Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ¼¼·ý ½ÃÀåÀº 2025³â 1¾ï 5,380¸¸ ´Þ·¯¸¦ Â÷ÁöÇϰí, 2032³â¿¡´Â 2¾ï 4,690¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ¿¹Ãø ±â°£ µ¿¾È CAGR 7%¿¡ ´ÞÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
¼¼·ýÀº ÈñÅä·ù ±Ý¼ÓÀ¸·Î Ã˸Å, ¿¬¸¶Á¦, À¯¸® ¹× ¼¼¶ó¹ÍÀÇ Á¦Á¶¿¡ ÀÚÁÖ »ç¿ëµË´Ï´Ù. »óó, ºÎ½Ä, º¯»ö¿¡ ´ëÇÑ ³»¼ºÀ» ³ô¿© Á¦Ç°ÀÇ ³»±¸¼º°ú ǰÁúÀ» Çâ»ó½Ãŵ´Ï´Ù. ÀÚµ¿Â÷ »ê¾÷°ú À¯¸® »ê¾÷¿¡¼ »êÈ ¼¼·ýÀº ¾Õ À¯¸® ¹× ±¤ÇÐ ·»ÁîÀÇ ¿¬¸¶Á¦·Î ³Î¸® »ç¿ëµË´Ï´Ù. µ¶Æ¯ÇÑ ÈÇÐÀû Ư¼ºÀ¸·Î ÀÎÇØ Ã˸ŠÄÁ¹öÅÍ ¹× Àڿܼ± Èí¼ö ÄÚÆÃÀÇ Á¦Á¶¿¡µµ »ç¿ëµË´Ï´Ù.
À¯¸® ¿¬¸¶ ¼ö¿ä Áõ°¡
À¯¸® ¿¬¸¶ ¼ö¿ä Áõ°¡´Â ƯÈ÷ °íÁ¤¹Ð ±¤ÇÐ ¹× µð½ºÇ÷¹ÀÌ ÀÀ¿ë ºÐ¾ß¿¡¼ ¼¼·ý ½ÃÀåÀÇ ÁÖ¿ä ÃËÁø¿äÀÎÀÔ´Ï´Ù. »êȼ¼·ýÀº ¶Ù¾î³ ³»¸¶¸ð¼º°ú ºÎµå·¯¿î ¸¶°¨ ǰÁú·Î ÀüÀÚ±â±â, ÀÚµ¿Â÷ À©µå½ºÅ©¸°, ±¤ÇÐ ·»ÁîÀÇ À¯¸® Ç¥¸éÀ» ¿¬¸¶Çϴµ¥ ³Î¸® »ç¿ëµË´Ï´Ù. ¼ÒºñÀÚ¿ë ÀüÀÚ±â±â¿Í °ÇÃà¿ë À¯¸® »ê¾÷ÀÇ È®´ë°¡ ¼ö¿ä¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÷´Ü µð½ºÇ÷¹ÀÌ ±â¼ú°ú ÀÚµ¿Â÷¿ë ¾ÈÀü À¯¸®ÀÇ Ã¤¿ëÀÌ Áõ°¡ÇÏ´Â °¡¿îµ¥, À¯¸® ¿¬¸¶ ºÐ¾ß´Â °è¼ÓÇØ¼ °·ÂÇÑ ¼¼·ý ¼Òºñ¸¦ À¯ÁöÇϰí ÀÖ½À´Ï´Ù.
Á¦ÇÑµÈ ÈñÅä·ù ä±¼·®
ÈñÅä·ùÀÇ Ã¤±¼·®Àº Á¦ÇѵǾî ÀÖÀ¸¸ç °ø±Þ¸ÁÀÌ ¼Ò¼öÀÇ Ã¤±¼ Áö¿ª¿¡ Å©°Ô ÀÇÁ¸Çϱ⠶§¹®¿¡ ¼¼·ý ½ÃÀåÀÇ ÁÖ¿ä ¾ïÁ¦¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù. ä±¼ÀÇ º¹À⼺, ȯ°æ ¹®Á¦, ÁöÁ¤ ÇÐÀû Á¦ÇÑÀ¸·Î ÀÎÇØ »ý»ê·®ÀÌ Á¦ÇѵǴ °æ¿ì°¡ ¸¹À¸¸ç °ø±ÞÀÌ ºÒ¾ÈÁ¤ÇØÁý´Ï´Ù. ÀÌ Èñ¼Ò¼ºÀº °¡°Ý º¯µ¿À¸·Î À̾îÁ® ¼¼·ýÀÇ ¾ÈÁ¤ÀûÀÎ °ø±Þ¿¡ ÀÇÁ¸ÇÏ´Â ´Ù¿î½ºÆ®¸² »ê¾÷¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. ¶ÇÇÑ Ã¤±¼ÀÌ Æ¯Á¤ ±¹°¡¿¡ ÁýÁßµÇ¸é °ø±Þ À§ÇèÀÌ Áõ°¡Çϰí ÃÖÁ¾ »ç¿ëÀÚ°¡ ¹«¿ª ºÐÀï ¹× ¼öÃâ ±ÔÁ¦ Á¤Ã¥ÀÇ ¿µÇâÀ» ¹Þ±â ½±½À´Ï´Ù.
½ÅÀç»ý¿¡³ÊÁö¼ö¿ä Áõ°¡
½ÅÀç»ý¿¡³ÊÁö ÀÀ¿ë ºÐ¾ß¿¡ ´ëÇѼö¿ä Áõ°¡´Â ¼¼·ý ½ÃÀå¿¡ À¯¸ÁÇÑ ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. ¼¼·ý ±â¹Ý Àç·á´Â ûÁ¤ ¿¡³ÊÁö ÀÚµ¿Â÷, °íü »êȹ° ¿¬·áÀüÁö, žçÀüÁöÆÇ Á¦Á¶¿ë Ã˸ŠÄÁ¹öÅÍ¿¡¼ Á¡Á¡ ´õ ¸¹ÀÌ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. Àúź¼Ò ±â¼ú·ÎÀÇ Àüȯ°ú Àç»ý °¡´ÉÇÑ ÀÎÇÁ¶ó ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ Á¤ºÎ Àμ¾Æ¼ºê´Â ¼¼·ýÀÇ Àü·«Àû °¡Ä¡¸¦ ³ôÀ̰í ÀÖ½À´Ï´Ù. ûÁ¤ ¿¡³ÊÁö ½Ã½ºÅÛÀº È¿À²¼º°ú ³»±¸¼ºÀ» À§ÇØ °í¼º´É Àç·á¸¦ ÇÊ¿ä·Î ÇϹǷÎ, °í±Þ ¿¡³ÊÁö ¼Ö·ç¼ÇÀ» °¡´ÉÇÏ°Ô ÇÏ´Â ¼¼·ýÀÇ ¿ªÇÒÀº ¿¹Ãø ±â°£ µ¿¾È Å©°Ô È®´ëµÉ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
´ëü Àç·á·Î ´ëü
´ëü Àç·á¿¡ ÀÇÇÑ ´ëü´Â ¼¼·ýÀÇ Àå±âÀûÀÎ ½ÃÀå °¡´É¼º¿¡ ´ëÇÑ ÇöÀúÇÑ À§ÇùÀÌ µË´Ï´Ù. ƯÁ¤ ¿ëµµ¿¡¼´Â ÇÕ¼º ¿¬¸¶Á¦, ¾Ë·ç¹Ì³ª ±â¹Ý ¿¬¸¶Á¦ ¶Ç´Â ºñÈñ¼Ò Á¢Áö Ã˸ÅÀÇ Áøº¸·Î ¼¼·ý¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ °¨¼ÒÇÕ´Ï´Ù. ºñ¿ë È¿À²ÀûÀÌ°í ½±°Ô »ç¿ëÇÒ ¼ö ÀÖ´Â ´ëüǰÀº ¿ø·á °¡°Ý º¯µ¿À» ¿ÏÈÇÏ·Á´Â »ê¾÷¿¡ È£¼ÒÇÕ´Ï´Ù. °Ô´Ù°¡ ³ª³ëÀç·á¿Í ´ëüÈÇÕ¹°ÀÇ ¿¬±¸°³¹ßÀÌ ÁøÇàµÇ°í Àֱ⠶§¹®¿¡ ƯÈ÷ ¼º´ÉÂ÷À̰¡ Àû°í ºñ¿ëÀý°¨ÀÌ Áß¿äÇÑ ±¸¸Å¿äÀÎÀÌ µÇ´Â ºÐ¾ß¿¡¼´Â ´ëüǰÀÇ Ã¤¿ëÀÌ °¡¼ÓµÉ °¡´É¼ºÀÌ ÀÖ½À´Ï´Ù.
COVID-19ÀÇ ´ëÀ¯ÇàÀº ´çÃÊ Ã¤±¼ Á¤Áö, Á¦Á¶ Ȱµ¿ ÀúÇÏ, ¼¼°è ¹«¿ª Á¦ÇÑÀ» ÅëÇØ ¼¼·ý ½ÃÀåÀ» È¥¶õ½ÃÄ×½À´Ï´Ù. ±×·¯³ª »ê¾÷ÀÌ È¸º¹µÊ¿¡ µû¶ó¼ö¿ä´Â ÀüÀÚ±â±â, ÀÚµ¿Â÷, Àç»ý°¡´É¿¡³ÊÁö ºÐ¾ß¿¡¼ °·ÂÇÏ°Ô È¸º¹µÇ¾ú½À´Ï´Ù. °¡Àü ÆÇ¸ÅÀÇ ±ÞÁõÀº ÀÎÇÁ¶ó ÅõÀÚ¿Í ÇÔ²² À¯¸® ¿¬¸¶¿Í Ã˸Š¿ëµµ¸¦ ºÎȰ½ÃÄ×½À´Ï´Ù. ´Ü±âÀûÀÎ °ø±Þ¸Á ¹®Á¦°¡ °è¼ÓµÇ¾úÁö¸¸, À¯Çà ÈÄ È¯°æÀº ź·ÂÀÖ´Â ¿ø·á Á¶´ÞÀÇ Á߿伺À» °Á¶Çϰí Á¦Á¶¾÷ü¿¡°Ô °ø±Þ ±â¹ÝÀÇ ´Ù¾çÈ¿Í ÈñÅä·ù ¿ø¼ÒÀÇ ÀçȰ¿ë °³³äÀ» °ËÅäÇϵµ·Ï Ã˱¸Çß½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È »êȼ¼·ý ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ °ÍÀ¸·Î ¿¹»ó
¼¼·ý »êȹ°ÀÇ ºÎ¹®Àº À¯¸® ¿¬¸¶, Ã˸ŠÄÁ¹öÅÍ ¹× UV ¿©°ú¿¡¼ÀÇ ±¤¹üÀ§ÇÑ »ç¿ë¿¡ ÀÇÇØ µÞ¹ÞħµÇ¸ç ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ³ôÀº ÈÇÐÀû ¾ÈÁ¤¼º°ú ¿¬¸¶ È¿À²·Î ¾Ë·ÁÁø »êȼ¼·ýÀº ÀüÀÚ¿¡¼ ÀÚµ¿Â÷ Á¦Á¶¿¡ À̸£±â±îÁö ±¤¹üÀ§ÇÑ »ê¾÷¿¡¼ ¼±È£µË´Ï´Ù. ÀÌ ¹°ÁúÀÇ ´Ù¿ëµµ´Â Á¤È ±â¼úÀÇ Áøº¸¿Í ÇÔ²² ¿©·¯ ºÐ¾ß¿¡ °ÉÄ£ °·ÂÇѼö¿ä¸¦ º¸ÀåÇÏ°í ¼¼·ý ½ÃÀå Àüü¿¡¼ Áö¹èÀû ÁöÀ§¸¦ È®º¸Çϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÐ»ê ºÎ¹®ÀÌ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»ó
¿¹Ãø ±â°£ µ¿¾È Á¤¹Ð ±¤ÇÐ, ¹ÝµµÃ¼ Á¦Á¶ ¹× °íµµ ÄÚÆÃ ¼Ö·ç¼ÇÀÇ ¿ëµµ Áõ°¡¿¡ ¿µÇâÀ» ¹ÞÀ¸¸ç ºÐ»ê ºÐ¾ß°¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¼¼·ý ºÐ»ê¾×Àº Çڵ鸵 °³¼±, ±ÕÀÏÇÑ ÀÔÀÚ ºÐÆ÷, ÀÚµ¿ ¿¬¸¶ ½Ã½ºÅÛ°úÀÇ È£È¯¼ºÀ» Á¦°øÇϸç ÷´Ü Á¦Á¶ ȯ°æ¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ÀüÀÚ±â±â³ª ž籤 ÆÐ³ÎÀÇ ÃÊÆòȰ Ç¥¸é¿¡ ´ëÇѼö¿ä Áõ°¡´Â ºÐ»ê¾×À» ¼¼°è ¼¼·ý Á¦Ç° Æ÷Æ®Æú¸®¿À¿¡¼ Áß¿äÇÑ ÃËÁø¿äÀÎÀ¸·Î ÀÚ¸®¸Å±èÇÏ¿© ä¿ëÀ» ´õ¿í °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº ÀüÀÚ±â±â Á¦Á¶, ÀÚµ¿Â÷ »ý»ê, À¯¸® »ê¾÷ÀÇ ¿ìÀ§¿¡ µû¶ó ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áß±¹, ÀϺ», Çѱ¹ µîÀÇ ±¹°¡´Â °í±Þ Á¦Á¶ ±âÁö¿Í °·ÂÇÑ ¼öÃâ ½ÃÀåÀ» °¡Áö°í Àֱ⠶§¹®¿¡ ¼¼·ýÀÇ ÁÖ¿ä ¼ÒºñÀÚÀÔ´Ï´Ù. °Ô´Ù°¡ Áß±¹ÀÇ ´ë±Ô¸ð ÈñÅä·ù ä±¼ Ȱµ¿Àº Áö¿ª °ø±Þ·ÂÀ» Áö¿øÇϰí, Àç»ý°¡´É ¿¡³ÊÁö ÇÁ·ÎÁ§Æ®ÀÇ È®´ë´Â »ê¾÷¿ë ºÐ¾ß¿¡¼ ¼¼·ý ±â¹Ý Àç·á¿¡ ´ëÇѼö¿ä¸¦ ´õ¿í Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù.
¿¹Ãø±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ÀÌ´Â Àç»ý°¡´É ¿¡³ÊÁö ±¸»óÀÇ È®´ë, ±â¼úÀÇ Áøº¸, °íÁ¤¹Ð Á¦Á¶ ºÎ¹®ÀÇ ¼ºÀå¿¡ °ßÀεǰí ÀÖ½À´Ï´Ù. ž籤 ¹ßÀü ÀÎÇÁ¶ó, Àü±âÀÚµ¿Â÷ »ý»ê, ÷´Ü À¯¸® °¡°ø¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡´Â ¼¼·ý ±â¹Ý Á¦Ç°¿¡ ´ëÇÑ °ÇÑ ¼ö¿ä¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ±¹³» ÈñÅä·ù ä±¼ ¹× ÀçȰ¿ë ´É·ÂÀ» °³¹ßÇÏ´Â Àü·«Àû ³ë·ÂÀº °ø±Þ ¾ÈÀü¼ºÀ» °ÈÇϰí ÀÌ Áö¿ªÀÇ Áö¼ÓÀûÀÎ ½ÃÀå ¼ºÀåÀ» Áö¿øÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
According to Stratistics MRC, the Global Cerium Market is accounted for $153.8 million in 2025 and is expected to reach $246.9 million by 2032 growing at a CAGR of 7% during the forecast period. Cerium is a rare earth metal often used as a catalyst, polishing agent, and in glass and ceramics manufacturing. It improves the durability and quality of products by enhancing resistance to scratches, corrosion, and discoloration. In automotive and glass industries, cerium oxide is a widely used abrasive for polishing windshields and optical lenses. Its unique chemical properties also make it valuable in catalytic converters and in producing UV-absorbing coatings.
Increasing demand in glass polishing
Increasing demand in glass polishing is a major driver for the cerium market, particularly in high-precision optical and display applications. Cerium oxide is widely used for polishing glass surfaces in electronics, automotive windshields, and optical lenses due to its superior abrasion resistance and smooth finish quality. The expansion of consumer electronics and architectural glass industries is further fueling demand. With rising adoption of advanced display technologies and automotive safety glass, the glass polishing segment continues to sustain strong cerium consumption.
Limited rare earth mining output
Limited rare earth mining output acts as a key restraint for the cerium market, as the supply chain is heavily dependent on a small number of mining regions. Extraction complexities, environmental concerns, and geopolitical restrictions often limit production volumes, creating supply volatility. This scarcity can lead to price fluctuations, impacting downstream industries reliant on stable cerium availability. Additionally, the concentration of mining in specific countries heightens supply risk, making end-users vulnerable to trade disputes and export control policies.
Growing demand in renewable energy
Growing demand in renewable energy applications offers a promising opportunity for the cerium market. Cerium-based materials are increasingly utilized in catalytic converters for clean energy vehicles, solid oxide fuel cells, and solar panel manufacturing. The transition toward low-carbon technologies and government incentives for renewable infrastructure projects are boosting cerium's strategic value. As clean energy systems require high-performance materials for efficiency and durability, cerium's role in enabling advanced energy solutions is set to expand significantly over the forecast period.
Substitution by alternative materials
Substitution by alternative materials presents a notable threat to cerium's long-term market potential. In certain applications, advancements in synthetic abrasives, alumina-based polishing agents, or non-rare-earth catalysts are reducing reliance on cerium. Cost-effective and more readily available substitutes appeal to industries seeking to mitigate raw material price volatility. Furthermore, ongoing R&D in nanomaterials and alternative compounds could accelerate the adoption of replacements, especially in sectors where performance differences are marginal and cost savings are a critical purchasing factor.
The COVID-19 pandemic initially disrupted the cerium market through mining shutdowns, reduced manufacturing activity, and global trade restrictions. However, as industries recovered, demand rebounded strongly in electronics, automotive, and renewable energy sectors. The surge in consumer electronics sales, coupled with infrastructure investments, revived glass polishing and catalytic applications. While short-term supply chain challenges persisted, the post-pandemic environment emphasized the importance of resilient raw material sourcing, prompting manufacturers to diversify supply bases and explore recycling initiatives for rare earth elements.
The cerium oxide segment is expected to be the largest during the forecast period
The cerium oxide segment is expected to account for the largest market share during the forecast period, propelled by its extensive use in glass polishing, catalytic converters, and UV filtration. Known for its high chemical stability and polishing efficiency, cerium oxide is a preferred choice in industries ranging from electronics to automotive manufacturing. The material's versatility, coupled with advancements in refining techniques, ensures strong demand across multiple sectors, securing its dominant position in the overall cerium market.
The dispersion segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the dispersion segment is predicted to witness the highest growth rate, influenced by its rising application in precision optics, semiconductor manufacturing, and advanced coating solutions. Cerium dispersions offer improved handling, uniform particle distribution, and compatibility with automated polishing systems, making them ideal for high-tech manufacturing environments. Growing demand for ultra-smooth surfaces in electronics and solar panels is further accelerating adoption, positioning dispersions as a critical growth driver within the global cerium product portfolio.
During the forecast period, the Asia Pacific region is expected to hold the largest market share, fuelled by its dominance in electronics manufacturing, automotive production, and glass industries. Countries such as China, Japan, and South Korea are major consumers of cerium due to their advanced manufacturing bases and strong export markets. Additionally, significant rare earth mining activity in China supports regional supply availability, while expanding renewable energy projects further bolster demand for cerium-based materials in industrial applications.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, driven by expanding renewable energy initiatives, technological advancements, and the growth of high-precision manufacturing sectors. Increased investments in solar power infrastructure, electric vehicle production, and advanced glass processing are creating strong demand for cerium-based products. Furthermore, strategic efforts to develop domestic rare earth mining and recycling capabilities are expected to enhance supply security, supporting sustained market growth in the region.
Key players in the market
Some of the key players in Cerium Market include Sichuan Shenghe Resources, Fujian Xingmin, Nexter, Japan New Metals, IMERYS, China Southern Rare Earth, Ganzhou Yinfu Zinc Industry, Myanmar New Star, China North Rare Earth, Molycorp, Glass Resources, Shandong Zibo Yongxin Mining, Baita Mining, Quantum Materials, Materion Corp, and Tanbreez Mining.
In July 2025, China Southern Rare Earth announced a strategic partnership with Tesla to supply cerium-rich rare earth alloys for next-gen EV battery coatings.
In April 2025, Shenghe Resources announced that its U.S. affiliate, MP Materials, had halted shipments of rare earth minerals for processing due to ongoing tariff impacts from the prior U.S. administration.