Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ EV ¿ °ü¸® ½Ã½ºÅÛ ½ÃÀåÀº 2025³â 39¾ï ´Þ·¯·Î ÃßÁ¤µÇ°í, ¿¹Ãø ±â°£ µ¿¾È CAGR 16.5%·Î ¼ºÀåÇÒ Àü¸ÁÀ̸ç, 2032³â¿¡´Â 115¾ï ´Þ·¯¿¡ À̸¦ Àü¸ÁÀÔ´Ï´Ù.
Àü±âÀÚµ¿Â÷(EV) ¿ °ü¸® ½Ã½ºÅÛÀº ¹èÅ͸® ÆÑ, ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º, Àü±â ¸ðÅÍ µî Àü±âÀÚµ¿Â÷ÀÇ ´Ù¾çÇÑ ±¸¼º ¿ä¼ÒÀÇ ¿Âµµ¸¦ Á¶Á¤Çϱâ À§ÇØ ¼³°èµÈ Ư¼ö ½Ã½ºÅÛÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ÃÖÀûÀÇ ÀÛµ¿ ¿Âµµ¸¦ È®º¸ÇÏ°í ¼º´ÉÀ» Çâ»ó½ÃŰ¸ç ºÎǰÀÇ ¼ö¸íÀ» ´Ã¸®°í ¾ÈÀü¼ºÀ» À¯ÁöÇÕ´Ï´Ù. ¿ °ü¸®¿¡´Â °ø·©, ¾×·©, »óº¯È Àç·á µîÀÇ ¹æ¹ýÀÌ »ç¿ëµË´Ï´Ù. È¿À²ÀûÀÎ ¿ °ü¸®´Â °ú¿ ¹æÁö, ¿¡³ÊÁö È¿À² Çâ»ó, ¾ÈÁ¤ÀûÀÎ ÁÖÇà °Å¸® È®º¸¿¡ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. EVÀÇ º¸±ÞÀÌ ÁøÇàµÊ¿¡ µû¶ó °íµµÀÇ ¿°ü¸® ¼Ö·ç¼ÇÀº ±Þ¼Ó ÃæÀü, °í¼º´É ÁÖÇà, ´Ù¾çÇÑ È¯°æ Á¶°Ç ÇÏ¿¡¼ ¹èÅ͸®ÀÇ ³»±¸¼ºÀ» Áö¿øÇϱâ À§ÇØ ÇʼöÀûÀÔ´Ï´Ù.
±¹Á¦¿¡³ÊÁö±â±¸(IEA)¿¡ µû¸£¸é Àü±âÀÚµ¿Â÷ÀÇ ÆÇ¸Å ´ë¼ö´Â 2023³â 1,400¸¸ ´ë¿¡ À°¹ÚÇØ ±× 95%¸¦ Áß±¹, À¯·´, ¹Ì±¹ÀÌ Â÷ÁöÇß½À´Ï´Ù. Áß±¹¿¡¼¸¸ Àü±âÂ÷ ½Å±Ô µî·Ï ´ë¼öÀÇ 60% ³²ÁþÀ» Â÷ÁöÇÏ¿´°í, À¯·´Àº 25% °¡±îÀÌ, ¹Ì±¹Àº 10% °¡±îÀ̸¦ Â÷ÁöÇß½À´Ï´Ù.
EV º¸±ÞÀÇ ¼ºÀå
Àü±âÀÚµ¿Â÷(EV)ÀÇ Ã¤¿ëÀÌ ±ÞÁõÇϰí ÀÖ´Â °ÍÀÌ EV ¿ °ü¸® ½Ã½ºÅÛ ½ÃÀåÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. È¿À²ÀûÀÎ ¿Âµµ Á¶ÀýÀÌ ¹èÅ͸®ÀÇ ¼º´É, ¾ÈÀü¼º, ¼ö¸í¿¡ ÇʼöÀûÀ̱⠶§¹®ÀÔ´Ï´Ù. ÁÖÇà°Å¸® ¿¬Àå ¹× ÃæÀü °í¼ÓÈ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡°¡ ¾×³Ã, È÷Æ®ÆßÇÁ, ÅëÇÕ ¿ ¸ðµâÀÇ ±â¼ú Çõ½ÅÀ» °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù. OEM°ú °ø±Þ¾÷ü´Â ±ÔÁ¦ ±âÁذú ¼ÒºñÀÚ ±â´ë¿¡ ºÎÀÀÇϱâ À§ÇØ °íµµÀÇ ¿¡³ÊÁö È¿À² ¼Ö·ç¼Ç¿¡ ÅõÀÚÇϰí ÀÖÀ¸¸ç, ½á¸Ö ½Ã½ºÅÛÀ» Áö¼Ó °¡´ÉÇÑ ¸ðºô¸®Æ¼¿Í Â÷¼¼´ë EV ¼³°èÀÇ ÇÙ½É ¿ä¼Ò·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.
³ôÀº ½Ã½ºÅÛ ºñ¿ë
³ôÀº ½Ã½ºÅÛ ºñ¿ëÀº ƯÈ÷ ºñ¿ë¿¡ ¹Î°¨ÇÑ OEM°ú ¼ÒºñÀÚ »çÀÌÀÇ Ã¤¿ëÀ» Á¦ÇÑÇϰí EV ¿ °ü¸® ½Ã½ºÅÛ ½ÃÀåÀÇ Å« À庮ÀÌ µÇ°í ÀÖ½À´Ï´Ù. °íµµÀÇ ³Ã°¢ ±â¼ú, °í±Þ ¼ÒÀç, º¹ÀâÇÑ ÅëÇÕÀÌ »ý»ê ºñ¿ëÀ» ²ø¾î¿Ã·Á Àú·ÅÇÑ °¡°Ý°ú È®À强À» ¶³¾î¶ß¸®°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °í°¡ÀÇ ºñ¿ëÀÌ, Áß±ÞÂ÷³ª º¸±Þ °¡°Ý´ëÀÇ EV¿¡ ´ëÇÑ º¸±ÞÀ» ¹æÇØÇØ ½ÃÀå ħÅõ¸¦ ´ÊÃß°í ÀÖ½À´Ï´Ù. °Ô´Ù°¡ °í¾×ÀÇ ¼±Çà ÅõÀÚ°¡ Áß¼Ò Á¦Á¶¾÷üÀÇ Á·¼â°¡ µÇ¾î, ±â¼ú Çõ½ÅÀÌ Á¤Ã¼ÇØ, È¿À²ÀûÀÎ ¿ ¼Ö·ç¼ÇÀ¸·ÎÀÇ ÀÌÇàÀÌ ´Ê½À´Ï´Ù.
±â¼ú Áøº¸
±â¼úÀÇ Áøº¸´Â È¿À², ¾ÈÀü¼º, ¼º´ÉÀ» Çâ»ó½ÃÄÑ EV ¿ °ü¸® ½Ã½ºÅÛ ½ÃÀå¿¡ Çõ¸íÀ» °¡Á®¿À°í ÀÖ½À´Ï´Ù. ¾×ħ ³Ã°¢»ó º¯È Àç·á³ª AI ÁÖµµ ¿ºÐ¼® µîÀÇ ±â¼ú Çõ½ÅÀ¸·Î Á¤È®ÇÑ ¿Âµµ Á¦¾î°¡ °¡´ÉÇØÁ® ¹èÅ͸® ¼ö¸í°ú Ç׼ӰŸ®°¡ Çâ»óµË´Ï´Ù. °æ·® ÇÕ±Ý, ³ª³ë Àç·á, ¸ðµâ ¼³°è´Â ½Ã½ºÅÛÀÇ º¹À⼺°ú ºñ¿ëÀ» ÁÙÀÔ´Ï´Ù. ÀÌ·¯ÇÑ µ¹ÆÄ´Â, ÃæÀüÀÇ °í¼ÓÈ, ÄÄÆÑÆ®ÇÑ ¾ÆÅ°ÅØÃ³, Áö¼Ó °¡´É¼ºÀÇ ¸ñÇ¥¸¦ ¼Æ÷Æ®ÇØ, ¿ ½Ã½ºÅÛÀ» Â÷¼¼´ë EV¿¡ ºÒ°¡°áÇÑ °ÍÀ¸·Î Çϰí ÀÖ½À´Ï´Ù. OEMÀÌ ½º¸¶Æ® ¼Ö·ç¼ÇÀ» äÅÃÇÔÀ¸·Î½á ½ÃÀåÀº °¡¼ÓµµÀûÀ¸·Î ¼ºÀåÇÒ Å¼¼¸¦ °®Ãß°í ÀÖ½À´Ï´Ù.
º¹ÀâÇÑ ÅëÇÕ ¹®Á¦
º¹ÀâÇÑ ÅëÇÕ °úÁ¦´Â ½Ã½ºÅÛ ¼³°è¸¦ º¹ÀâÇÏ°Ô ÇÏ°í °³¹ß ºñ¿ëÀ» Áõ°¡½ÃŰ¸ç ½ÃÀå Ãâ½Ã ½Ã±â¸¦ ´ÊÃß´Â °ÍÀ¸·Î EV ¿ °ü¸® ½Ã½ºÅÛ ½ÃÀåÀÇ Å« ¹æÇذ¡ µÇ°í ÀÖ½À´Ï´Ù. ³Ã°¢ ·çÇÁ, ¼¾¼, ¾×Ãß¿¡ÀÌÅÍ µî ´Ù¾çÇÑ ¼ºê ½Ã½ºÅÛÀ» ÄÄÆÑÆ®ÇÑ ¾ÆÅ°ÅØÃ³·Î ÅëÇÕÇÏ´Â °ÍÀº ¿£Áö´Ï¾î¸µ ¸®¼Ò½º¿¡ ºÎ´ãÀ» ÁÖ°í È®À强À» Á¦ÇÑÇÕ´Ï´Ù. ÀÌ·¯ÇÑ º¹À⼺Àº Á¾Á¾ ¿ Àü´ÞÀÇ ºñÈ¿À²¼º, ½Ã½ºÅÛÀÇ ½Å·Ú¼º ÀúÇÏ, Â÷·® Ç÷§Æû °£ÀÇ È£È¯¼º ¹®Á¦·Î À̾îÁý´Ï´Ù. ±× °á°ú OEMÀº ¼±ÁøÀûÀÎ ½á¸Ö ¼Ö·ç¼Ç µµÀÔÀ¸·Î À庮¿¡ Á÷¸éÇÏ¿© ±â¼ú Çõ½Å°ú ½ÃÀå È®´ë¸¦ Áö¿¬½Ã۰í ÀÖ½À´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
COVID-19ÀÇ À¯ÇàÀº °ø±Þ¸Á Áß´Ü, °øÀå °¡µ¿ Áß´Ü, ¼ÒºñÀÚ ÁöÃâ °¨¼Ò¸¦ ÅëÇØ EV ¿ °ü¸® ½Ã½ºÅÛ ½ÃÀåÀ» È¥¶õ½ÃÄ×½À´Ï´Ù. »ý»ê Áö¿¬ ¹× ³ëµ¿·Â ºÎÁ·ÀÌ Àü±âÂ÷ÀÇ ½Ã½ºÅÛ ÅëÇÕÀ» ¹æÇØÇß½À´Ï´Ù. ±×·¯³ª, ÆÒµ¥¹Í ÈÄÀÇ È¸º¹¿¡ ÀÇÇØ, ȯ°æ Àǽİú ±×¸° ¸ðºô¸®Æ¼¿¡ÀÇ ´ëó°¡ ¿øµ¿·ÂÀÌ µÇ¾î EV ¼ö¿ä°¡ ±ÞÁõÇß½À´Ï´Ù. ÀÌ ºÎȰÀº °íµµÀÇ ¿±â¼ú¿¡ ´ëÇÑ ÅõÀÚ¸¦ °¡¼ÓȽÃÄÑ ½ÃÀåÀÇ °ßÁ¶ÇÑ ¼ºÀå°ú Áö¼Ó °¡´ÉÇÑ ÀÚµ¿Â÷ ¼º´ÉÀÇ Çõ½ÅÀ» ÇâÇÑ ÀÚ¸®¸Å±èÀ» Çß½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È Àüµ¿ ÆßÇÁ ºÐ¾ß°¡ ÃÖ´ë°¡ µÉ Àü¸Á
Àüµ¿ ÆßÇÁ´Â ¹èÅ͸® ³Ã°¢, ÆÄ¿öÆ®·¹ÀÎ ¿Âµµ Á¦¾î, Â÷·® ³» Æí¾ÈÇÔÀ» Çâ»ó½Ã۰í ÃÖÀûÀÇ ¼º´É°ú ¾ÈÀü¼ºÀ» Áö¿øÇϱ⠶§¹®¿¡ ¿¹Ãø ±â°£ µ¿¾È Àüµ¿ ÆßÇÁ ºÐ¾ß°¡ ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. °¡º±°í °íÈ¿À²ÀÇ ½Ã½ºÅÛÀ» ¿ä±¸ÇÏ´Â EV Á¦Á¶¾÷üÀÇ ¸ñÇ¥¿¡ ÇÕÄ¡Çϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ÆÐ½Ãºê ³Ã°¢ ºÎ¹®ÀÇ CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹»ó
¿¹Ãø ±â°£ µ¿¾È ÆÐ½Ãºê ³Ã°¢ ºÐ¾ß´Â ¿¡³ÊÁö È¿À²ÀÌ ¶Ù¾î³ª°í ºñ¿ë È¿À²ÀûÀ̸ç À¯Áö º¸¼ö°¡ ÀûÀº ¼Ö·ç¼ÇÀ» Á¦°øÇÔÀ¸·Î½á °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¿ÜºÎ Àü¿ø ¾øÀÌ ¹èÅ͸® ¿Âµµ¸¦ Á¶ÀýÇÏ´Â ´É·ÂÀº ƯÈ÷ ¼ÒÇü EV¿¡¼ Â÷·®ÀÇ Ç׼ӰŸ®¿Í ¾ÈÀü¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. »óº¯È Àç·á(PCM)¿Í °°Àº ±â¼ú Çõ½ÅÀº, ÇÇÅ© ºÎÇϽÃÀÇ ¿ ¾ÈÁ¤¼ºÀ» °¡´ÉÇÏ°Ô ÇØ, ¿ÆøÁÖÀÇ À§ÇèÀ» Àú°¨Çϰí ÀÖ½À´Ï´Ù. OEMÀÌ Áö¼Ó °¡´ÉÇÑ ´ëü ¼ö´ÜÀ» ¸ð»öÇÏ´Â °¡¿îµ¥ ÆÐ½Ãºê ³Ã°¢Àº °æ·® ¼³°è, ¹èÅ͸® ¼ö¸í ¿¬Àå, ¼¼°è È¿À² ±âÁØ Áؼö¸¦ ½ÇÇöÇÏ´Â Àü·«Àû ¼ö´ÜÀ¸·Î ´ëµÎµÇ°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº EV µµÀÔ Áõ°¡, Á¤ºÎ Àμ¾Æ¼ºê ¹× ȯ°æ ±ÔÁ¦·Î ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ¹èÅ͸® È¿À²À» ³ôÀ̰í Â÷·® Ç×¼Ó °Å¸®¸¦ ´Ã¸®¸ç ´Ù¾çÇÑ ±âÈÄ¿¡¼ ¾ÈÀü¼ºÀ» È®º¸ÇÕ´Ï´Ù. ¾×ü ³Ã°¢À̳ª »óº¯È Àç·á¿Í °°Àº ±â¼úÀû Áøº¸´Â ƯÈ÷ Áß±¹, ÀϺ», Àεµ¿¡¼ Àα⸦ ²ø°í ÀÖ½À´Ï´Ù. ½ÃÀåÀÇ È®´ë´Â Áö¼Ó °¡´ÉÇÑ ¸ðºô¸®Æ¼¸¦ ÁöÅÊÇϰí, Áö¿ªÀÇ Á¦Á¶ ´É·ÂÀ» ³ô¿©, ¾Æ½Ã¾ÆÅÂÆò¾ç Áö¿ªÀ» EVÀÇ Çõ½Å°ú ¿°ü¸® ÅëÇÕÀÇ ¼¼°èÀû ¸®´õ·Î¼ Æò°¡Çϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È Àü±âÀÚµ¿Â÷ÀÇ ¼º´É, ¾ÈÀü¼º, Áö¼Ó°¡´É¼ºÀÇ ¹ßÀüÀ¸·Î ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¹èÅ͸® ¿Âµµ¸¦ ÃÖÀûÈÇÏ°í ¿¡³ÊÁö È¿À²À» ³ôÀÓÀ¸·Î½á ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ¹èÅ͸® ¼ö¸íÀ» ´Ã¸®°í °í¼Ó ÃæÀüÀ» Áö¿øÇÕ´Ï´Ù. Á¤ºÎÀÇ Àå·ÁÃ¥ ¹× EV º¸±ÞÀÇ °íÁ¶°¡ ¼ö¿ä¸¦ ´õ¿í µÞ¹ÞħÇÏ´Â ÇÑÆí, ³Ã°¢ ±â¼ú°ú ½º¸¶Æ®ÇÑ ¿Âµµ Á¦¾îÀÇ Çõ½ÅÀÌ ´Ù¾çÇÑ ±âÈÄ¿¡¼ÀÇ ½Å·Ú¼ºÀ» ³ôÀÔ´Ï´Ù. ÀÌ ½ÃÀåÀº, ÀÌ Áö¿ªÀÇ Å¬¸° ¸ðºô¸®Æ¼·ÎÀÇ ÀÌÇàÀ» °¡¼ÓÇØ, ¼¼°èÀÇ EV ¿¡ÄÚ ½Ã½ºÅÛ¿¡¼ ÁöÀ§¸¦ °ÈÇÏ´Â µ¥ ÀÖ¾î¼ Áö±ØÈ÷ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global EV Thermal Management Systems Market is accounted for $3.9 billion in 2025 and is expected to reach $11.5 billion by 2032 growing at a CAGR of 16.5% during the forecast period. Electric Vehicle (EV) Thermal Management Systems are specialized systems designed to regulate the temperature of various components in electric vehicles, such as the battery pack, power electronics, and electric motor. These systems ensure optimal operating temperatures, enhance performance, extend component lifespan, and maintain safety. They use methods like air cooling, liquid cooling, and phase change materials to manage heat. Efficient thermal management is crucial in preventing overheating, improving energy efficiency, and ensuring consistent driving range. As EV adoption increases, advanced thermal management solutions are becoming essential for supporting fast charging, high-performance driving, and battery durability under diverse environmental conditions.
According to the International Energy Agency, electric car sales approached 14 million in 2023, with China, Europe, and the U.S. accounting for 95% of these sales. China alone represented just fewer than 60% of new electric car registrations, while Europe and the United States accounted for nearly 25% and 10% respectively.
Growth in EV Adoption
The surge in electric vehicle (EV) adoption is propelling the EV thermal management systems market, as efficient temperature regulation becomes vital for battery performance, safety, and longevity. Rising demand for longer driving ranges and faster charging accelerates innovation in liquid cooling, heat pumps, and integrated thermal modules. OEMs and suppliers are investing in advanced, energy-efficient solutions to meet regulatory standards and consumer expectations, positioning thermal systems as a cornerstone of sustainable mobility and next-generation EV design.
High System Cost
High system costs pose a major barrier to the EV Thermal Management Systems Market by limiting adoption, especially among cost-sensitive OEMs and consumers. Advanced cooling technologies, premium materials, and integration complexities drive up production expenses, reducing affordability and scalability. These elevated costs hinder widespread deployment in mid-range and budget EVs, slowing market penetration. Additionally, high upfront investment deters smaller manufacturers, stalling innovation and delaying the transition to efficient thermal solutions.
Technological Advancements
Technological advancements are revolutionizing the EV thermal management systems market by enhancing efficiency, safety, and performance. Innovations like immersion cooling phase change materials, and AI-driven thermal analytics enable precise temperature control, boosting battery life and vehicle range. Lightweight alloys, nanomaterials, and modular designs reduce system complexity and cost. These breakthroughs support faster charging, compact architectures, and sustainability goals, making thermal systems integral to next-gen EVs. As OEMs embrace smart solutions, the market is poised for accelerated growth.
Complex Integration Challenges
Complex integration challenges significantly hinder the EV Thermal Management Systems Market by complicating system design, increasing development costs, and delaying time-to-market. Integrating diverse subsystems-cooling loops, sensors, actuators-into compact architectures strains engineering resources and limits scalability. These complexities often lead to inefficiencies in heat transfer, reduced system reliability, and compatibility issues across vehicle platforms. As a result, OEMs face barriers in deploying advanced thermal solutions, slowing innovation and market expansion.
Covid-19 Impact
The COVID-19 pandemic disrupted the EV Thermal Management Systems Market through supply chain interruptions, factory shutdowns, and reduced consumer spending. Production delays and workforce shortages hampered system integration in electric vehicles. However, post-pandemic recovery saw a surge in EV demand, driven by environmental awareness and green mobility initiatives. This resurgence accelerated investments in advanced thermal technologies, positioning the market for robust growth and innovation in sustainable vehicle performance.
The electric pumps segment is expected to be the largest during the forecast period
The electric pumps segment is expected to account for the largest market share during the forecast period because these pumps enhance battery cooling, powertrain temperature control, and cabin comfort, supporting optimal performance and safety. Their compact design and low power consumption align with EV manufacturers' goals for lightweight, high-efficiency systems. As demand for faster charging and extended range rises, electric pumps are becoming essential components, accelerating innovation and adoption across electric vehicle platforms globally.
The passive cooling segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the passive cooling segment is predicted to witness the highest growth rate as they offer energy-efficient, cost-effective, and low-maintenance solutions. Their ability to regulate battery temperatures without external power enhances vehicle range and safety, especially in compact EVs. Innovations like phase change materials (PCMs) are enabling thermal stability during peak loads, reducing thermal runaway risks. As OEMs seek sustainable alternatives, passive cooling is emerging as a strategic enabler for lightweight design, extended battery life, and compliance with global efficiency standards.
During the forecast period, the Asia Pacific region is expected to hold the largest market share due to rising EV adoption, government incentives, and environmental regulations. These systems enhance battery efficiency, extend vehicle range, and ensure safety in diverse climates. Technological advancements like liquid cooling and phase-change materials are gaining traction, especially in China, Japan, and India. The market's expansion supports sustainable mobility and boosts regional manufacturing capabilities, positioning Asia Pacific as a global leader in EV innovation and thermal management integration
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, owing to advancements in electric vehicle performance, safety, and sustainability. By optimizing battery temperature and enhancing energy efficiency, these systems extend battery life and support faster charging. Government incentives and rising EV adoption further fuel demand, while innovations in cooling technologies and smart thermal controls boost reliability across diverse climates. This market plays a pivotal role in accelerating the region's transition to clean mobility and strengthening its position in the global EV ecosystem.
Key players in the market
Some of the key players profiled in the EV Thermal Management Systems Market include Denso Corporation, MAHLE GmbH, Valeo SA, Hanon Systems, Robert Bosch GmbH, Modine Manufacturing Company, Gentherm Incorporated, BorgWarner Inc., Dana Incorporated, LG Innotek, Continental AG, Samsung SDI Co., Ltd., VOSS Automotive GmbH, Tesla, Inc., Toyota Industries Corporation, Renesas Electronics Corporation, Aptiv PLC, Webasto Group, Panasonic Corporation and Keihin Corporation.
In May 2025, DENSO and ROHM have agreed to form a strategic partnership in the semiconductor sector. With electrification and advanced vehicle autonomy growing rapidly, both companies aim to combine DENSO's deep automotive systems expertise with ROHM's cutting-edge semiconductor technologies - especially in analog ICs. They plan to integrate efforts in development and collaborate across related semiconductor business areas, strengthening both capital and technological alliances.
In June 2024, NTT DATA Japan and DENSO entered into a strategic memorandum of understanding to jointly develop in-vehicle software and establish a global software platform to accelerate the evolution of software-defined vehicles (SDVs).