ÀÚ°¡Ä¡À¯ Àç·á ½ÃÀå ¿¹Ãø : Á¦Ç°, ÇüÅÂ, ±â¼ú, ¿ëµµ, ÃÖÁ¾ »ç¿ëÀÚ, Áö¿ªº° ºÐ¼®(-2032³â)
Self-Healing Materials Market Forecasts to 2032 - Global Analysis By Product (Concrete, Coatings, Polymers, Asphalt, Fiber-reinforced Composites, Ceramic and Metals), Form, Technology, Application, End User, and By Geography
»óǰÄÚµå : 1787949
¸®¼­Ä¡»ç : Stratistics Market Research Consulting
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 200+ Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,150 £Ü 5,819,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 5,250 £Ü 7,362,000
PDF (2-5 User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷Àå¿¡¼­ 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,350 £Ü 8,905,000
PDF & Excel (Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷ÀåÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇÕ´Ï´Ù. Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ¹× Excel ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 7,500 £Ü 10,518,000
PDF & Excel (Global Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 10ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Stratistics MRC¿¡ µû¸£¸é ¼¼°è ÀÚ°¡Ä¡À¯ Àç·á ½ÃÀåÀº 2025³â 145¾ï ´Þ·¯¿¡ À̸£°í, ¿¹Ãø ±â°£ µ¿¾È CAGRÀÌ 62.5%·Î ¼ºÀåÇϸç, 2032³â¿¡´Â 4,345¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÀÚ°¡Ä¡À¯ Àç·á´Â Àΰ£ÀÇ °³ÀÔ ¾øÀÌ ¼Õ»óÀ» ÀÚµ¿À¸·Î º¹±¸ÇÒ ¼ö ÀÖ´Â Àΰø ¹°ÁúÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¹°ÁúÀº ±Õ¿­À̳ª ÀÀ·Â°ú °°Àº ¹°¸®Àû ¼Õ»ó ÈÄ¿¡ ¿ø·¡ÀÇ Æ¯¼ºÀ» ȸº¹ÇÔÀ¸·Î½á »ý¹°ÇÐÀû ½Ã½ºÅÛÀ» ¸ð¹æÇÕ´Ï´Ù. ÀÚ°¡ Ä¡À¯ ¸ÞÄ¿´ÏÁòÀº ³»ÀåµÈ Ä¡À¯Á¦, °¡¿ªÀûÀÎ È­ÇÐ °áÇÕ, ¿­¿¡ ÀÇÇÑ È°¼ºÈ­ µîÀ» Æ÷ÇÔÇÕ´Ï´Ù. °íºÐÀÚ, ÄÚÆÃ ¹× º¹ÇÕÀç·á¿¡¼­ ÈçÈ÷ º¼ ¼ö ÀÖ´Â ÀÌ·¯ÇÑ Àç·á´Â ³»±¸¼º°ú ¼ö¸íÀ» Çâ»ó½Ãŵ´Ï´Ù. ÀÌ ±¸Á¶´Â ¼Õ»óÀ» °¨ÁöÇÏ°í ¹ÝÀÀÇÏ¸ç ½Ã°£ÀÌ Áö³²¿¡ µû¶ó ¹«°á¼º°ú ±â´ÉÀ» ȸº¹ÇÕ´Ï´Ù.

³»±¸¼ºÀÌ ¿ì¼öÇϰí À¯Áöº¸¼ö°¡ ¿ëÀÌÇÑ ÀÎÇÁ¶ó¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

ź·ÂÀûÀÎ °Ç¼³°ú ½º¸¶Æ® ÀÎÇÁ¶ó¿¡ ´ëÇÑ ¼¼°è ÅõÀÚ Áõ°¡·Î ÀÎÇØ ÀÚ°¡Ä¡À¯ Àç·á´Â ¼ö¸íÀ» ¿¬ÀåÇÏ´Â ±â´ÉÀ¸·Î ÁÖ¸ñ¹Þ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àç·á´Â ¹Ì¼¼ÇÑ ¼Õ»óÀ» ÀÚµ¿À¸·Î º¹±¸ÇÏ¿© ¼ö¸íÁֱ⠺ñ¿ëÀ» ÁÙÀÌ°í µµ·Î, ´Ù¸®, °Ç¹° µîÀÇ ÀÀ¿ë ºÐ¾ß¿¡¼­ ±¸Á¶ ³»±¸¼ºÀ» ³ôÀÔ´Ï´Ù. Á¤ºÎ¿Í Áö¹æÀÚÄ¡´Üü´Â Áö¼Ó°¡´ÉÇÑ °³¹ßÀ» ¼±È£Çϱ⠶§¹®¿¡ ¼ö¿ä°¡ È®´ëµÇ°í ÀÖ½À´Ï´Ù. Àç·á ÇÇ·Î¿Í ³»½Ä¼º¿¡ ´ëÇÑ ÀǽÄÀÌ ³ô¾ÆÁö´Â °¡¿îµ¥, ÀÚ°¡Ä¡À¯ Àç·á´Â Àå±âÀûÀÎ °ø°ø ÀÎÇÁ¶ó ÇÁ·ÎÁ§Æ®¿¡¼­ º¸¼ö °£°ÝÀ» ÃÖ¼ÒÈ­Çϰí ÀÚ»êÀÇ ½Å·Ú¼ºÀ» Çâ»ó½ÃŰ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.

³ôÀº Ãʱ⠺ñ¿ë°ú º¹ÀâÇÑ Á¦Á¶ °øÁ¤

°­·ÂÇÑ ±â´ÉÀû ÀÌÁ¡ÀÌ ÀÖÀ½¿¡µµ ºÒ±¸Çϰí, ÀÚ°¡Ä¡À¯ Àç·á´Â ³ôÀº Á¦Á¶ ºñ¿ë°ú º¹ÀâÇÑ Á¦Á¶ ±â¼ú·Î ÀÎÇÑ ÀúÇ׿¡ Á÷¸éÇϰí ÀÖ½À´Ï´Ù. ÀÓº£µðµå ¸¶ÀÌÅ©·Îĸ½¶, Ç÷°ü¸Á ¹× °¡¿ªÀûÀÎ È­ÇÐ ½Ã½ºÅÛÀÌ ÇÊ¿äÇϱ⠶§¹®¿¡ Àç·áÀÇ º¹À⼺°ú ºñ¿ëÀÌ »ó½ÂÇÏ°í ºñ¿ë¿¡ ¹Î°¨ÇÑ ºÎ¹®¿¡¼­ÀÇ Ã¤ÅÃÀÌ Á¦Çѵ˴ϴÙ. °Ô´Ù°¡, Áß¼Ò±â¾÷ÀÇ °æ¿ì, Á¦Á¶ °øÁ¤ÀÇ È®À强Àº ¿©ÀüÈ÷ Àå¾Ö¹°ÀÌ µÇ°í ÀÖ½À´Ï´Ù. ±Ô¸ðÀÇ °æÁ¦°¡ ´Þ¼ºµÇ°í Á¦Á¶°¡ º¸´Ù ÇÕ¸®È­µÉ ¶§±îÁö, °¡°Ý Á¦¾àÀÌ ÀÖ´Â °Ç¼³ ºÎ¹® ¹× ¼ÒºñÀÚ Á¦Ç° ºÎ¹®¿¡ ´ëÇÑ ½ÃÀå ħÅõ´Â Á¦ÇÑÀûÀÏ ¼ö ÀÖ½À´Ï´Ù.

÷´Ü ¿ëµµ¸¦ À§ÇÑ ½º¸¶Æ® Àç·á ¹× IoT¿ÍÀÇ ÅëÇÕ

ÀÚ°¡Ä¡À¯ Àç·á¿Í ½º¸¶Æ® ½Ã½ºÅÛ°ú IoT Áö¿ø ¼¾¼­ÀÇ ÅëÇÕÀº Å« ¼ºÀå ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. ÀÌ ½Ã³ÊÁö È¿°ú´Â ±¸Á¶ÀÇ °ÇÀü¼ºÀ» ½Ç½Ã°£À¸·Î ¸ð´ÏÅ͸µÇϰí ÀÚÀ²ÀûÀ¸·Î º¹±¸¸¦ ½ÃÀÛÇÒ ¼ö ÀÖ°Ô ÇÏ¿© Àç·áÀÇ ÀÎÅÚ¸®Àü½º¸¦ °­È­ÇÕ´Ï´Ù. Ç×°ø¿ìÁÖ, ÀÚµ¿Â÷, ½º¸¶Æ®ÀüÀÚ±â¼úÀÇ ¿ëµµ°¡ È®´ëµÇ°í ÀÖÀ¸¸ç, ÀÚ±â Áø´Ü°ú ¼Õ»óÁ¦¾î°¡ ÇʼöÀûÀÔ´Ï´Ù. »ê¾÷ÀÌ Áö½Ä º¸Àü°ú Áö´ÉÇü Àç·á·Î ÇâÇÏ´Â µ¿¾È, ÀÚ°¡ º¹±¸ º¹ÇÕÀç·á¿Í ÀÓº£µðµå ¼¾¼­¸¦ °áÇÕÇÏ¿© ÇÏÀÌ¿£µå ¿£Áö´Ï¾î¸µ°ú ¼ÒºñÀÚ ¿ëµµÀÇ ¼º´É ±âÁØÀ» ÀçÁ¤ÀÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÅÈï±¹ÀÇ ÀÎÁöµµ°¡ ³·°í »ó¾÷Àû È®À强 ¹®Á¦

½ÃÀå ¼ºÀå¿¡ ´ëÇÑ Å« À§ÇùÀº ¿©ÀüÈ÷ ±âÁ¸ Àç·á°¡ ÁÖ·ù¸¦ Â÷ÁöÇÏ´Â ½ÅÈï °æÁ¦ ±¹°¡¿¡¼­ ÀÎÁöµµ¿Í ±â¼ú Àü¹® Áö½ÄÀÇ ³·À½¿¡ ÀÖ½À´Ï´Ù. ÀÚ°¡ º¹±¸ ±â¼ú¿¡´Â Àü¹® Áö½ÄÀÌ ÇÊ¿äÇÏÁö¸¸, ¸¹Àº ÇöÁö Á¦Á¶¾÷ü¿¡´Â ±×°ÍÀÌ ¾ø±â ¶§¹®¿¡ Áö¿ªÀûÀÎ º¸±Þ·üÀÌ ³·½À´Ï´Ù. °Ô´Ù°¡ ÁøÀÔ ºñ¿ëÀÌ ³ô°í ÀÔÁõµÈ »ó¾÷ ±Ô¸ð ÇÁ·ÎÁ§Æ®°¡ ¾ø´Â °Íµµ ÅõÀÚÀÇ ºÎÁ·ÀÌ µÇ°í ÀÖ½À´Ï´Ù. Á¤ºÎÀÇ °­·ÂÇÑ µÞ¹Þħ, »êÇÐ ¿¬°è ¶Ç´Â ÀçÁ¤Àû Àμ¾Æ¼ºê°¡ ¾øÀ¸¸é ½ÅÈï±¹ Áö¿ª¿¡¼­ÀÇ ±¤¹üÀ§ÇÑ »ó¾÷È­´Â Á¤Ã¼µÇ¾î ¼¼°è ½ÃÀåÀÇ ±â¼¼¸¦ ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

COVID-19ÀÇ ´ëÀ¯ÇàÀº °ø±Þ¸ÁÀ» ÀϽÃÀûÀ¸·Î È¥¶õ½º·´°Ô Çϰí, Àç·á°úÇÐ ÀüüÀÇ ¿¬±¸°³¹ß Ȱµ¿À» Á¤Ã¼½Ã۰í, ÀÚ°¡Ä¡À¯ Àç·áÀÇ Áøº¸¸¦ Áö¿¬½ÃÄ×½À´Ï´Ù. °Ç¼³ Áߴܰú ÀÚµ¿Â÷ »ý»ê °¨¼Ò´Â ´Ü±â ¼ö¿ä¿¡ Å« ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ±×·¯³ª ÀÌ À§±â´Â ¶ÇÇÑ °­ÀÎÇÑ ÀÎÇÁ¶ó¿Í À¯Áöº¸¼ö°¡ ÀûÀº ½Ã½ºÅÛÀÇ Çʿ伺À» µ¸º¸ÀÌ°Ô ÇÏ¿© À¯Çà ÈÄ °ü½ÉÀ» ÀçȰ¼ºÈ­½ÃÄ×½À´Ï´Ù. ÅõÀÚ´Â Á¡Â÷ °Ç°­ °ü¸®, ÀüÀÚ°øÇÐ ¹× °Ç¼³ ºÎ¹®¿¡¼­ ÀÚ°¡ ¼öº¹¼º º¹ÇÕÀç·á¸¦ Æ÷ÇÔÇÑ Áö¼Ó°¡´ÉÇϰí ÀÚ±ÞÀûÀÎ ¼Ö·ç¼ÇÀ¸·Î ¿Å°Ü°¬½À´Ï´Ù. ºÎÈï ´Ü°è°¡ ÁøÇàµÊ¿¡ µû¶ó ±â¼ú Çõ½Å°ú Àå±â ½Å·Ú¼ºÀÌ »õ·Î¿î ¿ì¼± °úÁ¦·Î ºÎ»óÇÏ¿© ¹Ì·¡ ¼ºÀåÀ» °¡¼ÓÇÏ°Ô µÇ¾ú½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ÄÜÅ©¸®Æ® ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á

ÄÜÅ©¸®Æ® ºÎ¹®Àº ¼ö¸íÀÌ ±æ°í À¯Áö º¸¼ö°¡ ÀûÀº Åä¸ñ ÀÎÇÁ¶ó¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. µµ½ÃÈ­ÀÇ °¡¼Ó°ú °í¼Óµµ·Î, ÅͳÎ, ±³·®¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡°¡ ±Õ¿­ ºÀ¼â¿Í ³»±¸¼º Çâ»óÀÇ Æ¯¼ºÀ» °¡Áö´Â Àڱ⠼öº¹ ÄÜÅ©¸®Æ®ÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¶óÀÌÇÁ»çÀÌŬ ºñ¿ë Àý°¨°ú Áö¼Ó°¡´ÉÇÑ °Ç¼³ ÇÁ·¢Æ¼½º°¡ Á߽õǰí, ±× ÀÌ¿ëÀÌ ´õ¿í È®´ëµÇ°í ÀÖ½À´Ï´Ù. ½º¸¶Æ® ÀÎÇÁ¶ó ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ Á¤ºÎÀÇ Áö¿øÀº ÀÌ ºÎ¹®ÀÇ ¼¼°èÀÇ ÀϰüµÈ È®Àå¿¡ ź·ÂÀ» ÁÝ´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¿ÜÀμº ÀÚ°¡Ä¡À¯ Àç·á ºÎ¹®ÀÇ CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹»ó

¿¹Ãø ±â°£ µ¿¾È ¿ÜÀμº ÀÚ°¡Ä¡À¯ Àç·á ºÎ¹®Àº ³»ÀåµÈ ĸ½¶°ú Ç÷°ü ³×Æ®¿öÅ©¸¦ ÅëÇØ Àç·á ¼Õ»óÀ¸·ÎºÎÅÍ º¸È£ÇÏ´Â ½Å·Ú¼ºÀÌ ÀÔÁõµÇ¾ú±â ¶§¹®¿¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ºÎ¹®Àº ¾ÈÀü°ú ±ä ¼ö¸íÀÌ Áß¿äÇÑ Ç×°ø¿ìÁÖ, ÀÚµ¿Â÷ ¹× ÀüÀÚ ºÎǰÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ±â°èÀû ¼Õ»ó½Ã Ä¡À¯Á¦¸¦ Àü´ÞÇÏ´Â ´É·ÂÀº ¼ö¸® ºñ¿ëÀ» ´ëÆø Àý°¨ÇÕ´Ï´Ù. ¶ÇÇÑ, ÇöÀç ÁøÇà ÁßÀÎ R&D ÅõÀÚ ¹× ±â¼úÀû Áøº¸°¡ ´Ù¾çÇÑ °í¼º´É ¿£Áö´Ï¾î¸µ ¿ëµµ¿¡ ´ëÇÑ ½ÃÀå ħÅõ¸¦ °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù.

ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº °ßÁ¶ÇÑ ÀÎÇÁ¶ó ¼ºÀå, ±Þ¼ÓÇÑ »ê¾÷È­, Á¤ºÎ Áö¿ø Á¶Ä¡¿¡ °ßÀεǾî ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áß±¹, Àεµ, µ¿³²¾Æ½Ã¾ÆÀÇ °Ç¼³ ÇÁ·ÎÁ§Æ® È®´ë¿Í ¿î¼Û ¹× ¿¡³ÊÁö ºÎ¹®ÀÇ Åº·Â¼º ÀÖ´Â Àç·á¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡°¡ ÀÌ Áö¿ªÀÇ Ã¤ÅÃÀ» È®´ëÇϰí ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ½º¸¶Æ®½ÃƼ¿¡ ´ëÇÑ ¹Î°£ÅõÀÚ Áõ°¡¿Í Áö¼Ó°¡´ÉÇÑ °ÇÃà ¼Ö·ç¼ÇÀ¸·ÎÀÇ ÀüȯÀº ÀÌ ½ÅÈï Àç·á ºÎ¹®¿¡¼­ ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¿ìÀ§¸¦ °­È­Çϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµÇÁö¸¸, ÀÌ´Â °­·ÂÇÑ ±â¼ú Çõ½Å, ÷´Ü Á¦Á¶ ´É·Â, ȯ°æ ÀÇ½Ä Áõ°¡·Î ÀÎÇÑ °ÍÀÔ´Ï´Ù. ÀÌ Áö¿ª¿¡¼­´Â ¶óÀÌÇÁ »çÀÌŬ À¯Áö º¸¼ö¸¦ ÁÙÀÌ°í ±¸Á¶ ¼º´ÉÀ» Çâ»ó½Ã۱â À§ÇØ Ç×°ø¿ìÁÖ, ÀÚµ¿Â÷ ¹× ¹æ¾î ºÎ¹®À¸·Î ÀÚü ¼ö¸® Àç·á¸¦ µµÀÔÇϰí ÀÖ½À´Ï´Ù. °Ô´Ù°¡ À¯·ÂÇÑ ¿¬±¸±â°üÀÇ Á¸Àç, À¯¸®ÇÑ ¿¬±¸°³¹ß º¸Á¶±Ý, ½º¸¶Æ® ÀÎÇÁ¶óÀÇ °³¼ö °æÇâÀÇ °íÁ¶°¡ ±Þ¼ÓÇÑ º¸±ÞÀ» ÃËÁøÇϰí, ºÏ¹Ì¸¦ °í¼ºÀå ½ÃÀåÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

¹«·á ¸ÂÃãÇü ¼­ºñ½º

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

Á¦4Àå Porter's Five Forces ºÐ¼®

Á¦5Àå ¼¼°èÀÇ ÀÚ°¡Ä¡À¯ Àç·á ½ÃÀå : Á¦Ç°º°

Á¦6Àå ¼¼°èÀÇ ÀÚ°¡Ä¡À¯ Àç·á ½ÃÀå : Çüź°

Á¦7Àå ¼¼°èÀÇ ÀÚ°¡Ä¡À¯ Àç·á ½ÃÀå : ±â¼úº°

Á¦8Àå ¼¼°èÀÇ ÀÚ°¡Ä¡À¯ Àç·á ½ÃÀå : ¿ëµµº°

Á¦9Àå ¼¼°èÀÇ ÀÚ°¡Ä¡À¯ Àç·á ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

Á¦10Àå ¼¼°èÀÇ ÀÚ°¡Ä¡À¯ Àç·á ½ÃÀå :Áö¿ªº°

Á¦11Àå ÁÖ¿ä °³¹ß

Á¦12Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

SHW
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

According to Stratistics MRC, the Global Self-Healing Materials Market is accounted for $14.5 billion in 2025 and is expected to reach $434.5 billion by 2032 growing at a CAGR of 62.5% during the forecast period. Self-healing materials are engineered substances capable of automatically repairing damage without human intervention. These materials mimic biological systems by restoring their original properties after physical injury such as cracks or stress. Mechanisms of self-healing can include embedded healing agents, reversible chemical bonds, or thermal activation. Commonly found in polymers, coatings, and composites, these materials enhance durability and lifespan. Their structure allows them to detect and respond to damage, restoring integrity and functionality over time.

Market Dynamics:

Driver:

Rising demand for durable and low-maintenance infrastructure

Increasing global investment in resilient construction and smart infrastructure, self-healing materials are gaining traction for their longevity-enhancing capabilities. These materials reduce lifecycle costs by automatically repairing micro-damages, which enhances structural durability across applications like roads, bridges, and buildings. Governments and municipalities are prioritizing sustainable development, thus amplifying the demand. With growing awareness around material fatigue and corrosion resistance, self-healing materials are becoming essential in minimizing repair intervals and improving asset reliability in long-term public infrastructure projects.

Restraint:

High initial costs and complex manufacturing processes

Despite strong functional benefits, self-healing materials face resistance due to high production costs and intricate manufacturing techniques. The need for embedded microcapsules, vascular networks, or reversible chemical systems elevates material complexity and cost, limiting adoption in cost-sensitive sectors. Additionally, scalability of production processes remains a hurdle for small and medium enterprises. Until economies of scale are achieved and fabrication becomes more streamlined, market penetration across price-constrained construction and consumer product segments may remain limited.

Opportunity:

Integration with smart materials and iot for advanced applications

The integration of self-healing materials with smart systems and IoT-enabled sensors presents significant growth opportunities. This synergy allows real-time monitoring of structural health and autonomous repair activation, enhancing material intelligence. Applications in aerospace, automotive, and smart electronics are expanding, where self-diagnosis and damage control are vital. As industries move toward predictive maintenance and intelligent materials, self-healing composites combined with embedded sensors are positioned to redefine performance standards across high-end engineering and consumer-facing applications.

Threat:

Limited awareness and commercial scalability challenges in emerging economies

A major threat to market growth lies in the limited awareness and technical expertise within emerging economies, where traditional materials still dominate. Self-healing technologies require specialized knowledge, which many local manufacturers lack, leading to low regional adoption. Furthermore, high entry costs and lack of proven commercial-scale projects deter investments. Without strong governmental push, academic-industry collaborations, or financial incentives, widespread commercialization may stagnate in developing regions, hampering global market momentum.

Covid-19 Impact:

The COVID-19 pandemic temporarily disrupted supply chains and stalled R&D activities across materials science, slowing the progress of self-healing materials. Construction halts and reduced automotive production significantly impacted short-term demand. However, the crisis also underscored the need for resilient infrastructure and low-maintenance systems, reinvigorating interest post-pandemic. Investments gradually shifted toward sustainable and self-sufficient solutions, including self-healing composites in healthcare, electronics, and construction sectors. As the recovery phase progressed, innovation and long-term reliability emerged as renewed priorities, catalyzing future growth.

The concrete segment is expected to be the largest during the forecast period

The concrete segment is expected to account for the largest market share during the forecast period, owing to escalating demand for long-lasting, low-maintenance civil infrastructure. Accelerated urbanization and rising investment in highways, tunnels, and bridges are driving the adoption of self-healing concrete for its crack-sealing and durability-enhancing properties. Moreover, growing emphasis on lifecycle cost reduction and sustainable construction practices further amplifies its use. Government support for smart infrastructure projects adds momentum to this segment's consistent expansion globally.

The extrinsic self-healing materials segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the extrinsic self-healing materials segment is predicted to witness the highest growth rate impelled by, their proven reliability in protecting against material failure through embedded capsules or vascular networks. This segment is witnessing increased uptake in aerospace, automotive, and electronic components, where safety and longevity are critical. The ability to deliver healing agents upon mechanical damage significantly reduces repair costs. Additionally, ongoing R&D investments and technological advancements are accelerating market penetration across diverse high-performance engineering applications.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, driven by robust infrastructure growth, rapid industrialization, and supportive government policies. Expanding construction projects in China, India, and Southeast Asia, along with increasing demand for resilient materials in transportation and energy sectors, amplify regional adoption. Additionally, rising public-private investments in smart cities and a shift toward sustainable building solutions are reinforcing the dominance of Asia Pacific in this emerging materials space.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR attributed to, attributed to strong technological innovation, advanced manufacturing capabilities, and heightened environmental consciousness. The region is increasingly deploying self-healing materials across aerospace, automotive, and defense sectors to reduce lifecycle maintenance and enhance structural performance. Furthermore, the presence of leading research institutions, favorable R&D grants, and the growing trend toward smart infrastructure retrofitting are propelling rapid adoption, positioning North America as a high-growth market.

Key players in the market

Some of the key players in Self-Healing Materials Market include Akzo Nobel N.V., Arkema SA, Autonomic Materials, Inc., BASF SE, Covestro AG, Critical Materials S.A., Dow Chemical Company, DuPont, Evonik Industries Corporation, High Impact Technology, LLC, Huntsman International LLC, MacDermid Autotype Ltd., Michelin Group, NEI Corporation, Sensor Coating Systems Ltd., Solvay S.A., The Goodyear Tire & Rubber Company, Toray Industries, Inc., Toyota Motor Corporation, and Volkswagen AG.

Key Developments:

In March 2025, Michelin Group confirmed successful testing of its second-generation self-healing tire compound embedded with elastic polymer chains that reform after punctures, enabling extended tire lifespan for commercial fleets.

In January 2025, Arkema SA entered a joint research agreement with a European aerospace firm to accelerate the integration of thermally responsive self-repairing polymers into structural aircraft components.

In December 2024, Dow Chemical Company revealed a bio-based elastomeric self-healing material targeting wearable electronics and soft robotics, boasting rapid healing at room temperature without external stimuli.

Product Types Covered:

Forms Covered:

Technologies Covered:

Applications Covered:

Regions Covered:

What our report offers:

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

Table of Contents

1 Executive Summary

2 Preface

3 Market Trend Analysis

4 Porters Five Force Analysis

5 Global Self-Healing Materials Market, By Product

6 Global Self-Healing Materials Market, By Form

7 Global Self-Healing Materials Market, By Technology

8 Global Self-Healing Materials Market, By Application

9 Global Self-Healing Materials Market, By End User

10 Global Self-Healing Materials Market, By Geography

11 Key Developments

12 Company Profiling

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â