3 ±¸Á¶ µî¹æ¼º(TRISO) ¿¬·á ½ÃÀå ¿¹Ãø(-2032³â) : ¿øÀÚ·Î À¯Çü, ÇǸ· Àç·á, ¿¬·á ÇüÅÂ, ¹èÆ÷ ´Ü°è, ¿ëµµ, Áö¿ªº° ¼¼°è ºÐ¼®
Tri-Structural Isotropic Fuel Market Forecasts to 2032 - Global Analysis By Reactor Type, Coating Material, Fuel Form, Deployment Phase, Application and By Geography
»óǰÄÚµå : 1755977
¸®¼­Ä¡»ç : Stratistics Market Research Consulting
¹ßÇàÀÏ : 2025³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 200+ Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,150 £Ü 5,681,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 5,250 £Ü 7,187,000
PDF (2-5 User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷Àå¿¡¼­ 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,350 £Ü 8,693,000
PDF & Excel (Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ »ç¾÷ÀåÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 5ȸ±îÁö °¡´ÉÇÕ´Ï´Ù. Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ¹× Excel ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 7,500 £Ü 10,268,000
PDF & Excel (Global Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 10ȸ±îÁö °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ 3 ±¸Á¶ µî¹æ¼º(TRISO) ¿¬·á ½ÃÀåÀº 2025³â¿¡ 4¾ï 1,416¸¸ ´Þ·¯¸¦ Â÷ÁöÇÏ¸ç ¿¹Ãø ±â°£ Áß CAGR 5.8%·Î ¼ºÀåÇϸç, 2032³â¿¡´Â 6¾ï 1,457¸¸ ´Þ·¯¿¡ ´ÞÇÒ Àü¸ÁÀÔ´Ï´Ù.

»ïÁß ±¸Á¶ µî¹æ¼º(TRISO) ¿¬·á¶ó°í ºÒ¸®´Â ÇÙ¿¬·áÀÇ ÀÏÁ¾À¸·Î, °í¿Â°¡½º·Î¿¡¼­ »ç¿ëÇϱâ À§ÇÑ °ÍÀ¸·Î, ÀϹÝÀûÀ¸·Î ÀÌ»êÈ­¿ì¶ó´½ ¶Ç´Â »êÈ­¿ì¶ó´½ ÇüÅÂÀÇ º¸È£ ¿ì¶ó´½ÀÇ ¿©·¯ ÃþÀ¸·Î ±¸¼ºµË´Ï´Ù. À̵éÀº ½Ç¸®ÄÜ Ä«¹ÙÀ̵å, ³»ºÎ ¿­ºÐÇØ ź¼Ò, ¿ÜºÎ ¿­ºÐÇØ ź¼Ò, ´Ù°ø¼º ź¼Ò ¿ÏÃæÀç·Î ±¸¼ºµÈ ÀÛ°í °ß°íÇÑ ÀÔÀÚ·Î °áÇյǾî ÀÖ½À´Ï´Ù. ÀÌ ´ÙÃþ ÄÚÆÃÀº ¿ì¼öÇÑ Çٺп­ »ý¼º¹° ºÀ¼â¸¦ Á¦°øÇÏ¿© ¿­¾ÇÇÑ È¯°æ¿¡¼­ ¼º´É°ú ¾ÈÀü¼ºÀ» Çâ»ó½Ã۸ç, TRISO ¿¬·á´Â °ß°íÇÑ ±¸Á¶¿Í ¿ëÀ¶¿¡ ´ëÇÑ ³»¼ºÀ¸·Î ÀÎÇØ Â÷¼¼´ë ¿øÀÚ·Â ½Ã½ºÅÛ ¹× ÷´Ü ¿øÀÚ·Î ¼³°è¿¡ ÀÌ»óÀûÀÔ´Ï´Ù.

½ÅÇü ¿øÀڷο¡ ´ëÇÑ ¼ö¿ä Áõ°¡

ÀÌ·¯ÇÑ ¿øÀڷΰ¡ ¾ÈÀüÇϰí È¿°úÀûÀ¸·Î ¿î¿µµÇ±â À§Çؼ­´Â TRISO¿Í °°Àº °­ÀÎÇÏ°í °í¿Â¿¡ °­ÇÑ ¿¬·á°¡ ÇÊ¿äÇϸç, TRISO ¿¬·áÀÇ Æ¯¼öÇÑ ¼³°è´Â ¿ì¼öÇÑ ¹æ»ç¼º ¹°Áú ºÀ¼â¸¦ ½ÇÇöÇÏ¿© Â÷¼¼´ë ¿øÀÚ·ÎÀÇ ¾ÈÀü ¿ä±¸ »çÇ×À» ÃæÁ·ÇÕ´Ï´Ù. ¹Î°ü ¾çÃøÀÇ ÃÖ÷´Ü ¿øÀÚ·Â ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ´Â TRISO ¿¬·áÀÇ Çʿ伺À» Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Áö¼Ó°¡´ÉÇÑ Àü·Â ½Ã½ºÅÛ¿¡ TRISO¸¦ µµÀÔÇÏ´Â °ÍÀº ûÁ¤ ¿¡³ÊÁö ¼Ö·ç¼Ç¿¡ ´ëÇÑ Àü ¼¼°èÀÇ °ü½É¿¡ ÈûÀÔ¾î TRISO ¿¬·á ºÐ¾ßÀÇ ±â¼ú Çõ½Å°ú »ý»ê ´É·ÂÀº ÀÌ·¯ÇÑ °ßÀη¿¡ ÀÇÇØ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù.

³ôÀº Á¦Á¶ ºñ¿ë°ú º¹ÀâÇÑ Á¦Á¶ °øÁ¤

Á¦Á¶ °øÁ¤Àº ¿©·¯ ÃþÀÇ °¡°ø°ú Ư¼öÇÑ Àç·á°¡ ÇÊ¿äÇϹǷΠ¸Å¿ì ºñ¿ëÀÌ ¸¹ÀÌ µì´Ï´Ù. ¶ÇÇÑ º¹ÀâÇÑ Á¦Á¶ °øÁ¤Àº ÷´Ü Àåºñ¿Í Á¤¹ÐÇÑ ¿£Áö´Ï¾î¸µÀ» ÇÊ¿ä·Î ÇϹǷΠȮÀ强À» Á¦ÇÑÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¾î·Á¿òÀº ÅõÀÚ¸¦ ¾ïÁ¦ÇÏ°í ½Å±Ô Á¦Á¶¾÷üÀÇ ÁøÀÔÀ庮À» ³ôÀ̰í ÀÖ½À´Ï´Ù. ±× °á°ú, TRISO ¿¬·áÀÇ °æÁ¦Àû ÀáÀç·ÂÀº ¿©ÀüÈ÷ Á¦ÇÑÀûÀÔ´Ï´Ù. °á±¹, »ó¾÷¿ë ¿øÀڷηÎÀÇ ´ë·® µµÀÔÀº º¹À⼺°ú ºñ¿ëÀÇ Á¶ÇÕÀ¸·Î ÀÎÇØ Áö¿¬µÇ°í ÀÖ½À´Ï´Ù.

Á¤ºÎÀÇ ±¸»ó°ú ¿¬±¸°³¹ß ÀÚ±Ý

÷´Ü ÇÙ¿¬·á ±â¼úÀº ÀÌ»êȭź¼Ò ¹èÃâÀ» ÁÙÀÌ°í ¿¡³ÊÁö ¾Èº¸¸¦ Çâ»ó½Ã۱â À§ÇØ ÁÖ¿ä °æÁ¦±¹ Á¤ºÎ°¡ ¸·´ëÇÑ ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÅõÀÚ´Â TRISO ¿¬·á °³¹ßÀ» À§ÇÑ ºñ»óÀå ȸ»ç¿ÍÀÇ °è¾àÀ̳ª ±¹¸³ ¿¬±¸¼Ò¿¡ ´ëÇÑ Á÷Á¢ ´ëÃâÀ» ÅëÇØ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. Áö¿øÀûÀÎ ¹ý·ü°ú ±ÔÁ¦ ¶ÇÇÑ ±â¼ú Çõ½ÅÀ» ÃËÁøÇÏ°í »ó¾÷È­ °úÁ¤À» °¡¼ÓÈ­ÇÕ´Ï´Ù. ÷´Ü ½ÃÇè, ¿øÀÚ·Î ½ÇÁõ ¹× ¾ÈÀü¼º Çâ»óÀº ¹Î°ü ÆÄÆ®³Ê½ÊÀ» ÅëÇØ Àå·ÁµÇ°í ÀÖ½À´Ï´Ù. µû¶ó¼­ TRISO ¿¬·á´Â Â÷¼¼´ë ¿øÀڷθ¦ À§ÇÑ ½Å·ÚÇÒ ¼ö ÀÖ°í ¾ÈÀüÇÑ ´ëü ¿¬·á·Î Á¡Á¡ ´õ Àα⸦ ¾ò°í ÀÖ½À´Ï´Ù.

±ÔÁ¦ À庮°ú ±¹¹Î ÀνÄ

¿øÀÚ·Â ±ÔÁ¦°¡ ¾ö°ÝÇϸé ÀÎÇã°¡°¡ Áö¿¬µÇ°í °³¹ßºñ¿ëÀÌ »ó½ÂÇϹǷΠ½Å±Ô ÁøÀÔ ÀÇ¿åÀÌ ¶³¾îÁý´Ï´Ù. ¹èÄ¡ ÀÏÁ¤Àº ÀÎÇã°¡ ÀýÂ÷¿¡ ½Ã°£ÀÌ °É¸®±â ¶§¹®¿¡ ´õ¿í ´Ê¾îÁý´Ï´Ù. ¾ÈÀü¿¡ ´ëÇÑ ºÒ¾È°ú °ú°Å »ç°í·Î ÀÎÇÑ È¸ÀÇ·ÐÀ¸·Î ÀÎÇØ ¿øÀڷ¿¡ ´ëÇÑ »çȸÀû ¼ö¿ë¼ºÀÌ ¶³¾îÁý´Ï´Ù. TRISO¿Í °°Àº Çö´ë½Ä ¿¬·áÀÇ ¹æ»ç¼± À§Çè¿¡ ´ëÇÑ ¿ÀÇØ·Î ÀÎÇØ ÅõÀÚ¿¡ °É¸²µ¹ÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àå¾Ö¹°ÀÌ º¹ÇÕÀûÀ¸·Î ÀÛ¿ëÇÏ¿© ½ÃÀå È®´ë¸¦ Á¦ÇÑÇϰí TRISO ¿¬·á ±â¼úÀÌ ³Î¸® »ç¿ëµÇ´Â °ÍÀ» ¹æÇØÇÕ´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

COVID-19 ÆÒµ¥¹ÍÀº »ïÁß ±¸Á¶ µî¹æ¼º(TRISO) ¿¬·á ½ÃÀå¿¡ ÀûÁö ¾ÊÀº ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ƯÈ÷ Èæ¿¬ ¹× ½Ç¸®ÄÜ Ä«¹ÙÀ̵å ÄÚÆÃ°ø±Þ¸Á Áö¿¬À¸·Î ÀÎÇØ »õ·Î¿î ¿¬·áÀÇ »ý»êÀÌ Áö¿¬µÇ¾ú½À´Ï´Ù. ±ä±ÞÇÑ ÀÇ·á ¼ö¿ä¿¡ ´ëÇÑ ¿¹»ê ÀçºÐ¹è·Î ÀÎÇØ ¿¬±¸°³¹ßÀÌ ¾à°£ ¿¬±âµÇ¾ú½À´Ï´Ù. Æó¼â ±â°£ Áß ¿øÀÚ·Â ¿¬±¸ ¼ö¿ä °¨¼Ò·Î ÀÎÇØ ÇÁ·ÎÁ§Æ® ÀÏÁ¤ÀÌ ´õ¿í Áö¿¬µÇ¾ú½À´Ï´Ù. ±×·¯³ª 2021³â±îÁö ¼¼°è »ê¾÷ÀÌ È¸º¹µÇ¸é¼­ TRISO¸¦ Æ÷ÇÔÇÑ ½ÅÇü ¿øÀÚ·Î ¿¬·á¿¡ ´ëÇÑ ÅõÀÚ°¡ ´Ù½Ã ź·ÂÀ» ¹Þ¾Æ »ý»ê·® ȸº¹°ú ¾ÈÀü¼º ¹× ¼º´É Çâ»ó¿¡ ´ëÇÑ »õ·Î¿î °ü½ÉÀÌ ³ô¾ÆÁ³½À´Ï´Ù.

¿¹Ãø ±â°£ Áß ½Ç¸®ÄÜ Ä«¹ÙÀ̵å(SiC) ºÎ¹®ÀÌ °¡Àå Ŭ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

½Ç¸®ÄÜ Ä«¹ÙÀ̵å(SiC) ºÎ¹®Àº ¿ì¼öÇÑ ¿­ÀüµµÀ²°ú °í¿Â ÀúÇ×¼ºÀ¸·Î ÀÎÇØ ¿øÀÚ·ÎÀÇ ¾ÈÀü¼º°ú È¿À²¼ºÀ» Çâ»ó½ÃÄÑ ¿¹Ãø ±â°£ Áß °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, SiC ÄÚÆÃÀº Çٺп­ »ý¼º¹° ¹æÃâ¿¡ ´ëÇÑ È¿°úÀûÀÎ À庮À» Á¦°øÇÏ¿© ±ØÇÑÀÇ ÇÙ Á¶°Ç¿¡¼­ ºÀ¼â¸¦ º¸ÀåÇÕ´Ï´Ù. SiCÀÇ È­ÇÐÀû ¾ÈÁ¤¼º°ú ³»½Ä¼ºÀº °í¿Â°¡½º·Î(HTGR)¿Í °°Àº ÷´Ü ¿øÀڷο¡ »ç¿ëÇϱ⿡ ÀÌ»óÀûÀÔ´Ï´Ù. »ç°í ³»¼º ¿¬·á¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó Â÷¼¼´ë ¿øÀÚ·Â ±â¼ú¿¡¼­ SiC ±â¹Ý TRISO ÀÔÀÚÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ SiC Á¦Á¶ °øÁ¤ÀÇ ¹ßÀüÀ¸·Î ºñ¿ëÀÌ Àý°¨µÇ°í »ó¾÷Àû Ÿ´ç¼ºÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ Áß Àü±â À¯Æ¿¸®Æ¼ ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¿¹Ãø ±â°£ Áß Ã»Á¤ ¿¡³ÊÁö ¹ßÀüÀ» À§ÇÑ Ã·´Ü ¿øÀÚ·Â ±â¼ú¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó Àü±â »ç¾÷ ºÎ¹®ÀÌ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Żź¼ÒÈ­ ¹× ³ëÈÄÈ­µÈ È­¼®¿¬·á ¹ßÀü¼Ò ±³Ã¼¿¡ ´ëÇÑ ¾Ð¹ÚÀÌ Áõ°¡ÇÔ¿¡ µû¶ó Àü·Âȸ»çµéÀº Â÷¼¼´ë ¿øÀڷθ¦ À§ÇØ TRISO ¿¬·áÀÇ ¾ÈÀü¼º°ú °í¿Â ÀúÇ×¼ºÀ» ã°í ÀÖÀ¸¸ç, TRISO¸¦ »ç¿ëÇÏ´Â ¼ÒÇü ¸ðµâ ¿øÀÚ·Î(SMR)´Â ¿ø°ÝÁö³ª Àü·Â¸ÁÀÌ ºÎÁ·ÇÑ Áö¿ªÀÇ ºÐ»êÇü ¿¡³ÊÁö ¹ßÀü¿¡ ƯÈ÷ ¸Å·ÂÀûÀÔ´Ï´Ù. ƯÈ÷ ¸Å·ÂÀûÀÔ´Ï´Ù. ¶ÇÇÑ TRISOÀÇ ¸áÆ®´Ù¿î¿¡ ´ëÇÑ ³»¼ºÀº ¼ÛÀü¸ÁÀÇ ½Å·Ú¼º°ú ¿¡³ÊÁö ¾Èº¸¸¦ Çâ»ó½ÃÄÑ ÅõÀÚ¸¦ À¯Ä¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. Àü·Âȸ»çµéÀÌ ¿øÀÚ·Â Æ÷Æ®Æú¸®¿À¸¦ È®´ëÇÔ¿¡ µû¶ó TRISO ¿¬·á¿¡ ´ëÇÑ ¼ö¿ä´Â ²ÙÁØÈ÷ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª:

¿¹Ãø ±â°£ Áß ¾Æ½Ã¾ÆÅÂÆò¾çÀº Áß±¹, Çѱ¹, ÀϺ» µîÀÇ ±¹°¡¿¡¼­ ¿øÀÚ·Â ¿¡³ÊÁö µµÀÔÀÌ Áõ°¡ÇÔ¿¡ µû¶ó °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ƯÈ÷ Áß±¹Àº TRISO ¿¬·á¸¦ ÇÙ½ÉÀ¸·Î ÇÏ´Â °í¿Â°¡½º·Î(HTGR) ±â¼ú °³¹ß¿¡ Å« ÁøÀüÀ» º¸À̰í ÀÖ½À´Ï´Ù. ¿¡³ÊÁö ´Ùº¯È­¿¡ ÁßÁ¡À» µÎ°í ÀÖ´Â ÀÌ Áö¿ªÀº Â÷¼¼´ë ¿øÀڷο¡ ´ëÇÑ ÅõÀÚ Áõ°¡¿Í ÇÔ²² ¼ö¿ä¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. Á¤ºÎÀÇ °­·ÂÇÑ Áö¿ø°ú ±¹Á¦ °øµ¿ ¿¬±¸ ÇÁ·Î±×·¥Àº ÀÌ °í¼ºÀå ½ÃÀå¿¡¼­ TRISO ¿¬·áÀÇ Çõ½Å°ú »ó¿ëÈ­¸¦ ´õ¿í °¡¼ÓÈ­ÇÒ °ÍÀÔ´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª:

¿¹Ãø ±â°£ Áß ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ´Â ÀÌÀ¯´Â ÷´Ü ¿øÀڷο¡ ´ëÇÑ »õ·Î¿î °ü½É°ú ûÁ¤ ¿¡³ÊÁö¿¡ ´ëÇÑ Á¤ºÎÀÇ ±¸»ó¿¡ ±âÀÎÇÕ´Ï´Ù. ¹Ì±¹ ¿¡³ÊÁöºÎ´Â TRISO °³¹ß ÇÁ·ÎÁ§Æ®¿¡ ÀÚ±ÝÀ» Áö¿øÇϰí X-energy ¹× BWXT¿Í °°Àº ¹Î°£ ±â¾÷°ú Çù·ÂÇÏ¿© ÁÖ¿ä Áö¿øÀÚ°¡ µÇ¾ú½À´Ï´Ù. ÀÌ ½ÃÀåÀº ±¹°¡ÀÇ ¿¡³ÊÁö ¾Èº¸ ¸ñÇ¥¿Í »ê¾÷ ºÎ¹®ÀÇ Å»Åº¼ÒÈ­ Çʿ伺¿¡ ÀÇÇØ ´õ¿í Áö¿øµÇ°í ÀÖ½À´Ï´Ù. °í¿Â °¡½º·Î¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó TRISO ¿¬·á´Â Áö¿ª ¿¡³ÊÁö ¹Í½º¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ°Ô µÉ °ÍÀÔ´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ ¼­ºñ½º

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå °³¿ä

Á¦2Àå ¼­¹®

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

Á¦4Àå Porter's Five Forces ºÐ¼®

Á¦5Àå ¼¼°èÀÇ 3 ±¸Á¶ µî¹æ¼º(TRISO) ¿¬·á ½ÃÀå : ¿øÀÚ·Î À¯Çüº°

Á¦6Àå ¼¼°èÀÇ 3 ±¸Á¶ µî¹æ¼º(TRISO) ¿¬·á ½ÃÀå : ÇǸ· Àç·áº°

Á¦7Àå ¼¼°èÀÇ 3 ±¸Á¶ µî¹æ¼º(TRISO) ¿¬·á ½ÃÀå : ¿¬·á Çüź°

Á¦8Àå ¼¼°èÀÇ 3 ±¸Á¶ µî¹æ¼º(TRISO) ¿¬·á ½ÃÀå : ¹èÆ÷ ´Ü°èº°

Á¦9Àå ¼¼°èÀÇ 3 ±¸Á¶ µî¹æ¼º(TRISO) ¿¬·á ½ÃÀå : ¿ëµµº°

Á¦10Àå ¼¼°èÀÇ 3 ±¸Á¶ µî¹æ¼º(TRISO) ¿¬·á ½ÃÀå : Áö¿ªº°

Á¦11Àå ÁÖ¿ä ¹ßÀü

Á¦12Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

According to Stratistics MRC, the Global Tri-Structural Isotropic (TRISO) Fuel Market is accounted for $414.16 million in 2025 and is expected to reach $614.57 million by 2032 growing at a CAGR of 5.8% during the forecast period. A kind of nuclear fuel called Tri-Structural Isotropic (TRISO) fuel is intended for use in high-temperature gas-cooled reactors. It is made up of several layers of protective uranium, usually in the form of uranium dioxide or uranium oxycarbide. These combine to produce a small, robust particle and consist of silicon carbide, inner pyrolytic carbon, outer pyrolytic carbon, and a porous carbon buffer. This multilayer coating improves performance and safety in harsh environments by offering superior fission product containment. Because of its strong structure and resistance to melting, TRISO fuel is perfect for next-generation nuclear systems and sophisticated reactor designs.

Market Dynamics:

Driver:

Increased demand for advanced nuclear reactors

Strong, high-temperature resistant fuels like TRISO are necessary for these reactors to operate safely and effectively. The special design of TRISO fuel provides excellent radioactive material containment, meeting the safety requirements of next-generation reactors. Investments in cutting-edge nuclear technologies by both public and private entities are increasing the need for TRISO fuel. Furthermore, the implementation of TRISO in sustainable power systems is facilitated by the global focus on clean energy solutions. Innovation and production capacity in the TRISO fuel sector are accelerated by this increasing traction.

Restraint:

High production cost and complex fabrication process

The production process is very costly because to the numerous layers of fabrication and specialised materials required. Furthermore, the intricate fabrication process restricts scalability by requiring sophisticated facilities and precise engineering. These difficulties deter investment and raise entry barriers for new producers. Consequently, TRISO fuel's economic potential is still limited. In the end, mass deployment in commercial nuclear reactors is delayed by the combination of complexity and cost.

Opportunity:

Government initiatives and R&D funding

Advanced nuclear fuel technologies are being heavily invested in by governments in major economies in an effort to lower carbon emissions and improve energy security. These investments frequently consist of agreements with private companies for the development of TRISO fuels and direct financing to national labs. Supportive laws and regulations also promote innovation and quicken the commercialisation process. Advanced testing, reactor demonstrations, and safety improvements are encouraged by public-private partnerships. TRISO fuel is therefore becoming more and more popular as a dependable and secure alternative for nuclear reactors of the next generation.

Threat:

Regulatory hurdles and public perception

Tight nuclear restrictions discourage new entrants by delaying licenses and raising development costs. Timelines for deployment are further slowed down by drawn-out licensing procedures. Social acceptance of nuclear energy is lowered by public scepticism, which is frequently fuelled by safety worries and previous mishaps. Investment is hampered by misconceptions regarding the radiation dangers associated with modern fuels like TRISO. When combined, these obstacles limit market expansion and prevent TRISO fuel technology from being widely used.

Covid-19 Impact

The COVID-19 pandemic had a modest but notable impact on the Tri-Structural Isotropic (TRISO) fuel market. Supply-chain delays-especially for graphite and silicon carbide coatings-slowed new fuel production. Budget re-allocations to urgent healthcare needs resulted in minor R&D postponements. Lower demand for nuclear research during lockdowns further decelerated project timelines. However, as global industries rebounded by 2021, investment in advanced reactor fuel, including TRISO, regained momentum-driving a recovery in production and renewed interest in its enhanced safety and performance benefits.

The silicon carbide (SiC) segment is expected to be the largest during the forecast period

The silicon carbide (SiC) segment is expected to account for the largest market share during the forecast period, due to its superior thermal conductivity and high-temperature tolerance, enhancing reactor safety and efficiency. SiC coatings provide an effective barrier against fission product release, ensuring containment under extreme nuclear conditions. Its chemical stability and corrosion resistance make SiC ideal for use in advanced reactors like high-temperature gas-cooled reactors (HTGRs). Growing demand for accident-tolerant fuels boosts the adoption of SiC-based TRISO particles in next-generation nuclear technologies. Additionally, advancements in SiC manufacturing processes are reducing costs and expanding commercial feasibility.

The electric utility sector segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the electric utility sector segment is predicted to witness the highest growth rate, due to its growing interest in advanced nuclear technologies for clean energy generation. With increasing pressure to decarbonize and replace aging fossil-fuel plants, utilities are exploring TRISO fuel's safety and high-temperature tolerance for next-generation reactors. Small modular reactors (SMRs) using TRISO are especially appealing for distributed energy generation in remote or grid-stressed areas. Furthermore, TRISO's resistance to meltdown enhances grid reliability and energy security, attracting investment. As utilities expand nuclear portfolios, demand for TRISO fuel is expected to accelerate steadily.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share due to increasing nuclear energy adoption in countries like China, South Korea, and Japan. China, in particular, has made significant progress in developing High-Temperature Gas-cooled Reactor (HTGR) technology, with TRISO fuel at its core. The region's focus on energy diversification, along with growing investments in next-generation reactors, is fueling demand. Strong governmental support and collaborative international research programs further accelerate innovation and commercialization of TRISO fuel in this high-growth market.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR by renewed interest in advanced nuclear reactors and government initiatives promoting clean energy. The U.S. Department of Energy has been a key supporter, funding TRISO development projects and collaborating with private players like X-energy and BWXT. The market is further supported by national energy security goals and the need to decarbonize industrial sectors. With rising demand for high-temperature gas-cooled reactors, TRISO fuel is poised to play a vital role in the regional energy mix.

Key players in the market

Some of the key players profiled in the Tri-Structural Isotropic (TRISO) Fuel Market include X-energy, Kairos Power, TerraPower, TRISO-X, Westinghouse Electric Company, USNC (Ultra Safe Nuclear Corporation), Centrus Energy, Nukem Technologies, BWXT, Radiant Industries, New Millennium Nuclear Technologies International Inc. (NMNTI), Clean Energy Solar, Recycled Energy Development, LLC (RED), Gevo, Inc., Innospec Inc., Infineum International Limited, Chevron Oronite Company LLC and Afton Chemical Corporation.

Key Developments:

In December 2024, Westinghouse signed a contract with Kozloduy Nuclear Power Plant to conduct safety analysis for licensing a new nuclear fuel assembly design for Unit 6. This agreement diversifies Bulgaria's nuclear fuel supply and supports energy security goals.

In July 2024, Kairos contracted Barnard Construction to begin excavation and site work for Hermes in Oak Ridge. Concurrently, cooperative agreements were established with Oak Ridge National Lab, Idaho National Lab, EPRI, Materion, Los Alamos, and TVA for fuel production, operations, licensing, and engineering support

In November 2023, Westinghouse completed the full acquisition of Tecnatom from Endesa, having previously held a 50% stake since 2021. This acquisition enhances Westinghouse's capabilities in nuclear refueling, maintenance, inspection services, engineering, training, and digital services, strengthening its position in the nuclear industry.

Reactor Types Covered:

Coating Materials Covered:

Fuel Forms Covered:

Deployment Phases Covered:

Applications Covered:

Regions Covered:

What our report offers:

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

Table of Contents

1 Executive Summary

2 Preface

3 Market Trend Analysis

4 Porters Five Force Analysis

5 Global Tri-Structural Isotropic (TRISO) Fuel Market, By Reactor Type

6 Global Tri-Structural Isotropic (TRISO) Fuel Market, By Coating Material

7 Global Tri-Structural Isotropic (TRISO) Fuel Market, By Fuel Form

8 Global Tri-Structural Isotropic (TRISO) Fuel Market, By Deployment Phase

9 Global Tri-Structural Isotropic (TRISO) Fuel Market, By Application

10 Global Tri-Structural Isotropic (TRISO) Fuel Market, By Geography

11 Key Developments

12 Company Profiling

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â