Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ±×¸®µå Æ÷¹Ö ÀιöÅÍ ½ÃÀåÀº 2025³â¿¡ 8¾ï 5,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇϸç 2032³â¿¡´Â 16¾ï 7,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ¿¹Ãø ±â°£ Áß CAGRÀº 10.2%ÀÔ´Ï´Ù.
¸¶ÀÌÅ©·Î±×¸®µå ¹× Àç»ý¿¡³ÊÁö ½Ã½ºÅÛÀÇ ¾ÈÁ¤ÀûÀÎ ¿î¿µÀº ±×¸®µå Æ÷¹Ö ÀιöÅÍ(Grid Forming Inverter, GFI)¶ó°í ºÒ¸®´Â Àü·Â ÀιöÅÍ¿¡ ÀÇÇØ °¡´ÉÇØÁý´Ï´Ù. ±×¸®µå Æ÷¹Ö ÀιöÅÍ´Â ±âÁ¸ ±×¸®µå ½ÅÈ£¿¡ ÀÇÁ¸ÇÏ´Â ±×¸®µå ÃßÁ¾Çü ÀιöÅÍ¿Í ´Þ¸®, ¾ÆÀÏ·£µå ¸ðµå¿¡¼µµ ´Ù¸¥ Àü¿ø°ú °áÇÕÇÏ¿© µ¶¸³ÀûÀ¸·Î ÀÛµ¿ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±âÁ¸ µ¿±â½Ä ¹ßÀü±âÀÇ µ¿ÀÛÀ» ½Ã¹Ä·¹À̼ÇÇÏ¿© ¾ÈÁ¤¼º°ú °ü¼ºÀ» Á¦°øÇÕ´Ï´Ù. µû¶ó¼ ƯÈ÷ ¿Üµý Áö¿ªÀ̳ª Á¤Àü½Ã °èÅëÀÇ ¾ÈÁ¤¼ºÀ» À¯ÁöÇÏ¸é¼ ´ë·®ÀÇ Àç»ý¿¡³ÊÁö¸¦ µµÀÔÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù.
±¹Á¦¿¡³ÊÁö±â±¸(IEA)¿¡ µû¸£¸é¼¼°è Àç»ý¿¡³ÊÁö ¿ë·®Àº 2024³â 550GW¿¡ ´ÞÇÒ °¡´É¼ºÀÌ ÀÖ½À´Ï´Ù.
Áõ°¡ÇÏ´Â Àç»ý¿¡³ÊÁö ÅëÇÕ
ž籤°ú dz·Â¿¡³ÊÁö°¡ ±×¸®µå¿¡¼ Áõ°¡ÇÏ¸é °ü¼º ¹× ½Ã½ºÅÛ ¾ÈÁ¤¼ºÀÌ Å« ¹®Á¦°¡ µË´Ï´Ù. ±âÁ¸ÀÇ µ¿±â½Ä ¹ßÀü±â°¡ ¾ø´Â °æ¿ì¿¡µµ ¾ÈÁ¤ÀûÀÎ Àü¾Ð°ú Á֯ļö¸¦ °¡´ÉÇÏ°Ô ÇÏ´Â ±×¸®µå Æ÷¹Ö ÀιöÅÍ´Â ÀÌ·¯ÇÑ ¹®Á¦¸¦ ÇØ°áÇÕ´Ï´Ù. Àç»ý¿¡³ÊÁö°¡ ±âÁ¸ Àü¿ø°ú À¯»çÇÑ °Åµ¿À» ÇÒ ¼ö ÀÖµµ·Ï ÇÔÀ¸·Î½á °èÅë º¹¿ø·ÂÀ» ÃËÁøÇÕ´Ï´Ù. Żź¼ÒÈ ¸ñÇ¥¸¦ ´Þ¼ºÇϱâ À§ÇØ Á¤ºÎ¿Í Àü·Âȸ»ç´Â ÀÌ·¯ÇÑ ÀιöÅÍ¿¡ ´õ ¸¹Àº ÀÚ±ÝÀ» ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼¿¡ µû¶ó ÃÖ÷´Ü ±×¸®µå Çü¼º ±â¼ú¿¡ ´ëÇÑ ¼¼°è ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
³ôÀº Ãʱ⠺ñ¿ë°ú º¹ÀâÇÑ µµÀÔ
ÀÎÇÁ¶ó ¹× Àåºñ¿¡ ´ëÇÑ ³ôÀº ºñ¿ëÀ¸·Î ÀÎÇØ ¸¹Àº ÀáÀç °í°´ÀÌ ÀÌ ±â¼úÀÇ Ã¤ÅÃÀ» ÁÖÀúÇϰí ÀÖ½À´Ï´Ù. º¹ÀâÇÑ µµÀÔ ÀýÂ÷´Â Àü¹® Àη°ú ½ÉÃþÀûÀÎ ½Ã½ºÅÛ ÅëÇÕÀÌ ÇÊ¿äÇϹǷΠÇÁ·ÎÁ§Æ® ³³±â°¡ Áö¿¬µÉ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀû ¾î·Á¿òÀº ÃÑ ºñ¿ë°ú °æ¿µ ¸®½ºÅ©¸¦ Áõ°¡½Ãŵ´Ï´Ù. Ç¥ÁØÈµÈ ¼³Ä¡ ±â¼úÀÌ ¾ø±â ¶§¹®¿¡ ¼³Ä¡°¡ ´õ¿í º¹ÀâÇØÁý´Ï´Ù. ±× °á°ú, ±×¸®µå Æ÷¹Ö ÀιöÅÍÀÇ Àå±âÀûÀÎ ÀÌÁ¡¿¡µµ ºÒ±¸ÇÏ°í ¸¹Àº Á¶Á÷ÀÌ Àü¸éÀûÀΠäÅÃÀ» ÁÖÀúÇϰí ÀÖ½À´Ï´Ù.
½º¸¶Æ®±×¸®µå¿Í ¸¶ÀÌÅ©·Î±×¸®µå È®´ë
±×¸®µå Æ÷¹Ö ÀιöÅÍÀÇ ÁÖ¿ä ±â´É Áß Çϳª´Â ÀÌ·¯ÇÑ Ã·´Ü Àü·Â ½Ã½ºÅÛ¿¡ ÇÊ¿äÇÑ Àü¾Ð ¹× Á֯ļö Ç¥ÁØÀ» Á¦°øÇÏ´Â °ÍÀÔ´Ï´Ù. ±×¸®µå Æ÷¹Ö ÀιöÅÍ´Â ºÐ»êÇü Àç»ý¿¡³ÊÁö¿øÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¾ÈÁ¤ÀûÀÌ°í °ß°íÇÑ ±×¸®µå ¿î¿µÀ» ÃËÁøÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÀιöÅʹ ƯÈ÷ °í¸³µÈ Áö¿ªÀ̳ª ÀçÇØ°¡ ¹ß»ýÇϱ⠽¬¿î Áö¿ª¿¡¼ ¸¶ÀÌÅ©·Î±×¸®µå°¡ µ¶¸³ÀûÀ¸·Î ¶Ç´Â °èÅ뿬°è ¸ðµå¿¡¼ ÀÛµ¿Çϱâ À§ÇØ ÇʼöÀûÀÔ´Ï´Ù. ¶ÇÇÑ ºÐ»êµÈ ¿¡³ÊÁö °ø±Þ°ú µ¿Àû ºÎÇϰ¡ ½º¸¶Æ® ±×¸®µå¿¡ ÅëÇյʿ¡ µû¶ó ½º¸¶Æ®Çϰí ÀûÀÀ·ÂÀÌ ¶Ù¾î³ ÀιöÅÍ ±â¼úÀÌ ÇÊ¿äÇÕ´Ï´Ù. Àü ¼¼°è¿¡¼ ±×¸®µå Æ÷¹Ö ÀιöÅÍ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áö¼ÓÀûÀ¸·Î Áõ°¡Çϰí ÀÖ´Â °ÍÀº ÀÌ·¯ÇÑ ÀÇÁ¸µµ Áõ°¡¿¡ ÈûÀÔÀº °ÍÀÔ´Ï´Ù.
±â¼ú Ç¥ÁØÈ ¹× »óÈ£¿î¿ë¼º ¹®Á¦
Ç¥ÁØÈµÈ Ç¥ÁØÀÌ ¾ø±â ¶§¹®¿¡ ¼ÒºñÀÚ¿Í »ý»êÀÚ´Â º¹ÀâÇÑ »óȲ¿¡ Ã³ÇØ ÀÖÀ¸¸ç, ÅëÇÕ ½Ãµµµµ ´õµð°Ô ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. Àü¹®ÀûÀÎ ¼Ö·ç¼ÇÀÌ ÇÊ¿äÇϹǷΠÀÌ·¯ÇÑ ´ÜÆíÈ´Â °³¹ß ¹× µµÀÔ ºñ¿ëÀ» »ó½Â½Ãŵ´Ï´Ù. ¶ÇÇÑ ±×¸®µå ¿ëµµÀÇ È®À强°ú ÀûÀÀ¼ºÀ» Á¦ÇÑÇÏ¿© º¸±ÞÀ» ÀúÇØÇÕ´Ï´Ù. »óÈ£¿î¿ë¼º ¹®Á¦´Â ½Ã½ºÅÛ »ç¿ë½Ã ¾ÈÀü¼º°ú ½Å·Ú¼º¿¡ Àǹ®À» Á¦±âÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¹®Á¦µéÀº °èÅ뿬°èÇü ÀιöÅÍ¿¡ ´ëÇÑ ÅõÀÚ¿Í ±â¼ú Áøº¸¸¦ ÀúÇØÇÏ°í ½ÃÀå È®´ë¸¦ ÀúÇØÇÕ´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
COVID-19 ÆÒµ¥¹ÍÀº Ãʱ⿡´Â »ý»ê Áß´Ü, °ø±Þ¸Á º´¸ñ Çö»ó, Àç»ý¿¡³ÊÁö ÇÁ·ÎÁ§Æ® Áö¿¬À¸·Î ÀÎÇØ ±×¸®µå Æ÷¹Ö ÀιöÅÍ ½ÃÀåÀ» È¥¶õ¿¡ ºü¶ß·È½À´Ï´Ù. ±×·¯³ª °¢±¹ Á¤ºÎ°¡ ³ì»ö ȸº¹ Àü·«°ú Áö¼Ó°¡´ÉÇÑ ¿¡³ÊÁö ÅõÀÚ¿¡ ÁßÁ¡À» µÎ¸é¼ ź·ÂÀûÀ̰í À¯¿¬ÇÑ ±×¸®µå ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È·Î ÀÎÇØ ±×¸®µåÀÇ ¾ÈÁ¤¼ºÀ» ³ôÀ̰í Àç»ý¿¡³ÊÁö¸¦ ÅëÇÕÇÒ ¼ö ÀÖ´Â ±×¸®µå Æ÷¹Ö ÀιöÅÍ¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁ³½À´Ï´Ù. ÆÒµ¥¹Í ÀÌÈÄ ¿¡³ÊÁö Àüȯ°ú Àü·Â¸Á Çö´ëÈ¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼ ½ÃÀå ȸº¹°ú Àå±âÀûÀÎ ¼ºÀå Àü¸ÁÀÌ °¡¼Óȵǰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ Áß Àü·ù¿ø ÀιöÅÍ(CSI) ºÎ¹®ÀÌ °¡Àå Ŭ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
CSI(Current Source Inverter) ºÎ¹®Àº Àç»ý¿¡³ÊÁö°¡ dzºÎÇÑ Àü·Â ½Ã½ºÅÛ¿¡¼ ¾ÈÁ¤¼º°ú ³»°áÇÔ¼ºÀ» °ÈÇÔÀ¸·Î½á ¿¹Ãø ±â°£ Áß °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, CSI´Â Ãâ·Â Àü·ù¸¦ Àß Á¦¾îÇÒ ¼ö ÀÖÀ¸¸ç, °èÅë Àü¾Ð ¹× Á֯ļö À¯Áö°¡ ÇʼöÀûÀÎ °èÅë Çü¼º ¿ëµµ¿¡ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. °èÅë Àü¾Ð ¹× Á֯ļö À¯Áö°¡ ÇʼöÀûÀÎ ¿ëµµ¿¡ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. °íÀ¯ÀÇ ´Ü¶ô º¸È£ ±â´É°ú Àü¾Ð Çǵå¹éÀ» ÇÊ¿ä·Î ÇÏÁö ¾Ê´Â ÀÛµ¿ ´É·ÂÀ¸·Î ÀÎÇØ ¾àÇÑ Àü·Â¸Á°ú ¼¶ Áö¿ª Àü·Â¸Á¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ¶ÇÇÑ ¹ÝµµÃ¼ ±â¼úÀÇ ¹ßÀüÀ¸·Î CSI ±â¹Ý ¼Ö·ç¼ÇÀÇ È¿À²¼º°ú È®À强ÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. Àü·Âȸ»ç°¡ ºÐ»êÇü ±×¸®µå ¹× ÀιöÅÍ Áß½ÉÀÇ ±×¸®µå·Î ÀüȯÇÔ¿¡ µû¶ó °ß°íÇÑ CSI ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä´Â ²ÙÁØÈ÷ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ Áß ±¹¹æ ¹× ±º ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¿¹Ãø ±â°£ Áß ±¹¹æ ¹× ±º ºÐ¾ß°¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´Â GFI°¡ ¾ÈÁ¤ÀûÀÎ ¸¶ÀÌÅ©·Î±×¸®µå¸¦ ±¸ÇöÇÏ°í ¹Î°¨ÇÑ ¹æÀ§ Àåºñ¿Í Åë½Å ³×Æ®¿öÅ©ÀÇ Áß´Ü ¾ø´Â ¿î¿µÀ» Áö¿øÇϱâ À§ÇØ ¿ø°ÝÁö ¹× Ȥµ¶ÇÑ È¯°æ¿¡¼ ½Å·ÚÇÒ ¼ö ÀÖ°í ź·ÂÀûÀÎ Àü·Â ½Ã½ºÅÛ¿¡ ´ëÇÑ Áß¿äÇÑ ¿ä±¸°¡ Àֱ⠶§¹®ÀÔ´Ï´Ù. ±º ±âÁö¿¡¼ Àç»ý¿¡³ÊÁöÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó °¡º¯ Àü¿ø °ø±ÞÀ» ¿øÈ°ÇÏ°Ô °ü¸®ÇÒ ¼ö ÀÖ´Â °í±Þ GFI¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ±ºÀÇ Çö´ëÈ ÇÁ·Î±×·¥Àº ¿¡³ÊÁö ¾Èº¸¿Í ±×¸®µå µ¶¸³¼ºÀ» °Á¶Çϰí ÀÖÀ¸¸ç, ÀÌ´Â GFIÀÇ º¸±ÞÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ±¹¹æ ºÐ¾ß¿¡¼ÀÇ ¸ð¹ÙÀÏ Àü¿ø ¼Ö·ç¼Ç ¹× ÀÚÀ² Àü¿ø ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¿ä±¸»çÇ×µµ GFIÀÇ ±â¼ú Çõ½Å°ú ½ÃÀå ¼ºÀåÀ» °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ Áß ¾Æ½Ã¾ÆÅÂÆò¾çÀº ƯÈ÷ ž籤 ¹× dz·Â µî Àç»ý¿¡³ÊÁö µµÀÔ Áõ°¡·Î ÀÎÇØ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ½ÅÈï ±¹°¡ÀÇ ±Þ¼ÓÇÑ µµ½ÃÈ¿Í Àü±âÈ ³ë·ÂÀº Á¤ºÎ Àμ¾Æ¼ºê¿Í ÇÔ²² ÀιöÅÍÀÇ º¸±ÞÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀº Àü·Â¸ÁÀÇ ºÒ¾ÈÁ¤¼º°ú Àü·Â °ø±ÞÀÇ º¯µ¿¼º°ú °°Àº °íÀ¯ÇÑ ¹®Á¦¿¡ Á÷¸éÇϰí ÀÖÀ¸¸ç, Àü·Â¸ÁÀÇ ½Å·Ú¼ºÀ» À¯ÁöÇϱâ À§ÇØ Ã·´Ü ÀιöÅÍ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Áß±¹, Àεµ µîÀÇ ±¹°¡¿¡¼´Â ÀÎÇÁ¶ó Çö´ëÈ ÇÁ·ÎÁ§Æ®°¡ Å« ±âȸ¸¦ âÃâÇϰí ÀÖÀ¸¸ç, ±¹³» Á¦Á¶¾÷ü¿Í ¼¼°è Á¦Á¶¾÷üµéÀÌ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇϱâ À§ÇØ °æÀïÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ Áß ºÏ¹Ì´Â ž籤, dz·Â µî Àç»ý¿¡³ÊÁö¿øÀÇ Àü·Â¸Á ÅëÇÕÀÌ Áõ°¡ÇÔ¿¡ µû¶ó °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Àü·Â¸Á Çö´ëÈ ¹× ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼Ç¿¡ ´ëÇÑ Á¤ºÎ ±¸»ó Áõ°¡´Â ½ÃÀå ¼ºÀåÀ» ´õ¿í °¡¼ÓÈÇÒ °ÍÀÔ´Ï´Ù. ±¹¹æ ¹× ±º ºÐ¾ßµµ ½Å·ÚÇÒ ¼ö ÀÖ°í ź·ÂÀûÀÎ Àü·Â ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä·Î ÀÎÇØ ½ÃÀå ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¹Ì±¹°ú ij³ª´ÙÀÇ Ã·´ÜÈµÈ Àü·Â¸Á ÀÎÇÁ¶ó´Â ºÐ»êÇü ¿¡³ÊÁö ÀÚ¿ø°ú ¸¶ÀÌÅ©·Î±×¸®µåÀÇ µµÀÔÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¾ÈÁ¤ÀûÀÎ Àü·Â¸Á ¿î¿µÀ» °¡´ÉÇÏ°Ô ÇÏ´Â ±×¸®µå Æ÷¹Ö ÀιöÅÍÀÇ Ã¤ÅÃÀ» µ½°í ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Grid Forming Inverter Market is accounted for $0.85 billion in 2025 and is expected to reach $1.67 billion by 2032 growing at a CAGR of 10.2% during the forecast period. The stable operation of microgrids and renewable energy systems is made possible by a type of power inverter called a Grid Forming Inverter (GFI), which creates and controls voltage and frequency in an electrical grid. Grid-forming inverters can function independently in islanded mode or in conjunction with other power sources, in contrast to grid-following inverters, which depend on an existing grid signal. They provide stability and inertia by simulating the actions of conventional synchronous generators. They are therefore crucial for incorporating significant amounts of renewable energy while preserving grid stability, particularly in remote locations or during outages.
According to the International Energy Agency, global renewable capacity additions could potentially reach 550 GW in 2024.
Rising renewable energy integration
Inertia and system stability become major issues when solar and wind energy grow on the grid. By permitting steady voltage and frequency even in the absence of conventional synchronous generators, grid forming inverters solve these problems. They promote grid resilience by enabling renewables to behave similarly to traditional power sources. To reach decarbonisation targets, governments and utilities are spending more money on these inverters. Global demand for cutting-edge grid-forming technology is rising as a result of this trend.
High initial cost and complex implementation
The high cost of the infrastructure and equipment discourages many prospective customers from adopting this technology. Project deadlines may be delayed by the need for specialised staff and deep system integration for complex implementation procedures. These technical difficulties raise total expenses and operating risks. Deployment is further complicated by the absence of standardised installation techniques. Consequently, despite the long-term advantages of grid forming inverters, many organisations are hesitant to fully adopt them.
Smart grid and microgrid expansion
One of the primary functions of grid-forming inverters is to provide voltage and frequency references, which these sophisticated power systems require. Grid-forming inverters facilitate steady and robust grid operations when decentralised renewable energy sources increase in number. These inverters are essential for microgrids to function independently or in grid-connected modes, particularly in isolated or disaster-prone locations. Additionally, dispersed energy supplies and dynamic loads are integrated into smart grids, necessitating clever and adaptable inverter technology. The continued need for grid-forming inverter solutions around the world is fuelled by this growing dependence.
Technical standardization and interoperability issues
The absence of standardised standards complicates things for consumers and producers and slows down integration attempts. Because specialised solutions are needed, this fragmentation raises development and deployment costs. Additionally, it restricts grid applications' scalability and adaptability, which prevents widespread adoption. Interoperability issues can create questions regarding the safety and dependability of the system when it is in use. All things considered, these problems impede market expansion by deterring investments and technological advancements in grid-forming inverters.
Covid-19 Impact
The COVID-19 pandemic initially disrupted the Grid Forming Inverter Market due to halted manufacturing, supply chain bottlenecks, and delayed renewable energy projects. However, as governments emphasized green recovery strategies and sustainable energy investments, demand for resilient and flexible grid solutions surged. This shift boosted interest in grid forming inverters for their ability to enhance grid stability and integrate renewables. Post-pandemic, increased focus on energy transition and grid modernization has accelerated the market's recovery and long-term growth prospects.
The current source inverter (CSI) segment is expected to be the largest during the forecast period
The current source inverter (CSI) segment is expected to account for the largest market share during the forecast period by offering enhanced stability and fault-tolerant capabilities in renewable-rich power systems. CSIs provide superior control over output current, which is crucial for grid-forming applications where maintaining grid voltage and frequency is essential. Their inherent short-circuit protection and ability to operate without requiring voltage feedback make them ideal for weak or islanded grids. Additionally, advancements in semiconductor technology have improved the efficiency and scalability of CSI-based solutions. As utilities transition toward decentralized and inverter-dominated grids, the demand for robust CSI technologies continues to grow steadily.
The defense & military segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the defense & military segment is predicted to witness the highest growth rate, due to its critical need for reliable, resilient power systems in remote and harsh environments. GFIs enable stable microgrids that support uninterrupted operations of sensitive defense equipment and communication networks. Increasing adoption of renewable energy in military bases drives demand for advanced GFIs that can seamlessly manage variable power sources. Furthermore, military modernization programs emphasize energy security and grid independence, boosting GFI deployment. The requirement for mobile and autonomous power solutions in defense applications also accelerates innovation and market growth for GFIs.
During the forecast period, the Asia Pacific region is expected to hold the largest market share due to escalating renewable energy installations, especially solar and wind. Rapid urbanization and electrification efforts in emerging economies, alongside government incentives, encourage inverter deployment. The region faces unique challenges like grid instability and fluctuating power supply, increasing reliance on advanced inverter solutions to maintain grid reliability. Moreover, infrastructure modernization projects in countries like China and India create significant opportunities, with local and global manufacturers competing to meet the rising demand.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR by increasing integration of renewable energy sources like solar and wind into the power grid. Growing government initiatives for grid modernization and energy storage solutions further accelerate market growth. The defense and military sectors also contribute due to their demand for reliable and resilient power systems. Advanced grid infrastructure in the U.S. and Canada supports adoption of grid forming inverters, enabling stable grid operation amid rising distributed energy resources and microgrid deployments.
Key players in the market
Some of the key players profiled in the Grid Forming Inverter Market include Huawei Technologies Co., Ltd., SMA Solar Technology AG, General Electric (GE), Sungrow Power Supply Co., Ltd., FIMER Group, SolarEdge Technologies Inc., Enphase Energy, Inc., Delta Electronics, Inc., Schneider Electric SE, Fronius International GmbH, GoodWe Power Supply Technology Co., Ltd., KACO new energy GmbH, Gamesa Electric, TMEIC Corporation, Mitsubishi Electric Corporation, ABB Ltd. and Ingeteam S.A.
In March 2025, SMA America introduced the Sunny Central Storage UP-S, a high-efficiency grid-scale battery inverter featuring silicon carbide (SiC) MOSFET technology. This inverter boasts over 99.2% efficiency and supports dynamic grid support, making it suitable for large-scale energy storage projects.
In June 2024, Huawei introduced the world's first Cell-to-Grid Smart String & Grid-Forming ESS Platform. This platform integrates PV, energy storage systems (ESS), and grid-forming capabilities, enhancing the stability and efficiency of renewable energy integration. Notably, in a project in Qinghai, China, the system increased renewable energy output by 40% when the short circuit ratio (SCR) was 1.5.