¼¼°èÀÇ ÀΰøÁö´É(AI) ½Å¾à °³¹ß ½ÃÀå : ¿¹Ãø - À¯Çüº°, ¾àÁ¦ À¯Çüº°, Á¦°øº°, ±â¼úº°, ¿ëµµº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®(-2032³â)
AI in Drug Discovery Market Forecasts to 2032 - Global Analysis By Type (Preclinical and Clinical Testing, Molecule Screening, Target Identification and De Novo Drug Design), Drug Type, Offering, Technology, Application, End User and By Geography
»óǰÄÚµå : 1776725
¸®¼­Ä¡»ç : Stratistics Market Research Consulting
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 200+ Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,150 £Ü 5,845,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 5,250 £Ü 7,394,000
PDF (2-5 User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷Àå¿¡¼­ 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,350 £Ü 8,943,000
PDF & Excel (Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷ÀåÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇÕ´Ï´Ù. Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ¹× Excel ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 7,500 £Ü 10,563,000
PDF & Excel (Global Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 10ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ÀΰøÁö´É(AI) ½Å¾à °³¹ß ½ÃÀåÀº 2025³â¿¡ 26¾ï ´Þ·¯·Î ÃßÁ¤µÇ°í, ¿¹Ãø ±â°£ µ¿¾È CAGR 31.7%·Î ¼ºÀåÇÒ Àü¸ÁÀ̸ç, 2032³â¿¡´Â 178¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÀΰøÁö´É(AI) ½Å¾à °³¹ßÀ̶õ ½Å¾à °³¹ß ÇÁ·Î¼¼½º¸¦ °¡¼Ó ¹× ÃÖÀûÈ­Çϱâ À§ÇÑ ¸Ó½Å·¯´×°ú µ¥ÀÌÅÍ ±¸µ¿Çü ¾Ë°í¸®ÁòÀÇ ¿ëµµ¸¦ °¡¸®Åµ´Ï´Ù. AI´Â ºÐÀÚ±¸Á¶ºÎÅÍ ÀÓ»ó½ÃÇè °á°ú±îÁö ¹æ´ëÇÑ µ¥ÀÌÅͼÂÀ» ºÐ¼®ÇØ À¯¸ÁÇÑ ¾àÁ¦ Èĺ¸ µ¿Á¤, ¾àÁ¦ ¹× Ç¥ÀûÀÇ »óÈ£ÀÛ¿ë ¿¹Ãø, ³ª¾Æ°¡ ½Å±Ô È­ÇÕ¹° ¼³°è¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù. AI´Â ±âÁ¸ ÀǾàǰ °³¹ß ±â¹ý¿¡ µû¸¥ ½Ã°£, ºñ¿ë, ½ÇÆÐÀ²À» ÁÙÀÔ´Ï´Ù. »ý¹°ÇÐÀû ½Ã½ºÅÛÀ» ½Ã¹Ä·¹À̼ÇÇÏ°í ±âÁ¸ µ¥ÀÌÅÍ¿¡¼­ ÇнÀÇÔÀ¸·Î½á AI´Â ¿¬±¸ÀÚ°¡ ÆÐÅÏÀ» ¹ß°ßÇÏ°í º¸´Ù Á¤È®ÇÑ ÀÇ»ç°áÁ¤À» ÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù.

WHOÀÇ Ãß°è¿¡ µû¸£¸é, 2022³â¿¡´Â ¼¼°è¿¡¼­ »õ·Ó°Ô 2,000¸¸ ¸íÀÇ ¾Ï ȯÀÚ°¡ ¹ß»ýÇØ, 970¸¸ ¸íÀÌ »ç¸ÁÇß´Ù°í º¸°íµÇ°í ÀÖ½À´Ï´Ù.

¿¬±¸°³¹ß ºñ¿ë »ó½Â ¹× ½Ã°£Àû ¾Ð·Â

¿¬±¸ °³¹ß ºñ¿ëÀÇ »ó½Â°ú ½Ã°£Àû ¾Ð·ÂÀº ÀΰøÁö´É(AI) ½Å¾à °³¹ßÀÇ Ã¤¿ëÀ» °¡¼ÓÈ­Çϰí Çõ½ÅÀÇ Ã˸ŷμ­ ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °úÁ¦·Î Á¦¾à±â¾÷µéÀº Ç¥Àû µ¿Á¤À» ÇÕ¸®È­Çϰí ÀÓ»ó½ÃÇèÀ» ÃÖÀûÈ­ÇÏ¸ç ºñ¿ëÀÌ ¸¹ÀÌ µå´Â ½ÇÆÐ¸¦ ÁÙÀÌ´Â AI ÁÖµµ ¼Ö·ç¼ÇÀ» µµÀÔÇØ¾ß ÇÕ´Ï´Ù. ±× °á°ú AI´Â ¿¬±¸°³¹ßÀÇ »ý»ê¼ºÀ» ³ôÀÌ°í °³¹ß ±â°£À» ´ÜÃàÇÏ¸ç ¼º°ø·üÀ» Çâ»ó½Ãŵ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã±Þ¼ºÀº Áö´ÉÇü ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇÏ¿© ±âÁ¸ÀÇ ¿öÅ©Ç÷ο츦 º¯ÇõÇϰí Áõ´ëÇÏ´Â ÇコÄÉ¾î ¼ö¿ä¿¡ ´ëÀÀÇϱâ À§ÇØ º¸´Ù ½Å¼ÓÇÏ°í ºñ¿ë È¿À²ÀûÀÎ ÀǾàǰ °³¹ßÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

Ç¥ÁØÈ­µÈ °íǰÁú µ¥ÀÌÅÍ ºÎÁ·

Ç¥ÁØÈ­µÈ °íǰÁú µ¥ÀÌÅÍÀÇ ºÎÁ·Àº ÀǾàǰ¿¡¼­ AIÀÇ È¿´ÉÀ» ÇöÀúÇÏ°Ô ÀúÇØÇÕ´Ï´Ù. Àϰü¼º ¾ø´Â Çü½Ä, ºÒ¿ÏÀüÇÑ ÁÖ¼®, ÆíÇâµÈ µ¥ÀÌÅÍ ¼¼Æ®´Â ¸ðµ¨ÀÇ Á¤È®¼º°ú ÀçÇö¼ºÀ» ¼Õ»ó½Ãŵ´Ï´Ù. ÀÌ·¯ÇÑ µ¥ÀÌÅÍ ¹®Á¦´Â ¿¹Ãø ¿À·ù, °³¹ß ºñ¿ë Áõ°¡ ¹× ŸÀÓ¶óÀÎ Áö¿¬À¸·Î À̾îÁý´Ï´Ù. Á¶È­·Î¿î µ¥ÀÌÅÍ ¾øÀÌ´Â AI´Â ½ÇÇà °¡´ÉÇÑ ¾à¹° Èĺ¸ÀÇ È®Àΰú °á°úÀÇ È®½ÇÇÑ ¿¹Ãø¿¡ °íÀüÇϰí, ±× º¯È­ÀÇ °¡´É¼ºÀ» Á¦ÇÑÇϰí, ¿¬±¸ Çõ½Å ¹× ½Ç¼¼°è¿¡¼­ÀÇ ÀǾàǰ ¿ëµµ¿ÍÀÇ °ÝÂ÷¸¦ ³ÐÇô ¹ö¸³´Ï´Ù.

»ý¹° ÀÇÇÐ µ¥ÀÌÅÍÀÇ Æø¹ßÀû Áõ°¡

»ý¹° ÀÇÇÐ µ¥ÀÌÅÍÀÇ Æø¹ßÀûÀÎ Áõ°¡´Â ÀΰøÁö´É(AI) ½Å¾à °³¹ßÀÇ º¯ÇõÀû µµ¾à¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. À¯ÀüüÇÐ, ´Ü¹éÁúüÇÐ, ÀÓ»ó ±â·Ï¿¡¼­ ¾òÀº ¹æ´ëÇÑ µ¥ÀÌÅÍ ¼¼Æ®´Â AI ¸ðµ¨ÀÌ ¼û°ÜÁø ÆÐÅÏÀ» ¹ß°ßÇÏ°í ¾à¹°°ú Ç¥ÀûÀÇ »óÈ£ ÀÛ¿ëÀ» ¿¹ÃøÇÏ°í ¸®µå È­ÇÕ¹°ÀÇ ½Äº°À» °¡¼ÓÈ­ÇÒ ¼ö ÀÖ°ÔÇÕ´Ï´Ù. ÀÌ Ç³ºÎÇÑ µ¥ÀÌÅÍ´Â Á¤È®¼ºÀ» ³ôÀÌ°í ½ÃÇà Âø¿À¸¦ ÁÙÀÌ°í ¸ÂÃãÇü ÀǷḦ Áö¿øÇÕ´Ï´Ù. ±× °á°ú, ÀǾàǰÀÇ ¿¬±¸°³¹ßÀº º¸´Ù ºü¸£°í È¿À²ÀûÀÌ¸ç ºñ¿ë È¿À²ÀûÀÔ´Ï´Ù. ºòµ¥ÀÌÅÍ¿Í AIÀÇ ½Ã³ÊÁö È¿°ú·Î ÀǾàǰ °³¹ßÀº º¸´Ù ½º¸¶Æ®ÇÏ°í µ¥ÀÌÅ͸¦ ±¸»çÇÑ ÇÁ·ÐƼ¾î·Î ´Ù½Ã ž·Á°í ÇÕ´Ï´Ù.

³ôÀº µµÀÔ ºñ¿ë

ƯÈ÷ Áß¼Ò±Ô¸ðÀÇ Á¦¾à±â¾÷¿¡¼­´Â ³ôÀº µµÀÔ ºñ¿ëÀÌ ÀΰøÁö´É(AI) ½Å¾à °³¹ßÀÇ Ã¤¿ëÀ» Å©°Ô ¹æÇØÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºñ¿ë¿¡´Â °í±Þ ÀÎÇÁ¶ó, ¼÷·ÃµÈ ÀηÂ, Áö¼ÓÀûÀÎ ½Ã½ºÅÛ À¯Áöº¸¼ö°¡ Æ÷ÇԵ˴ϴÙ. ÀÌ·¯ÇÑ ±ÝÀüÀû À庮Àº ÅëÇÕÀ» ´ÊÃß°í Çõ½ÅÀ» Á¦ÇÑÇÏ¸ç ´ë±â¾÷°ú ½ÅÈï ±â¾÷ °£ÀÇ °ÝÂ÷¸¦ ³ÐÈü´Ï´Ù. ±× °á°ú, AIÀÇ ÀáÀç·ÂÀÌ ÃæºÐÈ÷ Ȱ¿ëµÇÁö ¾Ê°í, º¸´Ù ºü¸£°í ºñ¿ë È¿À²ÀûÀÎ, ¸ÂÃã Ä¡·á ¼Ö·ç¼ÇÀÇ °³¹ßÀÌ Áö¿¬µÇ°í ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

COVID-19ÀÇ ´ëÀ¯ÇàÀº Á¦¾àȸ»ç°¡ º¸´Ù ½Å¼ÓÇÏ°í ºñ¿ë È¿À²ÀûÀÎ ÇØ°áÃ¥À» ±ä±ÞÇÏ°Ô ¿ä±¸Ç߱⠶§¹®¿¡ ÀΰøÁö´É(AI) ½Å¾à °³¹ßÀÇ Ã¤¿ëÀ» ´ëÆø °¡¼Ó½ÃÄ×½À´Ï´Ù. AI µµ±¸´Â Ä¡·á Ç¥ÀûÀÇ Æ¯Á¤, ¾àÁ¦ÀÇ Àç»ç¿ë, ¹é½Å °³¹ßÀÇ ÃÖÀûÈ­¿¡ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çß½À´Ï´Ù. ÀÌ·¯ÇÑ ¼ö¿ä ±ÞÁõÀº ÅõÀÚ, °øµ¿ ¿¬±¸, ¿¬±¸ °³¹ß ÆÄÀÌÇÁ¶óÀÎ ÀüüÀÇ AI Ç÷§Æû ÅëÇÕ Áõ°¡·Î À̾îÁ³½À´Ï´Ù. ÆÒµ¥¹ÍÀº ±Ã±ØÀûÀ¸·Î AIÀÇ º¯Çõ °¡´É¼ºÀ» ºÎ°¢½ÃŰ¸ç ¹Ì·¡ ÀǾàǰ Çõ½Å°ú À§±â ´ëÀÀÀÇ Áß¿äÇÑ ÀÚ»êÀ¸·Î ÀÚ¸® Àâ¾Ò½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¾Ï ¿µ¿ªÀÌ ÃÖ´ë°¡ µÉ Àü¸Á

Á¤È®ÇÏ°í °³º°È­µÈ ¾Ï Ä¡·á¿¡ ´ëÇÑ ±ä±Þ ¼ö¿ä·Î ¿¹Ãø ±â°£ µ¿¾È ¾Ï ºÐ¾ß°¡ ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. AI´Â ƯÈ÷ Æó¾ÏÀ̳ª À¯¹æ¾Ï°ú °°Àº º¹ÀâÇÑ ¾Ï¿¡¼­ ¹ÙÀÌ¿À¸¶Ä¿ Ž»öÀ» °¡¼ÓÇØ Ä¡·á ¹ÝÀÀÀ» ¿¹ÃøÇϰí ÀÓ»ó½ÃÇè µðÀÚÀÎÀ» °­È­ÇÕ´Ï´Ù. AI ½Å¾à ÅõÀÚÀÇ ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÏ´Â ¾Ï ¿µ¿ª¿¡¼­´Â Ç¥Àû¿ä¹ý ¹× ¸é¿ªÁ¾¾çÇÐÀÇ Çõ½ÅÀÌ ÃËÁøµË´Ï´Ù. ÀÌ »ó½ÂÈ¿°ú·Î ¼º°ø·üÀÌ Çâ»óµÇ°í ¿¬±¸°³¹ß ±â°£ÀÌ ´ÜÃàµÇ¸ç AI´Â ¾Ï ¿¬±¸¿Í Ä¡·á¿¡ ÀÖ¾î º¯ÇõÀÇ ÈûÀ¸·Î ÀÚ¸®¸Å±èÇÒ ¼ö ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È µö·¯´× ºÐ¾ßÀÇ CAGRÀÌ °¡Àå ³ô¾ÆÁú Àü¸Á

¿¹Ãø ±â°£ µ¿¾È µö·¯´× ºÐ¾ß´Â º¹ÀâÇÑ »ý¹° ÀÇÇÐ µ¥ÀÌÅ͸¦ ½Å¼ÓÇÏ°Ô ºÐ¼®ÇÒ ¼ö Àֱ⠶§¹®¿¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º¹ÀâÇÑ »ý¹°ÇÐÀû »óÈ£ÀÛ¿ëÀ» ¸ðµ¨¸µÇÏ´Â ´É·ÂÀº Ç¥Àû µ¿Á¤À» °¡¼ÓÈ­Çϰí È­ÇÕ¹° ½ºÅ©¸®´×À» ÃÖÀûÈ­Çϸç denovo ¾à¹° µðÀÚÀÎÀ» °­È­ÇÕ´Ï´Ù. µö·¯´×Àº ¿¹Ãø Á¤È®µµ¸¦ ³ôÀÌ°í ½ÃÇè ½ÇÆÐ¸¦ ÃÖ¼ÒÈ­ÇÔÀ¸·Î½á °³¹ß ½Ã°£°ú ºñ¿ëÀ» ÁÙÀÔ´Ï´Ù. Á¦¾à ±â¾÷ÀÌ ÀÌ·¯ÇÑ ¸ðµ¨À» ä¿ëÇÒ ±âȸ°¡ Áõ°¡ÇÔ¿¡ µû¶ó ½ºÄÉÀÏ·¯ºíÇÏ°í µ¥ÀÌÅÍ ±¸µ¿ÇüÀÇ Çõ½ÅÀÌ ½ÇÇöµÇ¾î â¾àÀÌ º¸´Ù ½Å¼ÓÇϰí Á¤È®ÇÏ¸ç ºñ¿ë È¿À²ÀûÀÎ ÇÁ·Î¼¼½º·Î º¯È­ÇØ °©´Ï´Ù.

ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª :

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº °ß°íÇÑ ¿¬±¸°³¹ß »ýŰè, Á¤ºÎ Áö¿ø, ¹ÙÀÌ¿À ½ÅÈï ±â¾÷ÀÇ ±ÞÁõÀ¸·Î ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áß±¹, Àεµ, ÀϺ»°ú °°Àº ±¹°¡µéÀº ÀÓ»ó ½ÃÇèÀ» °¡¼ÓÈ­ÇÏ°í ºñ¿ëÀ» Àý°¨Çϸç Á¤¹Ð ÀǷḦ °­È­Çϱâ À§ÇØ AI¸¦ Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ¹æ´ëÇÑ °Ô³ð µ¥ÀÌÅÍ ¼¼Æ®¿Í µðÁöÅÐ ÀÎÇÁ¶ó¸¦ °¡Áø ÀÌ Áö¿ªÀº Á¾¾çÇÐ, ¸é¿ªÇÐ, Èñ±Í ÁúȯÀÇ Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ ±â¼¼¿¡ ÀÇÇØ, ¾Æ½Ã¾ÆÅÂÆò¾ç Áö¿ªÀº ÀǾàǰ °³¹ßÀ» º¸´Ù ºü¸£°í, º¸´Ù ½º¸¶Æ®Çϰí, º¸´Ù ÀÌ¿ëÇϱ⠽¬¿î ÇÁ·Î¼¼½º·Î º¯ÇõÇØ, ¼¼°è ¸®´õ·Î¼­ÀÇ ÁöÀ§¸¦ È®¸³Çϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À̴ źźÇÑ Á¦¾à ÀÎÇÁ¶ó¿Í ¼±ÁøÀûÀÎ ±â¼ú Çõ½ÅÀÚ·Î ÀÌ Áö¿ªÀÌ ¼¼°è µµÀÔÀ» ¼±µµÇϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. AI´Â ½Å¼ÓÇÑ È­ÇÕ¹° ½ºÅ©¸®´×, ¿¹Ãø ¸ðµ¨¸µ, °³º°È­ ÀÇ·á °³¹ßÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. »ý¸í°øÇÐ ±â¾÷°ú AI ½ÅÈï ±â¾÷ÀÇ Àü·«Àû Á¦ÈÞ°¡ Çõ½ÅÀ» ÃËÁøÇÏ°í ±ÔÁ¦ ´ç±¹ÀÇ Áö¿øÀÌ ¼ºÀåÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã³ÊÁö È¿°ú·Î ºÏ¹Ì´Â AI¸¦ Ȱ¿ëÇÑ ÀǾàǰÀÇ ºñ¾àÀû Áøº¸ °­±¹À¸·Î ÀÚ¸®¸Å±èÇÏ¿© ½ÃÀåÀÇ ±Þ¼ºÀåÀÌ ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù.

¹«·á ÁÖ¹®À» ¹Þ¾Æ¼­ ¸¸µå´Â ¼­ºñ½º :

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

Á¦4Àå Porter's Five Forces ºÐ¼®

Á¦5Àå ¼¼°èÀÇ ÀΰøÁö´É(AI) ½Å¾à °³¹ß ½ÃÀå : À¯Çüº°

Á¦6Àå ¼¼°èÀÇ ÀΰøÁö´É(AI) ½Å¾à °³¹ß ½ÃÀå : ¾àÁ¦ À¯Çüº°

Á¦7Àå ¼¼°èÀÇ ÀΰøÁö´É(AI) ½Å¾à °³¹ß ½ÃÀå : Á¦°øº°

Á¦8Àå ¼¼°èÀÇ ÀΰøÁö´É(AI) ½Å¾à °³¹ß ½ÃÀå : ±â¼úº°

Á¦9Àå ¼¼°èÀÇ ÀΰøÁö´É(AI) ½Å¾à °³¹ß ½ÃÀå : ¿ëµµº°

Á¦10Àå ¼¼°èÀÇ ÀΰøÁö´É(AI) ½Å¾à °³¹ß ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

Á¦11Àå ¼¼°èÀÇ ÀΰøÁö´É(AI) ½Å¾à °³¹ß ½ÃÀå : Áö¿ªº°

Á¦12Àå ÁÖ¿ä ¹ßÀü

Á¦13Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

AJY
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

According to Stratistics MRC, the Global AI in Drug Discovery Market is accounted for $2.6 billion in 2025 and is expected to reach $17.8 billion by 2032 growing at a CAGR of 31.7% during the forecast period. Artificial Intelligence (AI) in drug discovery refers to the application of machine learning and data-driven algorithms to accelerate and optimize the process of developing new drugs. AI can analyze vast datasets-from molecular structures to clinical trial results-to identify promising drug candidates, predict drug-target interactions, and even design novel compounds. It reduces the time, cost, and failure rate associated with traditional drug development methods. By simulating biological systems and learning from existing data, AI helps researchers uncover patterns and make decisions with greater precision.

According to the estimates by WHO, in 2022, 20 million new cancer cases and 9.7 million deaths were reported globally.

Market Dynamics:

Driver:

Rising R&D Costs and Time Pressure

Rising R&D costs and time pressure are accelerating the adoption of AI in drug discovery, acting as catalysts for innovation. These challenges push pharmaceutical companies to embrace AI-driven solutions that streamline target identification, optimize clinical trials, and reduce costly failures. As a result, AI enhances R&D productivity, shortens development timelines, and improves success rates. This urgency fosters investment in intelligent technologies, transforming traditional workflows and enabling faster, more cost-effective drug development to meet growing healthcare demands.

Restraint:

Lack of Standardized, High-Quality Data

The lack of standardized, high-quality data severely hampers AI's effectiveness in drug discovery. Inconsistent formats, incomplete annotations, and biased datasets compromise model accuracy and reproducibility. These data issues lead to flawed predictions, increased development costs, and delayed timelines. Without harmonized data, AI struggles to identify viable drug candidates or predict outcomes reliably, limiting its transformative potential and widening the gap between research innovation and real-world pharmaceutical application.

Opportunity:

Explosion of Biomedical Data

The explosion of biomedical data is fueling a transformative leap in AI-driven drug discovery. With vast datasets from genomics, proteomics, and clinical records, AI models can now uncover hidden patterns, predict drug-target interactions, and accelerate lead identification. This data abundance enhances precision, reduces trial-and-error, and supports personalized medicine. As a result, pharmaceutical R&D becomes faster, more efficient, and cost-effective. The synergy between big data and AI is reshaping drug development into a smarter, data-powered frontier.

Threat:

High Implementation Costs

High implementation costs significantly hinder the adoption of AI in drug discovery, especially among small and mid-sized pharmaceutical firms. These expenses include advanced infrastructure, skilled personnel, and ongoing system maintenance. Such financial barriers delay integration, limit innovation, and widen the gap between large corporations and emerging players. As a result, the full potential of AI remains underutilized, slowing progress in developing faster, cost-effective, and personalized therapeutic solutions.

Covid-19 Impact

The COVID-19 pandemic significantly accelerated the adoption of AI in drug discovery, as pharmaceutical companies urgently sought faster, cost-effective solutions. AI tools were pivotal in identifying therapeutic targets, repurposing drugs, and optimizing vaccine development. This surge in demand led to increased investments, collaborations, and integration of AI platforms across R&D pipelines. The pandemic ultimately highlighted AI's transformative potential, establishing it as a critical asset in future pharmaceutical innovation and crisis response.

The oncology segment is expected to be the largest during the forecast period

The oncology segment is expected to account for the largest market share during the forecast period due to the urgent demand for precise, personalized cancer treatments. AI accelerates biomarker discovery, predicts therapeutic responses, and enhances clinical trial design, especially in complex cancers like lung and breast cancer. With oncology accounting for the largest share of AI drug discovery investments, it fosters innovation in targeted therapies and immuno-oncology. This synergy improves success rates, reduces development time, and positions AI as a transformative force in cancer research and treatment.

The deep learning segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the deep learning segment is predicted to witness the highest growth rate as it enables rapid analysis of complex biomedical data. Its ability to model intricate biological interactions accelerates target identification, optimizes compound screening, and enhances de novo drug design. Deep learning reduces development time and costs by improving prediction accuracy and minimizing trial failures. As pharmaceutical companies increasingly adopt these models, they unlock scalable, data-driven innovation-transforming drug discovery into a faster, more precise, and cost-effective process.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share due to robust R&D ecosystems, government support, and a surge in biotech startups. Countries like China, India, and Japan are leveraging AI to accelerate clinical trials, reduce costs, and enhance precision medicine. With vast genomic datasets and digital infrastructure, the region fosters innovation in oncology, immunology, and rare diseases. This momentum positions Asia Pacific as a global leader, transforming drug development into a faster, smarter, and more accessible process.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, owing to robust pharmaceutical infrastructure and leading tech innovators, the region leads global adoption. AI enables rapid compound screening, predictive modeling, and personalized medicine development. Strategic collaborations between biotech firms and AI startups are fueling innovation, while regulatory support fosters growth. This synergy is driving a projected market surge, positioning North America as a powerhouse in AI-driven pharmaceutical breakthroughs

Key players in the market

Some of the key players profiled in the AI in Drug Discovery Market include Atomwise, Inc., BenevolentAI, Insilico Medicine, Exscientia Ltd., Recursion Pharmaceuticals, BioXcel Therapeutics, Deep Genomics, Cloud Pharmaceuticals, Numerate, Inc., Cyclica Inc., Iktos, Evaxion Biotech, BERG LLC, Verge Genomics, Healx, PathAI, NVIDIA Corporation, IBM Watson Health, Google DeepMind and Schrodinger, Inc.

Key Developments:

In August 2022, Atomwise and Sanofi have launched a strategic, exclusive collaboration to harness Atomwise's AtomNet(R) AI platform for structure-based drug discovery targeting up to five molecular targets.

In March 2020, Atomwise and Bridge Biotherapeutics struck potential $1 billion research collaboration, aiming to develop up to 13 AI-driven small-molecule programs targeting inflammation-related proteins, especially Pellino E3 ubiquitin ligases.

Types Covered:

Drug Types Covered:

Offerings Covered:

Technologies Covered:

Applications Covered:

End Users Covered:

Regions Covered:

What our report offers:

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

Table of Contents

1 Executive Summary

2 Preface

3 Market Trend Analysis

4 Porters Five Force Analysis

5 Global AI in Drug Discovery Market, By Type

6 Global AI in Drug Discovery Market, By Drug Type

7 Global AI in Drug Discovery Market, By Offering

8 Global AI in Drug Discovery Market, By Technology

9 Global AI in Drug Discovery Market, By Application

10 Global AI in Drug Discovery Market, By End User

11 Global AI in Drug Discovery Market, By Geography

12 Key Developments

13 Company Profiling

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â