¼¼°èÀÇ ºÐ»êÇü ¿Âµµ ¼¾½Ì ½ÃÀå ¿¹Ãø : ÆÄÀ̹ö À¯Çü, µ¿ÀÛ È¯°æ, µ¿ÀÛ ¿ø¸®, ¼¾½Ì °Å¸®, ±¸¼º¿ä¼Ò, ¿ëµµ, Áö¿ªº° ºÐ¼®(-2032³â)
Distributed Temperature Sensing Market Forecasts to 2032 - Global Analysis By Fiber Type, Operating Environment, Operating Principle, Sensing Distance, Component, Application and By Geography
»óǰÄÚµå : 1787930
¸®¼­Ä¡»ç : Stratistics Market Research Consulting
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 200+ Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,150 £Ü 5,857,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 5,250 £Ü 7,410,000
PDF (2-5 User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷Àå¿¡¼­ 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,350 £Ü 8,963,000
PDF & Excel (Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷ÀåÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇÕ´Ï´Ù. Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ¹× Excel ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 7,500 £Ü 10,586,000
PDF & Excel (Global Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 10ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ºÐ»êÇü ¿Âµµ ¼¾½Ì ½ÃÀåÀº 2025³â¿¡ 9¾ï 5,516¸¸ ´Þ·¯¿¡ À̸£°í, 2032³â¿¡´Â 18¾ï 1,450¸¸ ´Þ·¯¿¡ ´ÞÇÏ°í ¿¹Ãø ±â°£ Áß CAGRÀº 9.6%¸¦ ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù.

ºÐ»êÇü ¿Âµµ ¼¾½Ì(DTS)¶ó´Â ±¤¼¶À¯ °¨Áö ±â¼úÀº ±¤¼¶À¯ÀÇ Àüü ±æÀ̸¦ µû¶ó Áö¼ÓÀûÀ¸·Î ¿Âµµ¸¦ °¨ÁöÇÕ´Ï´Ù. DTS´Â ¶ó¸¸ »ê¶õ ¶Ç´Â ºê¸±·ç¾Ó »ê¶õÀÇ ¿ø¸®·Î ÀÛµ¿ÇÏ¸ç ±¤ ÆÞ½º°¡ ±¤¼¶À¯¸¦ ÅëÇØ ÁÖº¯°ú »óÈ£ ÀÛ¿ëÇÕ´Ï´Ù., ÈÄ¹æ »ê¶õµÈ ½ÅÈ£¸¦ ºÐ¼®ÇÏ¿© ƯÁ¤ À§Ä¡ÀÇ ¿Âµµ¸¦ °áÁ¤ÇÕ´Ï´Ù. DTS´Â ¼®À¯ ¹× °¡½º, Àü·Â ÄÉÀÌºí ¸ð´ÏÅ͸µ, È­Àç °¨Áö, ȯ°æ Á¶»ç µîÀÇ ¿ëµµ¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ƯÁ¤ ÁöÁ¡ÀÇ ¿Âµµ¸¸ ¾Ë ¼ö Àִ ǥÁØ ¼¾¼­¿Í ´Þ¸® Àå°Å¸®¿¡ °ÉÃÄ ½Ç½Ã°£À¸·Î °íÇØ»óµµ ¿Âµµ ÇÁ·ÎÆÄÀÏÀ» Á¦°øÇϱ⠶§¹®ÀÔ´Ï´Ù.

½Ç½Ã°£ ¸ð´ÏÅ͸µ ¿ä±¸

±¤¾÷, Àü·Â, ¼®À¯ ¹× °¡½º¿Í °°Àº ºÎ¹®Àº ÀÌ»óÀ» ½Äº°Çϰí Àåºñ °íÀåÀ» ÇÇÇϱâ À§ÇØ Áö¼ÓÀûÀÎ ¿Âµµ µ¥ÀÌÅͰ¡ ÇÊ¿äÇÕ´Ï´Ù. DTS ½Ã½ºÅÛÀº Àå°Å¸® Á¤È®ÇÑ ¿Âµµ ÇÁ·ÎÆÄÀϰú Áï°¢ÀûÀÎ °æ°í¸¦ Á¦°øÇÕ´Ï´Ù. ¿¹¹æ À¯Áö º¸¼ö ±â¼ú, ¾ÈÀü ¹× ÀÛ¾÷ È¿À²Àº ¸ðµÎ À̰Ϳ¡ ÀÇÇØ Çâ»óµË´Ï´Ù. ¾î·Á¿î Àå¼Ò³ª Á¢±ÙÇϱ⠾î·Á¿î Àå¼Ò¸¦ ½Ç½Ã°£À¸·Î ¸ð´ÏÅ͸µÇÒ ¼ö ÀÖ°Ô µÇ¸é, ±× ÀÌ¿ë °¡Ä¡´Â ³ô¾ÆÁý´Ï´Ù. ±× °á°ú, °íµµ·Î ÀûÀÀ¼ºÀÌ ³ôÀº DTS ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¿ä±¸´Â Àü ¼¼°èÀûÀ¸·Î °è¼Ó Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

±¤¼¶À¯ ¹× µ¥ÀÌÅÍ ºÐ¼® ±â¼úÀÇ ¹ßÀü

ÀÛ°í Àú·ÅÇÑ ¿Âµµ °¨Áö ÀåÄ¡ÀÇ °³¹ßÀº ±¤¼¶À¯ÀÇ °³¹ß¿¡ ÀÇÇØ ÀÚÁÖ ÃËÁøµÇ°í ÀÖÀ¸¸ç ±âÁ¸ DTS ½Ã½ºÅÛ¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³·½À´Ï´Ù. º¸´Ù ÀûÀº ¼¾¼­·Î ¿¹Ãø À¯Áöº¸¼ö¸¦ °¡´ÉÇÏ°Ô ÇÏ´Â µ¥ÀÌÅÍ ºÐ¼®ÀÇ Çâ»óÀ¸·Î Àå°Å¸® ¿¬¼Ó ¿Âµµ ¸ð´ÏÅ͸µÀÇ Çʿ伺ÀÌ ÁÙ¾îµì´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº ÅëÇÕµÈ ´ÙÁß ¼¾¼­ ½Ã½ºÅÛ¿¡ ÁÖ¸ñÇÔÀ¸·Î½á °í¸³µÈ DTS ¼³Á¤ÀÇ Çʿ伺À» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ Áß¼Ò±â¾÷Àº »õ·Î¿î ºÐ¼® Ç÷§ÆûÀÇ º¹À⼺°ú ³ôÀº µµÀÔ ºñ¿ëÀ¸·Î ±âÁ¸ DTSÀÇ µµÀÔÀ» ¸Á¼³ÀÏ ¼ö ÀÖ½À´Ï´Ù. ±× °á°ú, °í°´ ¿ä±¸ÀÇ º¯È­¿Í ±â¼úÀû ¼±ÅÃÀÌ ½ÃÀå ¼ºÀåÀ» ¾Ð¹ÚÇÏ°Ô µË´Ï´Ù.

º¹ÀâÇÑ ½Ã½ºÅÛ ÅëÇÕ ¹× À¯Áöº¸¼ö

Á¦Á¶¾÷, Àü·Â, ¼®À¯, °¡½º µîÀÇ ºÐ¾ß¿¡¼­ DTS´Â ¾÷¹« È¿À²¼ºÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ÅëÇÕµÈ DTS ½Ã½ºÅÛÀº °¡µ¿ ÁßÁö ½Ã°£À» ÁÙ¿© ¿¹Áö º¸Àü°ú ½Ç½Ã°£ ¸ð´ÏÅ͸µÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. °í±Þ À¯Áöº¸¼ö ÀýÂ÷´Â ½Ã½ºÅÛÀÇ ¼ö¸í°ú ½Å·Ú¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. ÀÌ·¯ÇÑ Æ¯¼ºÀº »ý»ê¼º°ú ¾ÈÀü¼ºÀ» Çâ»ó½Ã۰íÀÚ ÇÏ´Â ±â¾÷¿¡ ¸Å·ÂÀûÀÔ´Ï´Ù. ±× °á°ú ÷´Ü DTS ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¿ä±¸´Â Àü ¼¼°èÀûÀ¸·Î °è¼Ó Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

Áö¿ª¿¡ µû¶ó ´Ù¸¥ ±ÔÁ¦ ±âÁØ

´Ù¾çÇÑ ¾ÈÀü, ¼º´É ¹× ¼³Ä¡ ±âÁØÀ» ÃæÁ·Çϱâ À§ÇØ ¾ÆÀÌÅÛÀ» ¸ÂÃß´Â °ÍÀº ±â¾÷¿¡°Ô Àå¾Ö¹°ÀÔ´Ï´Ù. ±× °á°ú Á¦Ç° °³¹ß ±â°£ÀÌ ±æ¾îÁö°í ÀÎÁõ ºñ¿ëµµ ³ô¾ÆÁý´Ï´Ù. ±¹Á¦ ½ÃÀå ÁøÀÔ ¹× È®´ë °èȹÀº Àϰü¼º ¾ø´Â ±ÔÁ¤¿¡ µû¶ó Áö¿¬µÉ ¼ö ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ±¹°æÀ» ³Ñ´Â ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ ÅõÀÚ´Â Áö¿ª ½ÃÃ¥ÀÇ ºÒÈ®½Ç¼º¿¡ ÀÇÇØ ¾ïÁ¦µË´Ï´Ù. µû¶ó¼­ Çõ½Å°ú »ó¾÷Àû È®À强Àº »ó´çÈ÷ Á¦Çѵ˴ϴÙ.

COVID-19ÀÇ ¿µÇâ

COVID-19ÀÇ ´ëÀ¯ÇàÀº DTS ½ÃÀåÀ» Å©°Ô È¥¶õ½ÃÄÑ °ø±Þ¸Á Áö¿¬, Á¦Á¶ °¨¼Ó, Àá±Ý ¹× ¿©Çà Á¦ÇÑÀ¸·Î ÀÎÇÑ ¼³Ä¡ Áß´ÜÀ» ÀÏÀ¸Ä×½À´Ï´Ù. ¼®À¯ ¹× °¡½º, ÀÎÇÁ¶ó ÇÁ·ÎÁ§Æ®°¡ ¿¬±âµÇ¾ú±â ¶§¹®¿¡ ¼ö¿ä°¡ ¶³¾îÁö°í ¼öÀÍ °¨¼Ò¿Í ÅõÀÚ Ãà¼Ò¸¦ ÃÊ·¡Çß½À´Ï´Ù. ´Ü±âÀûÀÎ ¼ºÀå ¿¹Ãø¿¡ 2-3%ÀÇ ±«¸®°¡ ¹ß»ýÇÑ´Ù´Â º¸°íµµ ÀÖ½À´Ï´Ù. ±×·¯³ª ƯÈ÷ ÀÇ·á, ȯ°æ ¾ÈÀü, ½Äǰ º¸°ü¿¡¼­ ¿ø°Ý ½Ç½Ã°£ ¿Âµµ ¸ð´ÏÅ͸µÀÇ °¡Ä¡¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁö°í ´Ù½Ã °ü½ÉÀÌ ³ô¾ÆÁ³½À´Ï´Ù. °¢ ºÎ¹®ÀÇ È¸º¹¿¡ µû¶ó Áö¿ª ȸº¹µµ ´Ù¾çÇßÁö¸¸, Àå±âÀûÀ¸·Î´Â ƯÈ÷ ¾Æ½Ã¾ÆÅÂÆò¾ç¿¡¼­ ¼ö¿ä°¡ °­È­µÇ¾î DTS ½ÃÀåÀº À¯Çà ÈÄ ²ÙÁØÇÑ ¼ºÀåÀ» À§ÇØ ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ´ÜÀÏ ¸ðµå ÆÄÀ̹ö ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ °ÍÀ¸·Î ¿¹»ó

´ÜÀÏ ¸ðµå ÆÄÀ̹ö ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º¸´Ù ³ôÀº Á¤È®µµ¿Í ±ä °ËÃâ ¹üÀ§·Î ±¤¹üÀ§ÇÑ ÀÎÇÁ¶ó ¸ð´ÏÅ͸µ¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ½ÅÈ£ °¨¼è°¡ Àû±â ¶§¹®¿¡ ¼®À¯ ¹× °¡½ºÀüÀ̳ª ¼ÛÀü¸Á°ú °°Àº °¡È¤ÇÑ È¯°æ¿¡¼­µµ ¼º´ÉÀÌ Çâ»óµË´Ï´Ù. Áß¿äÇÑ ÀÀ¿ë ºÐ¾ß¿¡¼­´Â ½Ç½Ã°£À¸·Î Á¤È®ÇÑ ¿Âµµ µ¥ÀÌÅÍ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç ´ÜÀÏ ¸ðµå ±¤¼¶À¯ äÅÃÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Àå°Å¸®¿¡¼­ °íÇØ»óµµ ¼¾½ÌÀ» ÇÊ¿ä·Î Çϴ ÷´Ü DTS ±â¼ú¿¡µµ ´ëÀÀÇϰí ÀÖ½À´Ï´Ù. Àü¹ÝÀûÀ¸·Î ¶Ù¾î³­ È¿À²¼º°ú ½Å·Ú¼ºÀÌ ½ÃÀå ¼ºÀåÀ» Å©°Ô µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ÀÎÅÍÆäÀ̽º ½Ã½ºÅÛ ºÎ¹®ÀÇ CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹»ó

¿¹Ãø ±â°£ µ¿¾È Á¦¾î ½Ã½ºÅÛ ¹× µ¥ÀÌÅÍ ¼öÁý Ç÷§Æû°úÀÇ ¿øÈ°ÇÑ ÅëÇÕÀ» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á ÀÎÅÍÆäÀ̽º ½Ã½ºÅÛ ºÎ¹®ÀÌ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ¼®À¯, °¡½º, Àü·Â, Á¦Á¶ µî »ê¾÷¿¡ Áß¿äÇÑ ½Ç½Ã°£ ¸ð´ÏÅ͸µ ±â´ÉÀ» °­È­ÇÕ´Ï´Ù. Çâ»óµÈ ÀÎÅÍÆäÀ̽º ¼³°è´Â Àå°Å¸®¿¡¼­µµ Á¤È®ÇÑ µ¥ÀÌÅÍ Àü¼Û°ú ÃÖ¼ÒÇÑÀÇ ½ÅÈ£ ¼Õ½ÇÀ» º¸ÀåÇÕ´Ï´Ù. ¶ÇÇÑ °í±Þ ºÐ¼®°ú ½Ã°¢È­¸¦ Áö¿øÇÏ¿© ¿­ ÀÌ»óÀ» Á¶±â¿¡ ¹ß°ßÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÚµ¿È­ ¹× ½º¸¶Æ® ¸ð´ÏÅ͸µÀÇ µµÀÔÀÌ ÁøÇàµÊ¿¡ µû¶ó °ß°íÇÑ ÀÎÅÍÆäÀ̽º ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

ÃÖ´ë °øÀ¯ Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ÀÎÇÁ¶ó, ¿¡³ÊÁö, ½º¸¶Æ® ±×¸®µå ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡·Î ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áß±¹, Àεµ, ÀϺ», Çѱ¹°ú °°Àº ±¹°¡µéÀº ÆÄÀÌÇÁ¶óÀÎ ¸ð´ÏÅ͸µ, Àü·Â ÄÉÀÌºí ¿Âµµ °¨Áö, »ê¾÷ ¾ÈÀüÀ» À§ÇØ DTS¸¦ äÅÃÇϰí ÀÖ½À´Ï´Ù. µµ½ÃÈ­ÀÇ ÁøÀü°ú ¼±ÁøÀû ¼¾½Ì ±â¼ú¿¡ ´ëÇÑ ¼ö¿äµµ ¼ºÀåÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. ¿¡³ÊÁö ÀÎÇÁ¶ó¸¦ ¾÷±×·¹À̵åÇÏ°í ¾ÈÀü ±âÁØÀ» È®º¸Çϱâ À§ÇÑ Á¤ºÎÀÇ ÀÌ´Ï¼ÅÆ¼ºê´Â ½ÃÀå È®´ë¸¦ ´õ¿í °­È­Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¼®À¯ ¹× °¡½º Ž»ç¿Í Àç»ý¿¡³ÊÁö ÇÁ·ÎÁ§Æ® Áõ°¡°¡ DTS ä¿ë¿¡ ±â¿©Çϰí ÀÖÀ¸¸ç ¾Æ½Ã¾ÆÅÂÆò¾çÀ» ÁÖ¿ä ¼ºÀå ÇÖ½ºÆÌÀ¸·ÎÇϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ÁÖ¿ä ¿äÀÎÀº ±â¼ú Áøº¸¿Í ¼º¼÷ÇÑ ÀÎÇÁ¶óÀÔ´Ï´Ù. ¹Ì±¹°ú ij³ª´Ù¿¡¼­´Â ¼®À¯ ¹× °¡½º »ç¾÷, ¼ÛÀü¸Á ¸ð´ÏÅ͸µ, »ê¾÷ ÀÚµ¿È­¿¡ DTS°¡ ³Î¸® ÀÌ¿ëµÇ°í ÀÖ½À´Ï´Ù. È­Àç °¨Áö ½Ã½ºÅÛ¿¡ ´ëÇÑ ³ôÀº Àǽİú ¾ö°ÝÇÑ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©Àº ±¤¼¶À¯ ±â¹Ý ¿Âµµ °¨Áö¿¡ ´ëÇÑ ¼ö¿ä¸¦ ³ôÀ̰í ÀÖ½À´Ï´Ù. »ê¾÷ÀÇ ÁÖ¿ä ±â¾÷Àº ½º¸¶Æ® ½ÃƼ ¹× ¹æ¾î ÀÀ¿ë ºÐ¾ß¿¡¼­ DTSÀÇ ±â¼ú Çõ½Å°ú ÅëÇÕ¿¡ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù. ±×·¯³ª ÀÌ Áö¿ªÀÇ ÀÎÇÁ¶ó´Â ÀÌ¹Ì È®¸³µÇ¾î ÀÖ¾î ´ë±Ô¸ðÀÇ ¹èÄ¡º¸´Ù À¯Áöº¸¼ö, ½Å·Ú¼º, È¿À² °³¼±ÀÌ Á߽õǰí Àֱ⠶§¹®¿¡ ½ÃÀåÀÇ ¼ºÀåÀº Àû±ØÀûÀ̱⺸´Ù´Â ¾ÈÁ¤ÀûÀÔ´Ï´Ù.

¹«·á ¸ÂÃãÇü ¼­ºñ½º

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

Á¦4Àå Porter's Five Forces ºÐ¼®

Á¦5Àå ¼¼°èÀÇ ºÐ»êÇü ¿Âµµ ¼¾½Ì ½ÃÀå : ÆÄÀ̹ö À¯Çüº°

Á¦6Àå ¼¼°èÀÇ ºÐ»êÇü ¿Âµµ ¼¾½Ì ½ÃÀå : µ¿ÀÛ È¯°æº°

Á¦7Àå ¼¼°èÀÇ ºÐ»êÇü ¿Âµµ ¼¾½Ì ½ÃÀå : µ¿ÀÛ ¿ø¸®º°

Á¦8Àå ¼¼°èÀÇ ºÐ»êÇü ¿Âµµ ¼¾½Ì ½ÃÀå : ¼¾½Ì °Å¸®º°

Á¦9Àå ¼¼°èÀÇ ºÐ»êÇü ¿Âµµ ¼¾½Ì ½ÃÀå : ±¸¼º¿ä¼Òº°

Á¦10Àå ¼¼°èÀÇ ºÐ»êÇü ¿Âµµ ¼¾½Ì ½ÃÀå : ¿ëµµº°

Á¦11Àå ¼¼°èÀÇ ºÐ»êÇü ¿Âµµ ¼¾½Ì ½ÃÀå : Áö¿ªº°

Á¦12Àå ÁÖ¿ä °³¹ß

Á¦13Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

SHW
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

According to Stratistics MRC, the Global Distributed Temperature Sensing Market is accounted for $955.16 million in 2025 and is expected to reach $1814.5 million by 2032 growing at a CAGR of 9.6% during the forecast period. A fibre optic sensing technique called Distributed Temperature Sensing (DTS) continually detects temperature along an optical fiber's whole length. It works via the Raman or Brillouin scattering principle, in which light pulses travel down the fibre and interact with their surroundings. The temperature at certain locations is then determined by analysing the backscattered signals. DTS is perfect for applications in oil and gas, power cable monitoring, fire detection, and environmental studies because it provides real-time, high-resolution temperature profiles over long distances, unlike standard sensors that only provide temperature at specific points.

Market Dynamics:

Driver:

Real time monitoring needs

Continuous temperature data is needed by sectors including mining, power, and oil and gas to identify irregularities and avoid equipment failures. Long-distance accurate thermal profiles and immediate alerts are provided by DTS systems. Preventive maintenance techniques, safety, and operational efficiency are all improved by this. Their use is increased when difficult or inaccessible areas can be monitored in real time. Consequently, the need for sophisticated, adaptable DTS solutions keeps growing on a global scale.

Restraint:

Advances in fiber optic & data analytics technologies

The development of small, less expensive temperature sensing devices is frequently facilitated by emerging fiber optic developments, which lessens dependency on conventional DTS systems. Long-distance continuous temperature monitoring is less necessary because to improved data analytics that allows predictive maintenance with fewer sensors. These technologies could reduce the need for isolated DTS setups by refocusing attention on integrated multi-sensor systems. Additionally, smaller players may be deterred from implementing classic DTS by the complexity and high implementation costs of newer analytics platforms. As a result, changing customer needs and technological choices put pressure on market growth.

Opportunity:

Complex system integration & maintenance

In sectors including manufacturing, power, and oil and gas, it improves operating efficiency. Downtime is decreased via integrated DTS systems, which provide predictive maintenance and real-time monitoring. The lifespan and dependability of the system are increased by advanced maintenance procedures. These qualities draw in businesses looking to boost productivity and safety. Consequently, the need for advanced DTS solutions keeps increasing on a global scale.

Threat:

Varied regulatory standards across regions

Adapting items to satisfy varying safety, performance, and installation criteria presents hurdles for businesses. Longer product development periods and higher certification expenses result from this. International market entry and expansion plans are sometimes delayed by inconsistent restrictions. Furthermore, investments in cross-border projects are deterred by regional policy uncertainty. Innovation and commercial scalability are hence severely limited.

Covid-19 Impact:

The COVID 19 pandemic significantly disrupted the DTS market, triggering supply chain delays, manufacturing slowdowns, and halted installations due to lockdowns and travel restrictions. Demand dipped as oil, gas, and infrastructure projects were deferred, resulting in revenue declines and scaled back investments. Some reports estimate a 2-3 % short term deviation in growth projections. However, heightened awareness of the value of remote, real time temperature monitoring especially in healthcare, environmental safety, and food storage-prompted renewed interest. As sectors recovered, regional rebounds varied; over the longer term, demand has strengthened, particularly in APAC, positioning the DTS market for steady post pandemic growth.

The single-mode fiber segment is expected to be the largest during the forecast period

The single-mode fiber segment is expected to account for the largest market share during the forecast period higher accuracy and longer sensing ranges, making it ideal for extensive infrastructure monitoring. Its low signal attenuation enhances performance in harsh environments like oil & gas fields and power grids. The growing demand for real-time, precise temperature data in critical applications boosts the adoption of single-mode fiber. It also supports advanced DTS technologies that require high-resolution sensing over large distances. Overall, its superior efficiency and reliability significantly drive market growth.

The interface systems segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the interface systems segment is predicted to witness the highest growth rate by enabling seamless integration with control systems and data acquisition platforms. These systems enhance real-time monitoring capabilities, crucial for industries like oil & gas, power, and manufacturing. Improved interface designs ensure accurate data transmission and minimal signal loss across long distances. They also support advanced analytics and visualization, helping in early detection of thermal anomalies. As industries increasingly adopt automation and smart monitoring, demand for robust interface systems continues to rise.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share driven by increasing investments in infrastructure, energy, and smart grid projects. Countries like China, India, Japan, and South Korea are adopting DTS for pipeline monitoring, power cable temperature sensing, and industrial safety. Rising urbanization and demand for advanced sensing technologies are also propelling growth. Government initiatives to upgrade energy infrastructure and ensure safety standards further support market expansion. Additionally, the growing oil & gas exploration and renewable energy projects in the region are contributing to DTS adoption, making Asia Pacific a key growth hotspot.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, primarily fueled by technological advancements and mature infrastructure. The U.S. and Canada utilize DTS extensively in oil & gas operations, power grid monitoring, and industrial automation. High awareness about fire detection systems and stringent regulatory frameworks boost the demand for fiber optic-based temperature sensing. Key industry players are focusing on innovation and integration of DTS in smart city and defense applications. However, market growth is more stable than aggressive, given the region's already established infrastructure, emphasizing maintenance, reliability, and efficiency improvements rather than large-scale deployments.

Key players in the market

Some of the key players in Distributed Temperature Sensing Market include Schlumberger Limited, Halliburton Company, Baker Hughes Company, Weatherford International plc, Yokogawa Electric Corporation, AP Sensing GmbH, Sensornet Limited, Bandweaver Technologies, Silixa Ltd., Luna Innovations Incorporated, Sumitomo Electric Industries, Ltd., NEC Corporation, FISO Technologies Inc., ABB Ltd., Luna Innovations Incorporated and Future Fibre Technologies (FFT).

Key Developments:

In January 2025, Baker Hughes launched the SureCONNECT(TM) FE system the first field proven downhole fiber optic wet mate system. This next generation technology facilitates seamless fiber optic monitoring (temperature, flow, and electric data) across wellbore completions, while reducing rig time, maintenance costs, and intervention risk.

In November 2023, Halliburton partnered with Sekal to deliver advanced well-construction automation by integrating Halliburton's technologies with Sekal's DrillTronics platform for automating drilling operations, enhancing efficiency and remote functionality. This collaboration supports automation in areas where DTS would integrate into well monitoring workflows.

In May 2023, SLB partnered with Rockwell Automation, Sensia, and Cognite to enhance FPSO asset performance by integrating digital platforms and sensing technologies, including potential use of Distributed Temperature Sensing (DTS) for real-time thermal profiling and operational efficiency in offshore environments.

Fiber Types Covered:

Operating Environments Covered:

Operating Principles Covered:

Sensing Distances Covered:

Components Covered:

Applications Covered:

Regions Covered:

What our report offers:

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

Table of Contents

1 Executive Summary

2 Preface

3 Market Trend Analysis

4 Porters Five Force Analysis

5 Global Distributed Temperature Sensing Market, By Fiber Type

6 Global Distributed Temperature Sensing Market, By Operating Environment

7 Global Distributed Temperature Sensing Market, By Operating Principle

8 Global Distributed Temperature Sensing Market, By Sensing Distance

9 Global Distributed Temperature Sensing Market, By Component

10 Global Distributed Temperature Sensing Market, By Application

11 Global Distributed Temperature Sensing Market, By Geography

12 Key Developments

13 Company Profiling

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â