Stratistics MRC¿¡ µû¸£¸é ¼¼°è µµ½Ã öµµ ³×Æ®¿öÅ© ÀÎÇÁ¶ó ½ÃÀåÀº 2025³â 506¾ï 9,000¸¸ ´Þ·¯,¿¹Ãø ±â°£ µ¿¾È CAGR 8.2%·Î ¼ºÀåÇϰí 2032³â¿¡´Â 880¾ï 1,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
µµ½Ã öµµ ¿î¼ÛÀº µµ½Ã öµµ ³×Æ®¿öÅ© ÀÎÇÁ¶ó·Î ¾Ë·ÁÁø ±â¼ú ¹× ¹°¸®Àû ±¸¼º ¿ä¼ÒÀÇ ÅëÇÕ ½Ã½ºÅÛ¿¡ ÀÇÇØ Áö¿øµË´Ï´Ù. ÀÌ ÀÎÇÁ¶ó´Â ´ëµµ½Ã Áö¿ª ³»¿¡¼ °í¿ë·®ÀÇ ½Å¼ÓÇÑ ±³ÅëÀ» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á È¿°úÀûÀÌ°í ½Å·ÚÇÒ ¼ö ÀÖÀ¸¸ç ȯ°æÀûÀ¸·Î Ã¥ÀÓ°¨ ÀÖ´Â µµ½Ã À̵¿À» ÃËÁøÇÕ´Ï´Ù.
À¯¿£¿¡ µû¸£¸é 2050³â±îÁö ¼¼°è Àα¸ÀÇ 68%°¡ µµ½Ã¿¡ °ÅÁÖÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
±Þ¼ÓÇÑ µµ½ÃÈ¿Í Àα¸ Áõ°¡
µµ½Ã°¡ È®´ëµÇ°í Àα¸°¡ µµ½Ã Á߽ɿ¡ ÁýÁßÇϱ⠶§¹®¿¡ È¿À²ÀûÀÌ°í ´ë¿ë·®ÀÇ ´ëÁß ±³Åë¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. Á¤ºÎ´Â °æÁ¦ ¼ºÀåÀ» Áö¿øÇÏ°í µµ½ÃÀÇ À̵¿¼ºÀ» Çâ»ó½ÃŰ°í ½Ã¹ÎÀÇ »îÀÇ ÁúÀ» ³ôÀ̱â À§ÇØ ÁöÇÏö ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ¸¦ ¿ì¼±Çϰí ÀÖ½À´Ï´Ù.
³ôÀº Ãʱâ ÅõÀÚ ¹× À¯Áö º¸¼ö ºñ¿ë
ÁöÇÏö ½Ã½ºÅÛÀ» ±¸ÃàÇϱâ À§Çؼ´Â ÅäÁö Ãëµæ, °Ç¼³, ÷´Ü ±â¼ú, Â÷·®¿¡ ¸¹Àº ÀÚº» ÁöÃâÀÌ ÇÊ¿äÇÕ´Ï´Ù. ÀçÁ¤Àû À庮Àº ƯÈ÷ Àڱݿ¡ ÇѰ谡 ÀÖ´Â Áö¿ªÀ̳ª ÀÎÇÁ¶ó ¿ì¼±¼øÀ§°¡ °æÀïÇÏ´Â Áö¿ª¿¡¼´Â °ü¹Î ½Ö¹æÀÇ ÀÌÇØ°ü°èÀÚÀÇ ¹ßÆÇÀÌ µÇ¾î ½Å±Ô ÇÁ·ÎÁ§Æ®³ª ³×Æ®¿öÅ© È®ÀåÀÇ ¼Óµµ¸¦ ´ÊÃß°Ô µË´Ï´Ù.
°ü¹Î ÆÄÆ®³Ê½Ê(PPPS)
°ü¹Î ÆÄÆ®³Ê½Ê(PPP)Àº ´ëü Àç¿øÀ» È®º¸Çϰí Çõ½ÅÀ» ÃËÁøÇÔÀ¸·Î½á ÁöÇÏö öµµ ³×Æ®¿öÅ© ÀÎÇÁ¶ó ½ÃÀå¿¡ Å« ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. ÀÚº»À» Ȱ¿ëÇϰí, ÇÁ·ÎÁ§Æ® ½Ç½Ã¸¦ °¡¼Ó½Ã۰í, °øÀû ÀçÁ¤ ºÎ´ãÀ» °æ°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù.¶ÇÇÑ, PPP ¸ðµ¨Àº ¼±ÁøÀûÀÎ ±â¼úÀ̳ª ¿î¿ëÀÇ º£½ºÆ® ÇÁ·¢Æ¼½º¸¦ µµÀÔÇÏ´Â °æ¿ì°¡ ¸¹¾Æ, ½Ã½ºÅÛ ¼º´É°ú ½Â°´ üÇèÀ» Çâ»ó½Ãŵ´Ï´Ù.
»çÀ̹ö º¸¾È À§Çè
Çö´ëÀÇ ÁöÇÏö ½Ã½ºÅÛÀº ½ÅÈ£, ¹ß±Ç, ¿©°´ Á¤º¸ Ç÷§Æû µî »óÈ£ ¿¬°áµÈ ±â¼ú¿¡ ÀÇÁ¸ÇÏ´Â °æ¿ì°¡ ¸¹¾Æ »çÀ̹ö °ø°Ý¿¡ Ãë¾àÇÒ °¡´É¼ºÀÌ ÀÖ½À´Ï´Ù. Ä§ÇØ¿¡ ¼º°øÇÏ¸é ¼ºñ½º°¡ Áß´ÜµÇ¾î ½Â°´ÀÇ ¾ÈÀüÀÌ ¼Õ»óµÇ°í ¾öû³ À繫Àû ¼Õ½ÇÀÌ ¹ß»ýÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ »çÀ̹ö À§ÇùÀÇ °íµµÈ¿¡ µû¶ó °·ÂÇÑ º¸¾È ´ëÃ¥¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ÅõÀÚ°¡ ÇÊ¿äÇÏ¸ç »çÀ̹ö º¸¾ÈÀº ÀÌ ºÐ¾ßÀÇ »ç¾÷ÀÚ¿Í ÀÌÇØ°ü°èÀÚ¿¡°Ô Áß¿äÇÑ °úÁ¦°¡ µÇ°í ÀÖ½À´Ï´Ù.
COVID-19 ÆÒµ¥¹ÍÀº öµµ ³×Æ®¿öÅ© ÀÎÇÁ¶ó ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÄ¡°í, Àá±Ý, ¿ø°ÝÁö ±Ù¹«, »çȸÀû °Å¸®¸¦ µÎ´Â Á¶Ä¡¿¡ ÀÇÇØ ½Â°´¼öÀÇ ±Þ°ÝÇÑ °¨¼Ò¸¦ ÀÏÀ¸Ä×½À´Ï´Ù. ¶ÇÇÑ °æÁ¦Àû ¾Ð·Â¿¡ Á÷¸éÇÑ Á¤ºÎ´Â ±ä±Þ ÀÇ·á ÀçÁ¤ ¿ä±¸¿¡ ´ëÀÀÇϱâ À§ÇØ ÁöÇÏö ÇÁ·ÎÁ§Æ®¿¡¼ ÀÚ±ÝÀ» À¯¿ëÇϰí ÇÁ·ÎÁ§Æ® Áö¿¬°ú ¿¹»ê »è°¨À» ÃÊ·¡Çß½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È °í°¡ ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á
°í°¡ ºÎ¹®Àº ¿¹Ãø±â°£ Áß ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÅäÁö ÃëµæÀ» ´ú ÇÊ¿ä·Î ÇÏ¿© ±âÁ¸ µµ½Ã ÀÎÇÁ¶ó¿Í °³¹ß Áß ±³Åë¿¡ ÁöÀåÀ» ÃÖ¼ÒÈÇÕ´Ï´Ù. ¶ÇÇÑ, °í°¡ ±Ëµµ´Â ³ë¼± °èȹ°ú ÇöÀçÀÇ ±³Åë¸Á°úÀÇ ÅëÇÕ¿¡ ´õ ³ôÀº À¯¿¬¼ºÀ» Á¦°øÇÕ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹»óµÇ´Â °ÍÀº ¼ÒÇÁÆ®¿þ¾î ºÎ¹®ÀÔ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ½Ç½Ã°£ ¸ð´ÏÅ͸µ, ÀÚµ¿È, ¿¹Áö º¸Àü, ½Â°´ °æÇè Çâ»ó µîÀÇ ¿ä±¸¿¡ µû¶ó ¼ÒÇÁÆ®¿þ¾î ºÐ¾ß°¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¼ÒÇÁÆ®¿þ¾î Ç÷§ÆûÀº ¿Â÷ ½Ã°£Ç¥, ¹ß±Ç, ÀÚ»ê ÃßÀû ¹× µ¥ÀÌÅÍ ºÐ¼®À» È¿À²ÀûÀ¸·Î °ü¸®ÇÏ¿© ¿î¿µ ¼º´ÉÀ» ÃÖÀûÈÇÕ´Ï´Ù. ¶ÇÇÑ IoT, AI, Ŭ¶ó¿ìµå ±â¼úÀÇ ÅëÇÕÀº öµµ ¿î¿µÀ» º¯È½Ã۰í ÀÖÀ¸¸ç, ÀÌ ºÐ¾ß¿¡¼´Â ¼ÒÇÁÆ®¿þ¾î°¡ µðÁöÅÐ Àüȯ°ú ¹Ì·¡ ´ëÀÀÇü ÀÎÇÁ¶óÀÇ Áß¿äÇÑ ½ÇÇö ¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇÁö¸¸, ÀÌ´Â ±Þ¼ÓÇÑ µµ½ÃÈ, ±ÞÁõÇÏ´Â Àα¸, Áß±¹, Àεµ, µ¿³²¾Æ½Ã¾Æ µî ±¹°¡¿¡¼ öµµ ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ ¸·´ëÇÑ Á¤ºÎ ÅõÀÚ·Î ÀÎÇÑ °ÍÀÔ´Ï´Ù. ÀÌ Áö¿ªÀÇ µµ½ÃµéÀº È¥Àâ°ú ¿À¿°À» Æ÷ÇÔÇÑ ½É°¢ÇÑ ±³Åë ¹®Á¦¿¡ Á÷¸éÇØ ÀÖÀ¸¸ç ´ç±¹Àº Áö¼Ó °¡´ÉÇÑ ´ë·® ¿î¼Û ¼Ö·ç¼ÇÀ¸·Î öµµ¸¦ ¿ì¼±Çϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº Àû±ØÀûÀÎ ÀÎÇÁ¶ó °³¹ß, ½º¸¶Æ® ½ÃƼ ±¸»ó, ÁöÇÏö ½Ã½ºÅÛ¿¡ ÷´Ü ±â¼ú µµÀÔ¿¡ ÈûÀÔ¾î °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¶ÇÇÑ ³×Æ®¿öÅ©ÀÇ È®Àå°ú ±Ù´ëȸ¦ Àû±ØÀûÀ¸·Î ÃßÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ µðÁöÅÐ ¼Ö·ç¼Ç°ú °ü¹Î ÆÄÆ®³Ê½ÊÀÇ ÅëÇÕÀ¸·Î ÇÁ·ÎÁ§Æ®ÀÇ Á¦°ø°ú Çõ½ÅÀÌ °¡¼ÓÈµÇ¾î ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå ±Þ¼ºÀåÇϰí ÀÖ´Â ½ÃÀåÀÌ µÇ°í ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Metro Rail Network Infrastructure Market is accounted for $50.69 billion in 2025 and is expected to reach $88.01 billion by 2032 growing at a CAGR of 8.2% during the forecast period. Urban rail transit is supported by an integrated system of technological and physical components known as metro rail network infrastructure. Rail tracks, stations, power supplies, signaling systems, control centers, depots, and communication networks are all part of it. This infrastructure facilitates effective, dependable, and environmentally responsible urban mobility by enabling high-capacity, rapid transit within metropolitan areas. In expanding cities, it is essential for lowering traffic jams and improving accessibility to public transit.
According to the United Nations, 68% of the global population is expected to live in urban areas by 2050.
Rapid urbanization and population growth
Owing to the cities' expansion and populations concentrating in urban centers, the demand for efficient, high-capacity public transportation intensifies. Metro rail systems offer a sustainable solution to alleviate traffic congestion, reduce travel times, and minimize environmental impact. Furthermore, governments are prioritizing investments in metro infrastructure to support economic growth, improve urban mobility, and enhance the quality of life for citizens. This ongoing urban transformation ensures a robust and sustained demand for metro rail networks.
High initial investment and maintenance costs
Establishing metro systems requires substantial capital outlays for land acquisition, construction, advanced technology, and rolling stock. Moreover, ongoing maintenance expenses for tracks, stations, and signaling systems further strain budgets. These financial barriers can deter both public and private stakeholders, especially in regions with limited funding or competing infrastructure priorities, thereby slowing the pace of new projects and network expansions.
Public-private partnerships (PPPS)
Public-private partnerships (PPPs) offer a significant opportunity for the metro rail network infrastructure market by unlocking alternative funding sources and fostering innovation. Through PPPs, governments can leverage private sector expertise, efficiency, and capital to accelerate project delivery and reduce public financial burdens. Additionally, PPP models often introduce advanced technologies and operational best practices, enhancing system performance and passenger experience.
Cybersecurity risks
Modern metro systems increasingly rely on interconnected technologies, including signaling, ticketing, and passenger information platforms, which can be vulnerable to cyberattacks. A successful breach could disrupt services, compromise passenger safety, and result in significant financial losses. Moreover, the evolving sophistication of cyber threats necessitates continuous investment in robust security measures, making cybersecurity a critical challenge for operators and stakeholders in the sector.
The Covid-19 pandemic had a profound impact on the metro rail network infrastructure market, causing sharp declines in ridership due to lockdowns, remote work, and social distancing measures. Fear of virus transmission further reduced passenger numbers, leading to revenue losses for operators. Additionally, governments facing economic pressures diverted funds away from metro projects to address urgent health and financial needs, resulting in project delays and budget cuts. These disruptions collectively hindered market growth and slowed the pace of infrastructure development during the pandemic period.
The elevated segment is expected to be the largest during the forecast period
The elevated segment is expected to account for the largest market share during the forecast period. Elevated metro systems are particularly favored in densely populated urban environments due to their cost-effectiveness and faster construction timelines compared to underground alternatives. They require less land acquisition, minimizing disruptions to existing city infrastructure and traffic during development. Moreover, elevated tracks offer greater flexibility in route planning and integration with current transit networks. These advantages make elevated systems the preferred choice for rapidly expanding cities seeking efficient and scalable metro solutions.
The software segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the software segment is predicted to witness the highest growth rate, driven by the need for real-time monitoring, automation, predictive maintenance, and enhanced passenger experience. Software platforms enable efficient management of train schedules, ticketing, asset tracking, and data analytics, optimizing operational performance. Furthermore, the integration of IoT, AI, and cloud technologies is transforming metro rail operations, making software a critical enabler of digital transformation and future-ready infrastructure in the sector.
During the forecast period, the Asia Pacific region is expected to hold the largest market share, attributed to rapid urbanization, burgeoning populations, and substantial government investments in metro rail projects across countries like China, India, and Southeast Asia. Cities in this region face acute transportation challenges, including congestion and pollution, prompting authorities to prioritize metro rail as a sustainable mass transit solution. Additionally, robust economic growth and rising disposable incomes are fueling demand for modern, efficient public transportation, solidifying Asia Pacific's leadership.
Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR, propelled by aggressive infrastructure development, smart city initiatives, and the adoption of advanced technologies in metro systems. Governments are actively pursuing network expansions and modernization to accommodate rapidly growing urban populations and evolving mobility needs. Moreover, the integration of digital solutions and public-private partnerships is accelerating project delivery and innovation, positioning Asia Pacific as the fastest-growing market.
Key players in the market
Some of the key players in Metro Rail Network Infrastructure Market include Siemens AG, Alstom SA, Hitachi Rail Ltd., CRRC Corporation Limited, Mitsubishi Electric Corporation, Thales Group, CAF (Construcciones y Auxiliar de Ferrocarriles), Larsen & Toubro Limited, ABB Ltd., Hyundai Rotem Company, KEC International Limited, Toshiba Corporation, Medha Servo Drives Pvt. Ltd., Stadler Rail AG, Wabtec Corporation and Hyundai Engineering & Construction Co., Ltd.
In November 2024, Hitachi Rail delivered Greece's first driverless metro for Thessaloniki. The initial phase covers 9.6 km with 13 stations and is expected to reduce daily car usage by 56,000 vehicles.
In July 2024, Siemens Limited, as part of a consortium along with Rail Vikas Nigam Limited (RVNL), has secured an order approximately Rs. 766 crore from Bangalore Metro Rail Corporation Limited (BMRCL) for electrification of Bangalore Metro Phase-2 project contributing to sustainable public transport in the city.
In February 2024, Alstom commenced production of 108 advanced, driverless metro coaches for Chennai Metro Phase II at its Sri City facility. These trains are designed for a top speed of 80 km/h and incorporate regenerative braking systems.