òºñ°¡ ÀÖ°í, ÀüÀÚÁ¦Ç° Á¦Á¶ »ýŰ谡 °ß°íÇϱ⠶§¹®ÀÔ´Ï´Ù. ÀûÃþ¼¼¶ó¹ÍÄ¿ÆÐ½ÃÅÍ(MLCC)´Â ÁÖ·Î Áß±¹, ÀϺ», Çѱ¹, ´ë¸¸¿¡¼­ »ý»ê ¹× ¼öÃâµÇ°í ÀÖÀ¸¸ç, °¡Àü, ÀÚµ¿Â÷, Åë½Å »ê¾÷ÀÇ À¯¸í ±¹Á¦ ºê·£µå¿¡ °ø±ÞµÇ°í ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ ¹ßÀüÀº ½º¸¶Æ®Æù Á¦Á¶ÀÇ ¸®´õ½Ê, 5G ÀÎÇÁ¶óÀÇ ºü¸¥ ¹ßÀü, Àü±âÀÚµ¿Â÷ÀÇ Àα⠻ó½ÂÀ¸·Î ´õ¿í °­È­µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¾Æ½Ã¾ÆÅÂÆò¾çÀº ÃÖ°íÀÇ Ä¿ÆÐ½ÃÅÍ Á¦Á¶¾÷ü¿Í źźÇÑ °ø±Þ¸ÁÀÇ º»°ÅÁöÀ̱⠶§¹®¿¡ ¼¼°è ¼¼¶ó¹Í Ä¿ÆÐ½ÃÅÍ ½ÃÀå¿¡¼­ »ý»ê°ú ¼ö¿äÀÇ ÁÖ¿ä Áß½ÉÁöÀÔ´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´Â ¹Î»ý, Åë½Å, ÀÚµ¿Â÷ »ê¾÷¿¡¼­ ÷´Ü ÀüÀÚ±â±âÀÇ »ç¿ëÀÌ Áõ°¡Çϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. ÀÌ Áö¿ª¿¡¼­´Â 5G ÀÎÇÁ¶ó, ½º¸¶Æ® ±â±â, Àü±âÀÚµ¿Â÷¿¡ °í¼º´É Ä¿ÆÐ½ÃÅͰ¡ ºü¸£°Ô äÅõǸ鼭 ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. °­·ÂÇÑ R&D ÅõÀÚ¿Í È°¹ßÇÑ ÀüÀÚÁ¦Ç° Á¦Á¶ »ýŰ踦 ¹ÙÅÁÀ¸·Î ¹Ì±¹Àº °¡Àå Å« ±â¿©¸¦ ÇÏ´Â ±¹°¡·Î ³²¾ÆÀÖ½À´Ï´Ù. °¡ÀüÁ¦Ç° ¼Òºñ Áõ°¡¿Í »ê¾÷ ÀÀ¿ë ºÐ¾ß È®´ë°¡ ij³ª´Ù¿Í ¸ß½ÃÄÚÀÇ °ý¸ñÇÒ ¸¸ÇÑ ¼ºÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ºÏ¹Ì´Â ±â¼ú Çõ½Å, ÀÎÇÁ¶ó ±¸Ãà, Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö ¼Ö·ç¼Ç¿¡ ÁßÁ¡À» µÎ°í ÀÖ¾î ¼¼°è ¼¼¶ó¹Í Ä¿ÆÐ½ÃÅÍ ½ÃÀå Àüü¿¡¼­ ÁÖ¿ä ¼ºÀå Çãºê·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ ¼­ºñ½º

º» º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

Á¦4Àå PorterÀÇ Five Forces ºÐ¼®

Á¦5Àå ¼¼°èÀÇ ¼¼¶ó¹Í Ä¿ÆÐ½ÃÅÍ ½ÃÀå : À¯Çüº°

Á¦6Àå ¼¼°èÀÇ ¼¼¶ó¹Í Ä¿ÆÐ½ÃÅÍ ½ÃÀå : Á¤Àü¿ë·®º°

Á¦7Àå ¼¼°èÀÇ ¼¼¶ó¹Í Ä¿ÆÐ½ÃÅÍ ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

Á¦8Àå ¼¼°èÀÇ ¼¼¶ó¹Í Ä¿ÆÐ½ÃÅÍ ½ÃÀå : Áö¿ªº°

Á¦9Àå ÁÖ¿ä °³¹ß

Á¦10Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

According to Stratistics MRC, the Global Ceramic Capacitor Market is accounted for $18.65 billion in 2025 and is expected to reach $48.34 billion by 2032 growing at a CAGR of 14.58% during the forecast period. A ceramic capacitor is a common electronic component that uses ceramic as its dielectric to store and release electrical energy in a circuit. It is a popular option in applications ranging from consumer electronics to industrial and automotive systems because of its small size, low cost, and high reliability. There are several types of ceramic capacitors, including single-layer versions for easier applications and multilayer ceramic capacitors (MLCCs), which provide high capacitance in compact forms. They are renowned for having outstanding frequency characteristics, minimal parasitic effects, and the capacity to operate effectively in high-temperature and high-voltage settings. Moreover, these characteristics make ceramic capacitors indispensable for various electronic device applications, including signal processing, coupling, decoupling, and noise filtering.

According to JEITA's Global Electronics Production Forecast, Production of electronic components by Japanese electronics and IT companies is expected to grow 6% year-on-year in 2024, driven by demand in automotive electronics, semiconductors, and solution services.

Market Dynamics:

Driver:

Growing demand and miniaturization in consumer electronics

One of the main factors propelling the ceramic capacitor market's expansion is the unrelenting push for electronics miniaturization. Smaller but more powerful components are becoming more and more necessary for modern devices like wearables, laptops, tablets, smartphones, and AR/VR equipment. This need is met by ceramic capacitors, particularly multilayer ceramic capacitors (MLCCs), which provide high capacitance in small packages, enabling designers to incorporate more functionality into devices that are thinner. Nearly a thousand capacitors can be found in smartphones alone, and flagship models use well over a thousand to support RF modules, cameras, audio systems, and screens. The need for ultra-compact, high-performance MLCCs keeps growing as consumer devices incorporate 5G, AI, and IoT features.

Restraint:

Price fluctuations and supply chain limitations

Price fluctuations for raw materials and supply chain interruptions are two of the main factors limiting the ceramic capacitor market. Rare earth elements like barium titanate and palladium, which are both subject to worldwide supply fluctuations, are essential components of ceramic capacitors. Price instability results from availability problems that are made worse by geopolitical tensions, export restrictions, and mining limitations in nations like China and Russia. Furthermore, producing MLCCs necessitates highly sophisticated manufacturing techniques with few suppliers, which frequently results in bottlenecks during periods of high demand. These weaknesses were brought to light by the COVID-19 pandemic, as shortages hindered market stability by delaying production in the automotive, industrial, and consumer electronics sectors.

Opportunity:

Growth in autonomous and electric vehicles

The ceramic capacitor market has enormous potential due to the quick uptake of electric vehicles and the continuous advancement of autonomous vehicles. In order to support systems like battery management, inverters, DC-DC converters, infotainment, and onboard chargers, electric vehicles need thousands of capacitors. The need for high-voltage, high-reliability MLCCs will increase as EV adoption increases worldwide, especially in China, Europe, and North America. With radar, LiDAR, camera systems, and sophisticated driver-assistance features relying largely on capacitors for signal filtering and power stability, autonomous cars further raise this requirement. Ceramic capacitor producers stand to gain greatly from governments providing incentives for EV adoption and more stringent emission standards globally.

Threat:

Lack of raw materials and reliance on rare earths

The market for ceramic capacitors is seriously threatened by its reliance on precious metals like palladium and rare earth elements like barium titanate. Because these resources are concentrated in a small number of nations, mostly China and Russia, there are trade and geopolitical risks. Global supply chains can be seriously disrupted by any mining restrictions, export restrictions, or political unrest. Capacitor pricing and profitability are directly impacted by abrupt price increases because raw materials make up a significant amount of production costs. For instance, MLCC manufacturers experienced supply instability as a result of recent palladium price fluctuations. Long-term sustainability issues are brought on by this excessive reliance on finite resources.

Covid-19 Impact:

The COVID-19 pandemic affected the ceramic capacitor market in two ways: first, it caused major disruptions, but later, it created chances for recovery and expansion. MLCC shortages and delays in electronics, automotive, and industrial production were the results of factory shutdowns in major manufacturing hubs such as China, Japan, and South Korea in the early stages, which had a significant impact on global supply chains. As retail sales slowed, consumer electronics demand temporarily decreased, and the automotive industry saw a steep drop in vehicle production. But the pandemic also sped up digital transformation, increasing demand for devices that heavily relied on ceramic capacitors, such as laptops, smart phones, IoT devices, and medical electronics, which helped the market, recover well by the end of 2021.

The multilayer ceramic chip capacitor (MLCC) segment is expected to be the largest during the forecast period

The multilayer ceramic chip capacitor (MLCC) segment is expected to account for the largest market share during the forecast period. MLCCs are widely used in wearable technology, automobile electronics, telecommunications, industrial equipment, smartphones, laptops, tablets, and other devices because of their small size, high capacitance values, dependability, and affordability. For purposes like energy storage, filtering, and decoupling, hundreds to thousands of MLCCs are frequently integrated into contemporary electronic devices. They have been widely adopted due to their ability to provide excellent frequency characteristics and stability in small designs, especially with the emergence of 5G, IoT, and electric vehicles. MLCCs are therefore the market leaders and remain the primary engine of growth in all sectors.

The automotive segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the automotive segment is predicted to witness the highest growth rate. Electric vehicles (EVs), hybrid cars, and the growing integration of infotainment and advanced driver-assistance systems (ADAS) are the main drivers of this growth. Thousands of ceramic capacitors are needed for vital components like power distribution systems, inverters, onboard chargers, and battery management in every EV. High-voltage and high-reliability MLCCs are now much more necessary due to the electrification trend and the rising demand for connected and autonomous vehicles. Moreover, the automotive industry will continue to grow at the fastest rate due to global government initiatives to promote greener mobility and automakers' significant investments in EV technology.

Region with largest share:

During the forecast period, the Asia-Pacific region is expected to hold the largest market share, driven by its high consumption across a variety of industries and robust ecosystem for electronics manufacturing. Multilayer ceramic capacitors (MLCCs) are produced and exported primarily by China, Japan, South Korea, and Taiwan, and they supply well-known international brands in the consumer electronics, automotive, and telecommunications industries. The region's market position is further reinforced by its leadership in smart phone manufacturing, quick development of 5G infrastructures, and growing popularity of electric vehicles. Additionally, Asia-Pacific is the primary center for both production and demand in the global ceramic capacitor market because it is home to top capacitor manufacturers and established supply chains.

Region with highest CAGR:

Over the forecast period, the North American region is anticipated to exhibit the highest CAGR, driven by the growing use of sophisticated electronics in the consumer, telecommunications, and automotive industries. Demand is being boosted by the region's fast adoption of high-performance capacitors in 5G infrastructure, smart devices, and electric cars. Supported by strong R&D investments and a thriving electronics manufacturing ecosystem, the United States continues to be the largest contributor. Rising consumer electronics consumption and growing industrial applications are driving significant growth in Canada and Mexico as well. North America is positioned as a major growth hub in the global ceramic capacitor market overall thanks to its emphasis on technological innovation, infrastructure improvements, and sustainable energy solutions.

Key players in the market

Some of the key players in Ceramic Capacitor Market include Murata Manufacturing Co., Ltd, Kyocera Corporation, Maruwa Co., Ltd., Panasonic Corporation, Frontier Electronics Corp., Samsung Electro-Mechanics Co., Ltd, Johanson Dielectrics, Inc., Taiyo Yuden Co., Ltd., Vishay Intertechnology Inc., AVX Corporation, Walsin Technology Corporation, TDK Corporation, Kemet Corporation, Yageo Corporation and TE Connectivity.

Key Developments:

In July 2025, YAGEO has launched a tender offer to acquire the shares of Shibaura Electronics Co., ltd., a globally recognized leader in NTC (negative temperature coefficient) thermistor manufacturing with strong technological capabilities.

In February 2025, Murata Electronics (India) Private Limited has signed an agreement to lease a factory at the OneHub Chennai Industrial Park, Tamil Nadu. The Japanese firm will commence full-scale operation in financial year 2026. Tamil Nadu's Industries Minister T.R.B. Rajaa posted a message on X, saying: "Japanese electronics giant Murata Manufacturing has entered Tamil Nadu with a factory at OneHub Chennai Industrial Park to manufacture multilayer ceramic capacitors.

In July 2024, Panasonic Corporation announced that its Cold Chain Solutions Company has entered into an agreement with Cooling Solutions S.L. to purchase all the shares of its subsidiary Area Cooling Solutions Sp. z o.o. , a Polish refrigeration equipment manufacturer. This transaction is a strategic step for Panasonic to strengthen its condensing unit business in the European market and to accelerate its ongoing global expansion.

Types Covered:

Capacitance Values Covered:

End Users Covered:

Regions Covered:

What our report offers:

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

Table of Contents

1 Executive Summary

2 Preface

3 Market Trend Analysis

4 Porters Five Force Analysis

5 Global Ceramic Capacitor Market, By Type

6 Global Ceramic Capacitor Market, By Capacitance Value

7 Global Ceramic Capacitor Market, By End User

8 Global Ceramic Capacitor Market, By Geography

9 Key Developments

10 Company Profiling

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â