Stratistics MRC¿¡ µû¸£¸é ÀüºÐ ±â¹Ý ÇÃ¶ó½ºÆ½ ¼¼°è ½ÃÀåÀº 2025³â¿¡ 24¾ï 9,599¸¸ ´Þ·¯·Î ¿¹Ãø ±â°£ µ¿¾È ¿¬Æò±Õ 11.43%·Î ¼ºÀåÇÏ¿© 2032³â¿¡´Â 53¾ï 2,424¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿Á¼ö¼ö, °¨ÀÚ, ¹Ð°ú °°Àº õ¿¬ ÀüºÐ¿¡¼ ÁÖ·Î »ý»êµÇ´Â »ýºÐÇØ¼º ¹°ÁúÀº ÀüºÐ°è ÇÃ¶ó½ºÆ½À¸·Î ¾Ë·ÁÁ® ÀÖ½À´Ï´Ù. ȯ°æ¿¡ ¹ÌÄ¡´Â ¾Ç¿µÇâÀÌ Àû±â ¶§¹®¿¡ ÀÌ·¯ÇÑ Ä£È¯°æ Æú¸®¸Ó´Â ¼®À¯·Î ¸¸µç ±âÁ¸ ÇÃ¶ó½ºÆ½ÀÇ ´ëüǰÀ¸·Î Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀüºÐÀº ´Ù¸¥ »ýºÐÇØ¼º °íºÐÀÚ¿Í °áÇÕÇÏ¿© ³ó¾÷¿ë Çʸ§, Æ÷ÀåÀç, ÀÏȸ¿ë ¼öÀú µî ´Ù¾çÇÑ Á¦Ç°À» ¸¸µé ¼ö ÀÖ½À´Ï´Ù. ÅðºñÈ Á¶°Ç¿¡¼ ÀüºÐ ±â¹Ý Æú¸®¸Ó´Â ´õ ½±°Ô ºÐÇØµÇ¾î ÇÃ¶ó½ºÆ½À¸·Î ÀÎÇÑ ¿À¿°À» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. »ýºÐÇØ¼º°ú Àç»ý °¡´ÉÇÑ ÀÚ¿øÀ» °¡Áö°í Àֱ⠶§¹®¿¡ ´Ù¾çÇÑ »ê¾÷¿¡¼ Áö¼Ó°¡´ÉÇÑ Àç·á Çõ½ÅÀ» À§ÇÑ ÀáÀçÀûÀÎ ¼±ÅÃÀÌ µÇ°í ÀÖ½À´Ï´Ù.
»ýºÐÇØ¼º ¹× ÅðºñÈ °¡´É
»ê¾÷°è¿Í ¼ÒºñÀÚµéÀÌ º¸´Ù Áö¼Ó°¡´ÉÇÑ ´ë¾ÈÀ» ã´Â °¡¿îµ¥, ÀüºÐ ±â¹Ý ÇÃ¶ó½ºÆ½Àº ±âÁ¸ ÇÃ¶ó½ºÆ½¿¡ ´ëÇÑ È¯°æÀûÀ¸·Î ¹Ù¶÷Á÷ÇÑ ´ë¾ÈÀ» Á¦°øÇÕ´Ï´Ù. ÀüºÐ ±â¹Ý ÇÃ¶ó½ºÆ½Àº ȯ°æ ³»¿¡¼ À¯±âÀûÀ¸·Î ºÐÇØµÇ±â ¶§¹®¿¡ ¸Å¸³Áö¿¡ ¹ö·ÁÁö´Â ¾²·¹±â¸¦ ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ÅðºñÈ °¡´ÉÇÑ ÀüºÐÀ¸·Î ¸¸µç ÇÃ¶ó½ºÆ½Àº ÅðºñÈ Á¶°Ç¿¡¼ ºÐÇØµÉ ¼ö Àֱ⠶§¹®¿¡ ´õ ȯ°æ Ä£ÈÀûÀÔ´Ï´Ù. Á¤ºÎ ¹× Á¶Á÷µµ ±ÔÁ¤°ú Àå·ÁÃ¥À» ÅëÇØ »ýºÐÇØ¼º ¼ÒÀçÀÇ »ç¿ëÀ» Àå·ÁÇϰí ÀÖ½À´Ï´Ù. Æ÷Àå, ³ó¾÷ ¹× ±âŸ ºÐ¾ß¿¡¼ ÀüºÐ ±â¹Ý Æú¸®¸ÓÀÇ »ç¿ëÀº ȯ°æ Ä£ÈÀûÀÎ ´ë¾È¿¡ ´ëÇÑ ÀÏ¹Ý ´ëÁßÀÇ Áö½Ä°ú ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó °¡¼Óȵǰí ÀÖ½À´Ï´Ù.
´Ù¸¥ ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½°úÀÇ °æÀï
Æú¸®¶ôÆ®»ê(PLA)À̳ª Æú¸®ÇÏÀ̵å·Ï½Ã¾ËÄ«³ë¿¡ÀÌÆ®(PHA)¿Í °°Àº ´Ù¸¥ ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½°ú °æÀïÇÏ¿© °µµ, À¯¿¬¼º, °¡°øÀÇ ¿ëÀ̼º Ãø¸é¿¡¼ ´õ ³ªÀº ¼º´ÉÀ» ¹ßÈÖÇÏ´Â °æ¿ì°¡ ¸¹¾Æ ´Ù¾çÇÑ ÀÀ¿ë ºÐ¾ß¿¡¼ ´õ ¼±È£µÇ°í ÀÖ½À´Ï´Ù. ÀüºÐ ±â¹Ý Æú¸®¸Ó´Â »ýºÐÇØ¼º ¹× Àç»ý °¡´ÉÇÔ¿¡µµ ºÒ±¸ÇÏ°í ¼º´É»óÀÇ ¹®Á¦°¡ ÀÖ¾î º¸±ÞÀ» ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀüºÐ ±â¹Ý ÇÃ¶ó½ºÆ½Àº ¼®À¯ ±â¹Ý ÇÃ¶ó½ºÆ½À̳ª ´Ù¸¥ ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½º¸´Ù Á¦Á¶ ºñ¿ëÀÌ ³ôÀ» ¼ö ÀÖ¾î °¡°ÝÀÌ Áß¿äÇÑ ½ÃÀå¿¡¼ °æÀï·ÂÀÌ ¶³¾îÁú ¼ö ÀÖ½À´Ï´Ù. ¶óÀ̹ú ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½ÀÇ ±â¼ú Çõ½ÅÀÌ ÁøÇàµÊ¿¡ µû¶ó ÀüºÐ ±â¹Ý ´ëüǰ¿¡ ´ëÇÑ »ó¾÷Àû ¾Ð·ÂÀº ´õ¿í Ä¿Áú °ÍÀÔ´Ï´Ù. µû¶ó¼ Á¦Á¶¾÷ü´Â ´Ù¸¥ ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½À¸·Î ´«À» µ¹¸± ¼ö ÀÖÀ¸¸ç, ±×·¸°Ô µÇ¸é ÀüºÐ ±â¹Ý ÇÃ¶ó½ºÆ½ÀÇ ½ÃÀå Á¡À¯À²ÀÌ °¨¼ÒÇÒ °ÍÀÔ´Ï´Ù.
¹èÇÕ Çõ½Å ¹× Àç·á °È
Á¦Á¶¾÷ü´Â ÀüºÐ ±â¹Ý Æú¸®¸Ó¸¦ º¯°æÇϰųª ´Ù¸¥ õ¿¬ ¼ººÐÀ» Ãß°¡ÇÏ¿© °µµ, À¯¿¬¼º, ³»±¸¼º µî ±â°èÀû ǰÁúÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Àç·áÀÇ °³¼±À» ÅëÇØ ÀüºÐ ±â¹Ý ÇÃ¶ó½ºÆ½ÀÇ »ýºÐÇØ¼ºµµ °³¼±µÇ¾î ±âÁ¸ ÇÃ¶ó½ºÆ½À» ´ëüÇÒ ¼ö Àִ ȯ°æ Ä£ÈÀûÀÎ ´ë¾ÈÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. °¡¼ÒÁ¦³ª ´Ù¸¥ ¹ÙÀÌ¿ÀÆú¸®¸Ó¿Í È¥ÇÕÇÏ¿© ¿øÇϴ Ư¼ºÀ» Èñ»ýÇÏÁö ¾Ê°í ºñ¿ëÀ» ³·Ãâ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ °¡°ø ¹æ¹ýÀÇ °³¼±À¸·Î Àç·áÀÇ Ç°ÁúÀ» º¸´Ù ½±°Ô Á¦¾îÇÒ ¼ö ÀÖ¾î ½ÃÀ强ÀÌ ³ô¾ÆÁý´Ï´Ù. Àü¹ÝÀûÀ¸·Î ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº ´Ù¾çÇÑ »ê¾÷, ƯÈ÷ Æ÷Àå ¹× ³ó¾÷ ºÐ¾ß¿¡¼ ÀüºÐ ±â¹Ý ÇÃ¶ó½ºÆ½ÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
¼ÒºñÀÚÀÇ ¿ÀÇØ¿Í À߸øµÈ Á¤º¸
¸¹Àº »ç¶÷µéÀÌ ¼®À¯¸¦ ¿ø·á·Î ÇÑ ´ëüǰº¸´Ù ½Å·Ú¼ºÀÌ ³·´Ù°í ¿ÀÇØÇϰí Àֱ⠶§¹®¿¡ ÀÌ·¯ÇÑ Æú¸®¸Ó¿¡ ´ëÇÑ ¼ö¿ä´Â Àû½À´Ï´Ù. ±âÁ¸ ÇÃ¶ó½ºÆ½ÀÇ Áö¼Ó°¡´É¼ºÀ» ¸ð¸£´Â °í°´Àº ÀüºÐ ±â¹Ý ÇÃ¶ó½ºÆ½ÀÇ È¯°æÀû ÀÌÁ¡¿¡ ´ëÇÑ À߸øµÈ Á¤º¸·Î ÀÎÇØ ÀüºÐ ±â¹Ý ÇÃ¶ó½ºÆ½À» ¼±ÅÃÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀüºÐ À¯·¡ Æú¸®¸ÓÀÇ »ýºÐÇØ¼º¿¡ ´ëÇÑ ¿ÀÇØÀÇ ¼ÒÁö°¡ ÀÖ´Â ¼³¸íÀº ¼ÒºñÀÚÀÇ ±¸¸Å ÀÇ¿åÀ» ¶³¾î¶ß¸± ¼ö ÀÖ½À´Ï´Ù. ȯ°æ ¿µÇâ¿¡ ´ëÇÑ ¿ì·Á´Â ÀûÀýÇÑ Æó±â ±â¼ú¿¡ ´ëÇÑ Áö½ÄÀÇ ºÎÁ·À¸·Î ÀÎÇØ ¹ß»ýÇÒ ¼ö ÀÖ½À´Ï´Ù. °á±¹, ÀÌ·¯ÇÑ À߸øµÈ ÀνÄÀº ½ÃÀå È®´ë¸¦ ÀúÇØÇϰí ȯ°æ Ä£ÈÀûÀÎ ÇÃ¶ó½ºÆ½ ´ëüǰÀÇ »ç¿ëÀ» Á¦ÇÑÇÒ ¼ö ÀÖ½À´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
COVID-19 »çÅ´ ÀüºÐ ±â¹Ý ÇÃ¶ó½ºÆ½ ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃÆÀ¸¸ç, °øÀå Æó¼â, Àη ºÎÁ·, ¹°·ù ¹®Á¦·Î ÀÎÇØ »ý»ê ¹× °ø±Þ¸Á¿¡ È¥¶õÀ» ÀÏÀ¸Ä×½À´Ï´Ù. °Ç° À§±â µ¿¾È ÀÏȸ¿ë ÇÃ¶ó½ºÆ½ Á¦Ç°¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ¸é¼ Áö¼Ó°¡´ÉÇÑ ´ëüǰ¿¡ ´ëÇÑ °ü½Éµµ ³ô¾ÆÁ³½À´Ï´Ù. ±×·¯³ª ȯ°æ ¹®Á¦¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÆÒµ¥¹Í ÀÌÈÄ È¸º¹µÇ¸é¼ »ýºÐÇØ¼º ÇÃ¶ó½ºÆ½¿¡ ´ëÇÑ °ü½ÉÀÌ ´Ù½Ã ³ô¾ÆÁ³°í, ½ÃÀåÀº Àå±âÀûÀÎ ¼ºÀåÀ» ÇâÇØ ³ª¾Æ°¡°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µµÀü¿¡µµ ºÒ±¸Çϰí, ÆÒµ¥¹ÍÀº ȯ°æ Ä£ÈÀûÀÎ ¼Ö·ç¼ÇÀÇ Çʿ伺À» °Á¶Çϰí ÀüºÐ ±â¹Ý ÇÃ¶ó½ºÆ½ ±â¼úÀÇ Çõ½ÅÀ» °¡¼ÓÈÇß½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ÀüºÐ ±â¹Ý Çʸ§ ºÐ¾ß°¡ °¡Àå Å« ºÐ¾ß°¡ µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ÀüºÐ ±â¹Ý Çʸ§ ºÐ¾ß´Â ȯ°æ Ä£ÈÀûÀÌ°í »ýºÐÇØ¼ºÀÌ ¶Ù¾î³ª ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ Çʸ§Àº ƯÈ÷ ½Äǰ ¹× ³ó¾÷ ºÐ¾ß¿¡¼ ±âÁ¸ ÇÃ¶ó½ºÆ½ Æ÷Àå¿¡ ´ëÇÑ ÀÌ»óÀûÀÎ ´ë¾ÈÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ¼ÒºñÀÚÀÇ ÀνÄÀÌ ³ô¾ÆÁö°í ÀÏȸ¿ë ÇÃ¶ó½ºÆ½¿¡ ´ëÇÑ Á¤ºÎÀÇ ±ÔÁ¦°¡ ¼ö¿ä¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ºñ¿ë È¿À²ÀûÀÌ°í ´Ù¸¥ ¹ÙÀÌ¿ÀÆú¸®¸Ó¿ÍÀÇ È£È¯¼ºÀÌ ³ô±â ¶§¹®¿¡ ½ÃÀå ÀáÀç·ÂÀº ´õ¿í Ä¿Áö°í ÀÖ½À´Ï´Ù. »ê¾÷°è°¡ Áö¼Ó°¡´ÉÇÑ ¼Ö·ç¼ÇÀ¸·Î ÀüȯÇÔ¿¡ µû¶ó ÀüºÐ ±â¹Ý Çʸ§Àº Áö¼ÓÀûÀ¸·Î Àα⸦ ²ø¸ç Àüü ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
Æû ÆÐŰ¡ ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È Áö¼Ó°¡´É¼ºÀ» Áß½ÃÇÏ´Â »ê¾÷¿¡ ´ëÇÑ ¸Å·ÂÀ¸·Î ÀÎÇØ ¹ßÆ÷ Æ÷Àå ºÐ¾ß´Â °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ƯÈ÷ ÀüÀÚÁ¦Ç°, ½Äǰ ¹× ±úÁö±â ½¬¿î ¹°Ç°ÀÇ º¸È£ Æ÷Àå¿¡ ÀÖ¾î ±âÁ¸ ÇÃ¶ó½ºÆ½ ÆûÀ» ´ëüÇÒ ¼ö ÀÖ´Â ÀÌ»óÀûÀÎ ´ë¾ÈÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ȯ°æ ±ÔÁ¦ °È¿Í ģȯ°æ Æ÷Àå ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ±× äÅÃÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀüºÐ ±â¹Ý ¹ßÆ÷ Æ÷ÀåÀº °¡º±°í ºñ¿ë È¿À²ÀûÀ̱⠶§¹®¿¡ ´ë±Ô¸ð »ç¿ë¿¡ ÀûÇÕÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀÌ °áÇÕµÇ¾î ½ÃÀå ¼ºÀåÀ» ÃËÁøÇϰí ÀüºÐ ±â¹Ý ÇÃ¶ó½ºÆ½ÀÇ ÀÀ¿ë ºÐ¾ß°¡ È®´ëµÇ°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº Áö¼Ó°¡´ÉÇÑ ´ëüǰ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Áß±¹, Àεµ, ÀϺ»°ú °°Àº ±¹°¡µéÀÌ ÀÌ·¯ÇÑ Ãß¼¼ÀÇ ÃÖÀü¼±¿¡ ÀÖÀ¸¸ç, »ýºÐÇØ¼º Àç·á¸¦ Àå·ÁÇÏ´Â Á¤ºÎÀÇ ³ë·Â°ú ȯ°æ ¹®Á¦¿¡ ´ëÇÑ ÀνÄÀÇ Áõ°¡°¡ ÀÌ·¯ÇÑ Ãß¼¼¿¡ ÈûÀ» ½Ç¾îÁÖ°í ÀÖ½À´Ï´Ù. ¿Á¼ö¼ö, °¨ÀÚ, ŸÇÇ¿ÀÄ« µî Àç»ý °¡´ÉÇÑ ÀÚ¿ø¿¡¼ ÃßÃâÇÑ ÀÌ ÇÃ¶ó½ºÆ½Àº Æ÷Àå, ³ó¾÷, ¼ÒºñÀç µî ´Ù¾çÇÑ »ê¾÷¿¡¼ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. »ê¾÷ÈÀÇ ¹ßÀü°ú ģȯ°æ ¼Ö·ç¼ÇÀÇ ÃßÁøÀ¸·Î ½ÃÀåÀº ÇâÈÄ ¸î ³â µ¿¾È ºü¸£°Ô ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â ±âÁ¸ÀÇ ¼®À¯ ±â¹Ý ÇÃ¶ó½ºÆ½À» ´ëüÇÒ ¼ö Àִ ģȯ°æÀûÀÌ°í »ýºÐÇØ¼ºÀÌ ³ôÀº ´ëüǰ¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô±â ¶§¹®ÀÔ´Ï´Ù. ÀÌ Áö¿ªÀÇ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼ ¾ö°ÝÇÑ È¯°æ ±ÔÁ¦¿Í ÇÔ²² ÀüºÐ ±â¹Ý ÇÃ¶ó½ºÆ½ »ý»ê¿¡ ´ëÇÑ ±â¼ú Çõ½ÅÀÌ °¡¼Óȵǰí ÀÖ½À´Ï´Ù. Æ÷Àå, ³ó¾÷, ½Äǰ ¼ºñ½º µî ÁÖ¿ä ºÎ¹®Àº ÀÌ»êÈź¼Ò ¹èÃâ·® °¨¼Ò¿Í ºÐÇØ ´É·ÂÀ¸·Î ÀÎÇØ ¹ÙÀÌ¿À ±â¹Ý ÇÃ¶ó½ºÆ½À» Àû±ØÀûÀ¸·Î äÅÃÇϰí ÀÖ½À´Ï´Ù. ±â¼úÀÇ ¹ßÀü°ú »ý»ê °øÁ¤ÀÇ °³¼±À¸·Î ºÏ¹Ì¿¡¼ ÀüºÐ ±â¹Ý ÇÃ¶ó½ºÆ½ÀÇ »ç¿ëÀº °è¼Ó È®´ëµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
According to Stratistics MRC, the Global Starch-Based Plastics Market is accounted for $2495.99 million in 2025 and is expected to reach $5324.24 million by 2032 growing at a CAGR of 11.43% during the forecast period. Biodegradable materials predominantly generated from natural starch sources such as corn, potatoes, or wheat are known as starch-based plastics. Because of their less detrimental effects on the environment, these environmentally friendly polymers are utilised as substitutes for traditional plastics made from petroleum. Starch can be combined with other biodegradable polymers to create a variety of goods, including agricultural films, packaging, and disposable cutlery. Under composting conditions, starch-based polymers break down more readily, lowering the pollution caused by plastics. They are a potential option for sustainable material innovation in a variety of industries due to their biodegradability and renewable source.
Biodegradability & compostability
Starch-based plastics provide an environmentally favourable substitute for conventional plastics as industry and consumers look for more sustainable options. Because these polymers decompose organically in the environment, less garbage ends up in landfills. Plastics made from compostable starch can break down in composting conditions, making them more environmentally friendly. By means of rules and incentives, governments and organisations are also encouraging the use of biodegradable materials. The use of starch-based polymers in packaging, agriculture, and other sectors is being accelerated by the public's increased knowledge of and desire for environmentally friendly substitutes.
Competition from other bioplastics
Competition from other bioplastics, such polylactic acid (PLA) and polyhydroxyalkanoates (PHA), frequently perform better in terms of strength, flexibility, and simplicity of processing, making them more desirable for a range of applications. Despite being biodegradable and renewable, starch-based polymers may have performance issues that prevent their widespread use. Furthermore, starch-based plastics may be more expensive to produce than petroleum-based plastics or other bioplastics, which reduces their competitiveness in markets where prices are crucial. The commercial pressure on starch-based substitutes is further increased by rival bioplastics' developing technological innovations. Manufacturers might therefore turn their attention to other bioplastics, which would reduce the market share of plastics based on starch.
Innovation in blending & material enhancement
Manufacturers can improve their mechanical qualities, including strength, flexibility, and durability, by altering starch-based polymers and adding other natural ingredients. The biodegradability of starch-based plastics is also improved by material improvements, which makes them a more environmentally friendly substitute for conventional plastics. Blending with plasticisers or other biopolymers lowers expenses without sacrificing desired properties. Furthermore, improvements in processing methods provide the material's qualities more control, which boosts its marketability. Overall, these innovations drive the adoption of starch-based plastics across various industries, especially in packaging and agriculture.
Consumer misunderstanding or misinformation
There is less demand for these polymers since many people erroneously think they are less dependable than alternatives made of petroleum. Customers who are unaware of the sustainability of traditional plastics may choose them due to misinformation about the environmental advantages of starch-based plastics. Furthermore, misleading statements regarding the biodegradability of polymers derived from starch may cause misunderstandings and discourage consumers from utilising them. Concerns regarding their effects on the environment may also arise from a lack of knowledge about appropriate disposal techniques. In the end, these false beliefs may hinder market expansion and restrict the availability of environmentally suitable plastic substitutes.
Covid-19 Impact
The COVID-19 pandemic significantly impacted the starch-based plastics market, causing disruptions in production and supply chains due to factory closures, labor shortages, and logistical challenges. Increased demand for single-use plastic products during the health crisis also shifted focus away from sustainable alternatives. However, growing environmental concerns and post-pandemic recovery have reignited interest in biodegradable plastics, driving the market towards long-term growth. Despite challenges, the pandemic underscored the need for eco-friendly solutions, accelerating innovation in starch-based plastic technologies.
The starch-based films segment is expected to be the largest during the forecast period
The starch-based films segment is expected to account for the largest market share during the forecast period, due to its eco-friendly and biodegradable nature. These films offer an ideal alternative to conventional plastic packaging, especially in food and agricultural applications. Growing consumer awareness and government regulations against single-use plastics further drive demand. Their cost-effectiveness and compatibility with other biopolymers enhance their market potential. As industries shift toward sustainable solutions, starch-based films continue to gain traction, boosting overall market growth.
The foam packaging segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the foam packaging segment is predicted to witness the highest growth rate, due to appealing to sustainability-focused industries. It serves as an ideal alternative to conventional plastic foams, especially in protective packaging for electronics, food, and fragile items. Rising environmental regulations and consumer demand for green packaging solutions have increased its adoption. Additionally, starch-based foam packaging is lightweight and cost-effective, making it suitable for large-scale use. These factors collectively enhance market growth and expand application areas for starch-based plastics.
During the forecast period, the Asia Pacific region is expected to hold the largest market share due to the increasing demand for sustainable alternatives. Countries like China, India, and Japan are at the forefront of this trend, driven by government initiatives promoting biodegradable materials and a rising awareness of environmental concerns. These plastics, derived from renewable resources like corn, potatoes, and tapioca, are being adopted across various industries, including packaging, agriculture, and consumer goods. With growing industrialization and a push for green solutions, the market is expected to expand rapidly in the coming years.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, owing to high demand for eco-friendly and biodegradable alternatives to traditional petroleum-based plastics. The region's heightened focus on sustainability, combined with stringent environmental regulations, has spurred innovation in starch-based plastic production. Key sectors such as packaging, agriculture, and food service are actively adopting these bio-based plastics due to their reduced carbon footprint and ability to decompose. With advancements in technology and improved production processes, North America is poised to continue expanding its use of starch-based plastics.
Key players in the market
Some of the key players profiled in the Starch-Based Plastics Market include NatureWorks, Total Corbion PLA, Braskem, Plantic Technologies, Archer Daniels Midland (ADM), Galactic, Toyota Tsusho, Rodenburg Biopolymers, Futerro, Tereos, BASF, Biotec, Roquette Freres, Novamont, Ingredion, Celanese Corporation, Borealis AG and Shellworks.
In April 2025, NatureWorks announced a turnkey compostable coffee pod solution in collaboration with IMA, compatible with North American coffee machines. This solution utilizes Ingeo(TM) biopolymer to offer a sustainable alternative to traditional coffee pods.
In June 2024, BASF expanded its biopolymers portfolio by introducing a biomass-balanced version of ecoflex(R), a polybutylene adipate terephthalate (PBAT). This new grade, ecoflex(R) F Blend C1200 BMB, offers a 60% lower product carbon footprint compared to the standard ecoflex(R) grade.
In April 2023, NatureWorks In collaboration with Jabil Inc., introduced a new Ingeo(TM) PLA-based powder formulation for powder-bed fusion technologies, including selective laser sintering (SLS) platforms. The Jabil PLA 3110P offers a cost-effective option with a lower sintering temperature and an 89% smaller carbon footprint compared to the incumbent PA-12.