Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ³»È¼º ¿ø´Ü ½ÃÀåÀº 2025³â 37¾ï ´Þ·¯¸¦ Â÷ÁöÇÏ°í ¿¹Ãø ±â°£ µ¿¾È CAGR 6.2%·Î ¼ºÀåÇϰí 2032³â¿¡´Â 54¾ï ´Þ·¯¿¡ À̸¦ Àü¸ÁÀÔ´Ï´Ù.
³»È¼º ¿ø´ÜÀº ¹ßÈ¿¡ ÀúÇ×ÇÏ°í ¿¬¼Ò¸¦ ¹æÁöÇϵµ·Ï ¼³°èµÈ ¼¶À¯ Á¦Ç°ÀÔ´Ï´Ù. ¿ø·¡ ³¿¬¼ºÀ̰ųª ÈÇÐÀû 󸮿¡ ÀÇÇØ ¹æÈ¼ºÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. º¸È£º¹, »ê¾÷ ȯ°æ, ÀÇÀÚ µî¿¡ ³Î¸® »ç¿ëµÇ´Â ÀÌ·¯ÇÑ ¿ø´ÜÀº ÈÀç À§ÇèÀ¸·ÎºÎÅÍ »ç¿ëÀÚ¿Í Àç»êÀ» º¸È£ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀϹÝÀûÀÎ ¼ÒÀç·Î´Â ¾Æ¶ó¹Ìµå, ³¿¬Á¦·Î ó¸®µÈ ¸é, ¸ðÁ÷ µîÀÌ ÀÖÀ¸¸ç ³»±¸¼º, Æí¾ÈÇÔ, ÇÊ¿äÇÑ º¸È£ ¼öÁØ¿¡ µû¶ó ¼±Åõ˴ϴÙ.
Á¶»ç ºÐ¼® ÃÖ±ÙÀÇ ¿¬±¸¿¡ µû¸£¸é, »ýü °íºÐÀÚ´Â ¸é, Æú¸®¿¡½ºÅ׸£ µîÀÇ ÇÕ¼º ±âÀç¿¡ ÄÚÆÃµÉ ¶§ ¿¹±âÄ¡ ¾ÊÀº ³¿¬¼ºÀ» ¹ßÈÖÇÕ´Ï´Ù.
»ê¾÷¿ë ¾ÈÀüº¹ ¼ö¿ä Áõ°¡
Á÷Àå ¾ÈÀü ±ÔÁ¦ Áõ°¡¿Í Á÷¾÷ À§Çè¿¡ ´ëÇÑ ÀÇ½Ä Áõ°¡¿¡ ÈûÀÔ¾î »ê¾÷¿ë ÀÇ·ù¿¡¼ ³»È¼º ¿ø´Ü¿¡ ´ëÇѼö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ¼®À¯ ¹× °¡½º, °Ç¼³, Á¦Á¶ µîÀÇ ¾÷°è¿¡¼´Â ¿, ºÒ²É, ¿ëÀ¶ ±Ý¼ÓÀÇ ºñ»êÀ¸·ÎºÎÅÍ ÀÛ¾÷¿øÀ» Áö۱â À§Çؼ º¸È£º¹À» ä¿ëÇÏ´Â ÄÉÀ̽º°¡ ´Ã°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±ÞÁõÀº ¼¼°è ¾ÈÀü±â°üÀÇ ¾ö°ÝÇÑ ÄÄÇöóÀ̾𽺠¿ä°Ç¿¡ ÀÇÇØ °ÈµÇ°í ÀÖÀ¸¸ç, ±â¾÷Àº °íǰÁú·Î ÀÎÁõµÈ ¿ø´Ü¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Á÷¿ø º¹Áö ÈÄ»ý¿¡ ´ëÇÑ ±â¾÷ Ã¥ÀÓ µ¿Çâ Áõ°¡´Â ½ÃÀå ¼ºÀåÀÇ ÀáÀç·ÂÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù.
³ôÀº Á¦Á¶ ¹× Á¶´Þ ºñ¿ë
³»È¼º ¿ø´Ü Á¦Á¶¿¡´Â °í±Þ ±â¼ú, Ư¼ö ÈÇÐÁ¦Ç° ¹× ¾ö°ÝÇÑ Å×½ºÆ®°¡ Æ÷ÇԵǾî Á¦Á¶ ºñ¿ëÀÌ Å©°Ô »ó½ÂÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ³ôÀº ºñ¿ëÀº ºñ¿ëÀÌ ¸¹ÀÌ µå´Â °æ¿ì°¡ ¸¹À¸¸ç, ƯÈ÷ ºñ¿ë¿¡ ¹Î°¨ÇÑ Áö¿ª¿¡¼´Â Áß¼Ò±â¾÷¿¡¼ÀÇ Ã¤¿ëÀÌ Á¦Çѵ˴ϴÙ. °Ô´Ù°¡ Áö¼ÓÀûÀÎ R&D ÅõÀÚ¿Í ¾ö°ÝÇÑ ¾ÈÀü ÀÎÁõÀ» ÁؼöÇÒ Çʿ伺Àº Á¦Á¶¾÷ü¿¡ ÀçÁ¤Àû ºÎ´ãÀ» ÁÖ°í ÀÖ½À´Ï´Ù. ¿øÀç·á °¡°ÝÀÇ º¯µ¿Àº ¼öÀͼºÀ» ´õ¿í ¾ÇȽÃ۰í, Àúºñ¿ë ´ëü¹°·ÎºÎÅÍÀÇ °æÀï ¾Ð·ÂÀº ƯÈ÷ ¿¹»ê¿¡ ¹Î°¨ÇÑ »ê¾÷ ±¸¸ÅÀÚ¸¦ º¸À¯ÇÑ ½ÅÈï±¹¿¡¼ ½ÃÀå È®´ë¸¦ Á¦ÇÑÇÒ ¼ö ÀÖ½À´Ï´Ù.
°æ·® ³¿¬ ¼¶À¯ÀÇ Çõ½Å
¼¶À¯ °øÇÐÀÇ Áö¼ÓÀûÀÎ ¹ßÀüÀ¸·Î ¾ÈÀü ¼º´ÉÀ» ÀúÇϽÃŰÁö ¾ÊÀ¸¸é¼ °¡º±°í Åë±â¼ºÀÌ ³ôÀº ³¿¬¼º ¼¶À¯·Î°¡´Â ±æÀÌ ¿¸®°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº ¹æÀ§, ½ºÆ÷Ã÷, ¼Ò¹æ µî ÄèÀû¼º°ú ±âµ¿¼ºÀÌ º¸È£¸¸Å Áß¿äÇÑ »ê¾÷¿¡ ´ëÀÀÇϰí ÀÖ½À´Ï´Ù. Èí½À ¹ß»ê¼º, Á¤Àü±â ¹æÁö, ³»ÈÇмº µîÀÇ Æ¯¼ºÀ» °®Ãá ´Ù±â´É ÆÐºê¸¯ÀÇ °³¹ßÀº ½ÃÀå ÆøÀ» ´õ¿í ³ÐÈ÷°í ÀÖ½À´Ï´Ù. ³ª³ë±â¼ú, ¹ÙÀÌ¿À ¼¶À¯, Áö¼Ó °¡´ÉÇÑ »ý»ê ¹æ¹ýÀ» Ȱ¿ëÇÏ´Â ½ÃÀå ¼¼ºÐȴ ȯ°æ ÀǽÄÀÌ ³ôÀº ±¸¸ÅÀÚ¸¦ À¯Ä¡ÇÏ¿© »õ·Î¿î °í°´ÃþÀ» È®º¸ÇÏ°í ¼¼°è ½ÃÀå¿¡¼ °æÀï·ÂÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù.
¾ö°ÝÇÑ ±ÔÁ¤ Áؼö ¹× ÀÎÁõ ±âÁØ
³ôÀº ¾ÈÀü ±âÁØÀº ¿ø´ÜÀÇ ½Å·Ú¼ºÀ» º¸ÀåÇÏ´Â ÇÑÆí, ½Å±Ô ÁøÃâ±â¾÷À̳ª ¼Ò±Ô¸ð »ý»êÀÚ¿¡°Ô´Â À庮ÀÌ µË´Ï´Ù. NFPA, EN ISO, ASTM°ú °°Àº ±¹Á¦ Ç¥ÁØÀ» ÁؼöÇÏ·Á¸é ºñ¿ëÀÌ ¸¹ÀÌ µå´Â ½ÃÇè, ¹®¼È ¹× ÁøÈ ¿ä±¸ »çÇ×À» ÃæÁ·Çϱâ À§ÇØ ºó¹øÇÑ ¾÷µ¥ÀÌÆ®°¡ ÇÊ¿äÇÕ´Ï´Ù. ÀÎÁõÀ» ÃëµæÇÏÁö ¸øÇÏ¸é ±ÔÁ¦»ê¾÷¿¡¼ Á¦Ç°ÀÇ ¼ö¿ëÀÌ Á¦ÇÑµÇ¾î ½ÃÀå¿¡ µµ´ÞÇÏ´Â °æ¿ì°¡ ³·¾ÆÁú ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ Áö¿ªº°·Î ±ÔÁ¦°¡ ´Ù¸£±â ¶§¹®¿¡ ¼öÃâ¿ë Á¦Ç°ÀÇ Ç¥ÁØÈ°¡ º¹ÀâÇØÁý´Ï´Ù. ÄÄÇöóÀ̾𽺠À§¹ÝÀÇ À§ÇèÀº ÆÇ¸Å¿¡ ¿µÇâÀ» ¹ÌÄ¥ »Ó¸¸ ¾Æ´Ï¶ó Á¦Á¶¾÷üÀÇ È£Æò ÇÇÇØ·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù.
COVID-19ÀÇ À¯ÇàÀº °ø±Þ¸ÁÀ» È¥¶õ½º·´°Ô Çϰí, ¿ø·áÀÇ ÀÔ¼ö¸¦ ´ÊÃß°í, Á¦Á¶ ½Ã¼³ÀÇ ÀϽÃÀûÀÎ °¡µ¿ Á¤Áö·Î À̾îÁ®, ³»È¼º ¿ø´ÜÀÇ »ý»ê ½ºÄÉÁÙ¿¡ ¿µÇâÀ» ÁÖ¾ú½À´Ï´Ù. °Ç¼³¾÷, Á¦Á¶¾÷, ¼®À¯ ¹× °¡½º »ç¾÷ÀÌ °¨¼ÓÇ߱⠶§¹®¿¡ »ê¾÷¿ë¼ö¿ä´Â ´Ü±âÀûÀ¸·Î °¨¼ÒÇß½À´Ï´Ù. ±×·¯³ª À¯Çà ÈÄ¿¡ Á÷Àå ¾ÈÀü¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼ °íǰÁúÀÇ ¹æÈ£ ¿ø´Ü¿¡ ´ëÇÑ °ü½ÉÀÌ ´Ù½Ã ³ô¾ÆÁ³½À´Ï´Ù. ÀÌ À§±â´Â ¶ÇÇÑ ¼¶À¯ Á¦Á¶ÀÇ ÀÚµ¿È¸¦ °¡¼ÓÈÇϰí, °ÀÎÇÑ °ø±Þ¸ÁÀÇ Çʿ伺À» °Á¶Çϰí, ½ÃÀå ÁøÃâ±â¾÷ÀÇ Àü·«Àû Á¶´Þ°ú Á¦Á¶ ±âÁöÀÇ ´Ù¾çȸ¦ ÃËÁøÇß½À´Ï´Ù.
°íÀ¯ ³»È¼º ¿ø´Ü ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë°¡ µÉ Àü¸Á
³¿¬¼º ¼¶À¯Àº ó¸®µÈ ÆÐºê¸¯¿¡ ºñÇØ ¶Ù¾î³ ³»±¸¼º, ¿À·¡ Áö¼ÓµÇ´Â º¸È£ Ư¼º ¹× À¯Áöº¸¼ö ¿ä±¸ »çÇ×À» ÁÙÀÓÀ¸·Î½á ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¿ø´ÜÀº ¼¼Å¹Çصµ ¾Ä°Ü³ª°¡°Å³ª ¿ÈÇÏÁö ¾Ê´Â ³¿¬¼ºÀ» ³»ÀåÇϰí ÀÖÀ¸¸ç, »ê¾÷¿ë À¯´ÏÆû, ±º¿ëǰ, ¼Ò¹æº¹¿¡ ÃÖÀûÀÔ´Ï´Ù. ÀϰüµÈ ¾ÈÀü¼º´ÉÀÌ ¿ä±¸µÇ´Â ºÐ¾ß¿¡¼ÀÇ Ã¤¿ëÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, ƯÈ÷ ³ëµ¿¾ÈÀü±ÔÁ¦°¡ ¾ö°ÝÇÑ Áö¿ª¿¡¼ ¼ö¿ä°¡ Áö¼ÓµÇ°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ¶ó¹Ìµå ºÐ¾ßÀÇ CAGRÀÌ °¡Àå ³ô¾ÆÁú Àü¸Á
¿¹Ãø ±â°£ µ¿¾È ¾Æ¶ó¹Ìµå ºÐ¾ß´Â ¶Ù¾î³ °µµ ´ë Áß·®ºñ, ¿ ¾ÈÁ¤¼º, ³»ÈÇмºÀ» µÞ¹ÞħÇϸç, °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. °í¼º´É º¸È£º¹¿¡ ³Î¸® »ç¿ëµÇ´Â ¾Æ¶ó¹Ìµå ¼¶À¯´Â ¼Ò¹æ, Ç×°ø¿ìÁÖ ¹× ¹æÀ§ »ê¾÷¿¡¼ ¼±È£µË´Ï´Ù. ¼¶À¯ ±â¼úÀÇ Áøº¸¿Í ¹Î°£ ¾ÈÀü Àåºñ¿¡ÀÇ ¿ëµµ È®´ë°¡ ÇÑÃþ ´õ ä¿ëÀ» °¡¼Ó½Ã۰í ÀÖ½À´Ï´Ù. ÀÌ ºÎ¹®ÀÇ ¼ºÀåÀº ¾ö°ÝÇÑ ¾ÈÀü ¹× ¼º´É ±âÁØÀ» À¯ÁöÇÏ¸é¼ Æí¾ÈÇÔÀ» ³ôÀÌ´Â ÇÏÀ̺긮µå È¥ÇÕ ¿ø´Ü°úÀÇ È£È¯¼ºÀ¸·Îµµ Áö¿øµË´Ï´Ù.
¿¹Ãø±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº ±Þ¼ÓÇÑ »ê¾÷È, Á¦Á¶°ÅÁ¡ È®´ë, ½ÅÈï°æÁ¦±ÇÀÇ ¾ÈÀü±ÔÁ¦ °È¿¡ °ßÀεǾî ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áß±¹, Àεµ, ÀϺ»°ú °°Àº ±¹°¡µéÀº ¼®À¯ ¹× °¡½º, °Ç¼³, ÀÚµ¿Â÷ ºÎ¹®¿¡¼ »ê¾÷¿ë º¸È£º¹ ¼ö¿ä°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. Á÷Àå ¾ÈÀü ÄÄÇöóÀ̾𽺸¦ ÃßÁøÇÏ´Â Á¤ºÎ ÀÌ´Ï¼ÅÆ¼ºê´Â ´õ¿í ä¿ë¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ Áö¿ª¿¡¼´Â ºñ¿ë È¿À²ÀûÀÎ Á¦Á¶ ´É·ÂÀ» ÀÌ¿ëÇÒ ¼ö Àֱ⠶§¹®¿¡ ¼¼°è ±â¾÷Àº ÇöÁö¿¡ »ý»ê ½Ã¼³À» ¼³¸³Çϵµ·Ï À¯Ä¡Çϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì´Â °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´Â °·ÂÇÑ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©, °í±Þ º¸È£ Àåºñ äÅà Ȯ´ë, °í¼º´É ÆÐºê¸¯ÀÇ R&D ÅõÀÚ Áõ°¡·Î ÀÎÇÑ °ÍÀÔ´Ï´Ù. ÁÖ¿ä »ê¾÷ ¸®´õÀÇ Á¸Àç¿Í ¼Ò¹æ, ¹æ¾î, »ê¾÷ ÀÀ¿ë ºÐ¾ß¿¡ Çõ½ÅÀûÀÎ ¼ÒÀçÀÇ ±Þ¼ÓÇÑ ÅëÇÕÀÌ ½ÃÀå È®´ë¸¦ µÞ¹ÞħÇÕ´Ï´Ù. ¶ÇÇÑ Á÷¾÷ À§Çè¿¡ ´ëÇÑ ÀǽÄÀÌ ³ô¾ÆÁö°í ³ëµ¿ÀÚ ¾ÈÀü¿¡ ´ëÇÑ ±â¾÷ÀÇ ³ë·ÂÀÌ ¼ö¿ä¸¦ °ÈÇÏ°í ºÏ¹Ì¸¦ ±â¼úÁøº¸ÀÇ ¸®´õ·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Fire-resistant Fabrics Market is accounted for $3.7 billion in 2025 and is expected to reach $5.4 billion by 2032 growing at a CAGR of 6.2% during the forecast period. Fire-resistant fabrics are textiles engineered to resist ignition and prevent the spread of fire. They are either inherently flame-resistant or chemically treated to enhance fire protection. Used widely in protective apparel, industrial settings, and upholstery, these fabrics help safeguard users and property from fire hazards. Common materials include aramid, cotton treated with flame retardants, and wool, chosen based on durability, comfort, and the level of protection required.
Survey Analysis: According to a recent study, biomacromolecules offer unexpected flame retardant properties when coated on synthetic substrates such as cotton, polyester, and others.
Rising demand for industrial safety apparel
Fueled by growing workplace safety regulations and heightened awareness of occupational hazards, the demand for fire-resistant fabrics in industrial apparel is surging. Industries such as oil & gas, construction, and manufacturing increasingly adopt protective clothing to safeguard workers against heat, flames, and molten metal splashes. This surge is reinforced by strict compliance requirements from global safety bodies, pushing companies to invest in high-quality, certified fabrics. Moreover, the rising trend of corporate responsibility toward employee well-being is amplifying market growth potential.
High production and procurement costs
The manufacturing of fire-resistant fabrics involves advanced technology, specialized chemicals, and rigorous testing, significantly raising production expenses. These high costs often translate into premium pricing, limiting adoption among small and medium-sized enterprises, particularly in cost-sensitive regions. Additionally, the need for ongoing R&D investments and compliance with stringent safety certifications adds financial strain for manufacturers. Fluctuations in raw material prices further challenge profitability, while competitive pressure from low-cost alternatives may restrict market expansion, particularly in emerging economies with budget-conscious industrial buyers.
Innovation in lightweight flame-retardant textiles
Ongoing advancements in textile engineering are paving the way for lighter, more breathable flame-retardant fabrics without compromising safety performance. Such innovations cater to industries where comfort and mobility are as critical as protection, including defense, sports, and firefighting. Development of multifunctional fabrics offering moisture-wicking, anti-static, and chemical resistance properties further widens market scope. Manufacturers leveraging nanotechnology, bio-based fibers, and sustainable production methods can attract eco-conscious buyers, thereby capturing new customer segments and enhancing their competitive positioning in the global market.
Stringent compliance and certification standards
While high safety benchmarks ensure fabric reliability, they also create barriers for new entrants and smaller producers. Compliance with global standards such as NFPA, EN ISO, and ASTM involves costly testing, documentation, and frequent updates to meet evolving requirements. Failure to secure certifications can limit product acceptance in regulated industries, reducing market reach. Additionally, differing regional regulations create complexities in standardizing products for export. Non-compliance risks not only impact sales but can also lead to reputational damage for manufacturers.
The COVID-19 pandemic disrupted supply chains, delayed raw material availability, and led to temporary shutdowns in manufacturing facilities, affecting production timelines for fire-resistant fabrics. Industrial demand experienced short-term declines as construction, manufacturing, and oil & gas operations slowed. However, increased focus on workplace safety post-pandemic reinvigorated interest in high-quality protective fabrics. The crisis also accelerated automation in textile manufacturing and emphasized the need for resilient supply chains, encouraging strategic sourcing and diversified manufacturing bases among leading market participants.
The inherent fire-resistant fabrics segment is expected to be the largest during the forecast period
The inherent fire-resistant fabrics segment is expected to account for the largest market share during the forecast period, owing to its superior durability, long-lasting protective properties, and reduced maintenance requirements compared to treated fabrics. These fabrics offer built-in flame resistance that does not wash out or degrade over time, making them ideal for industrial uniforms, military gear, and firefighting apparel. Increasing adoption in sectors requiring consistent safety performance drives sustained demand, particularly in regions with stringent occupational safety regulations.
The aramid segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the aramid segment is predicted to witness the highest growth rate, impelled by its exceptional strength-to-weight ratio, thermal stability, and chemical resistance. Widely used in high-performance protective clothing, aramid fabrics are preferred in firefighting, aerospace, and defense industries. Advancements in fiber technology and expanding applications in civilian safety gear further accelerate adoption. The segment's growth is also supported by its compatibility with hybrid fabric blends, enhancing comfort while maintaining rigorous safety and performance standards.
During the forecast period, the Asia Pacific region is expected to hold the largest market share, driven by rapid industrialization, expanding manufacturing bases, and increasing safety regulations across emerging economies. Countries like China, India, and Japan are witnessing heightened demand for industrial protective clothing in oil & gas, construction, and automotive sectors. Government initiatives promoting workplace safety compliance further fuel adoption. Additionally, the availability of cost-effective manufacturing capabilities in the region attracts global players to establish production facilities locally.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR attributed to strong regulatory frameworks, growing adoption of advanced protective gear, and increased investment in R&D for high-performance fabrics. The presence of key industry leaders and rapid integration of innovative materials into firefighting, defense, and industrial applications bolster market expansion. Additionally, rising awareness of occupational hazards and corporate commitment to worker safety reinforce demand, positioning North America as a leader in technological advancements.
Key players in the market
Some of the key players in Fire-resistant Fabrics Market include DuPont de Nemours, Inc., Koninklijke Ten Cate BV, Milliken & Company, Indorama Ventures, Teijin Limited, Kaneka Corporation, Solvay S.A., W. L. Gore & Associates (Gore / Westex), Lenzing AG, PBI Performance Products, Inc., Nam Liong Global Corporation, Klopman International, Baltex (Baltex Group), SINTEX, Inc., LEVITEX, XM Textiles, Henan Zhuoer Protective Technology Co., Ltd. and Xinxiang Yulong Textile Co., Ltd.
In March 2024, Hach introduced the new BioTector B7000 Online ATP Monitoring System for real-time detection of microbial contamination in water treatment processes. It provides rapid results in 5-10 minutes.
In March 2024, Thermo Fisher launched the new DionexInuvion Ion Chromatography system designed for simplified and versatile ion analysis for environmental, industrial and municipal water testing labs.
In February 2024, Thermo Fisher announced the launch of its 'Make in India' Class 1 analyser-based Continuous Ambient Air Quality Monitoring System (CAAQMS) to support India's environmental monitoring efforts.