Stratistics MRC¿¡ µû¸£¸é, À°ºÒÈÀλ긮Ƭ ¼¼°è ½ÃÀåÀº 2025³â¿¡ 33¾ï 1,000¸¸ ´Þ·¯¿¡ À̸£°í, 2032³â±îÁö 93¾ï 2,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¿¹Ãø ±â°£ µ¿¾È 15.9%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
À°ºÒÈÀλ긮Ƭ(LiPF6)Àº ¸®Æ¬ À̿ ¹èÅ͸®ÀÇ ÀüÇØÁú ¿°À¸·Î ÀϹÝÀûÀ¸·Î »ç¿ëµÇ´Â ÈÇÕ¹°ÀÔ´Ï´Ù. ¸®Æ¬ À̿°ú Çí»çÇ÷ç¿À·ÎÀλê À½ÀÌ¿ÂÀ¸·Î ±¸¼ºµÇ¾î ³ôÀº À̿ Àüµµ¼º°ú ¾ÈÁ¤¼ºÀ» Á¦°øÇϸç, ÀÌ´Â ¹èÅ͸® ¼º´É¿¡ ¸Å¿ì Áß¿äÇϸç, ¸®Æ¬ À̿ ¹èÅ͸®ÀÇ ¾ç±Ø°ú À½±Ø »çÀÌÀÇ À̿ È帧À» ÃËÁøÇÏ¿© È¿À²ÀûÀÎ ¿¡³ÊÁö ÀúÀå ¹× ¹æÀü¿¡ ±â¿©ÇÏ´Â Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÀÌ ÈÇÕ¹°Àº Àü±âÀÚµ¿Â÷, °¡ÀüÁ¦Ç°, Àç»ý¿¡³ÊÁö ½Ã½ºÅÛ µîÀÇ »ê¾÷¿¡ ÇʼöÀûÀÔ´Ï´Ù.
Àü±âÂ÷(EV) ¼ö¿ä Áõ°¡
¼¼°èÀûÀ¸·Î ûÁ¤ ´ëü ¿¡³ÊÁö·ÎÀÇ ÀüȯÀº Àü±âÀÚµ¿Â÷ÀÇ º¸±ÞÀ» ÃËÁøÇÏ°í °í¼º´É ¹èÅ͸®¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î À̾îÁö°í ÀÖ½À´Ï´Ù. ¼¼°è °¢±¹ Á¤ºÎ´Â Àü±âÂ÷ »ç¿ëÀ» ÃËÁøÇÏ´Â Àμ¾Æ¼ºê¿Í Á¤Ã¥À» µµÀÔÇÏ¿© ¸®Æ¬À̿ ¹èÅ͸® »ý»êÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¹èÅ͸® ±â¼úÀÇ ¹ßÀüÀ¸·Î ¿¡³ÊÁö ¹Ðµµ, ¼ö¸íÁÖ±â, ÃæÀü ¼Óµµ°¡ Çâ»óµÇ¾î EV°¡ ¼ÒºñÀÚ¿¡°Ô ´õ¿í ¸Å·ÂÀûÀ¸·Î ´Ù°¡°¥ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ, ȯ°æ ÀÇ½Ä Áõ°¡¿Í ÀÌ»êÈź¼Ò ¹èÃâ·® °¨¼Ò¿¡ ´ëÇÑ ¾Ð·ÂÀº Àü±â ¸ðºô¸®Æ¼·ÎÀÇ ÀüȯÀ» °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àü±âÂ÷ ¼ö¿äÀÇ ±ÞÁõÀº Àü±âÀÚµ¿Â÷ ¹èÅ͸® ÈÇп¡¼ À°ºÒÈÀλ긮ƬÀÇ Áß¿äÇÑ ¿ªÇÒÀ» °Á¶Çϰí ÀÖ½À´Ï´Ù.
ÇÑÁ¤µÈ ¿ø·áÀÇ °¡¿ë¼º
¹èÅ͸® Á¦Á¶´Â ´ÏÄÌ, ÄÚ¹ßÆ®, ¸®Æ¬°ú °°Àº Èñ¼Ò ±Ý¼Ó¿¡ ÀÇÁ¸Çϰí ÀÖ¾î °ø±Þ¸Á¿¡ ¾Ð¹ÚÀ» °¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àç·á¿¡ ´ëÇÑ ¼¼°è ¼ö¿ä Áõ°¡´Â ƯÈ÷ ä±¼ »ç¾÷ÀÌ È¯°æ ¹× ÁöÁ¤ÇÐÀû Á¦¾à¿¡ Á÷¸éÇϰí Àֱ⠶§¹®¿¡ Èñ¼Ò¼º ¹®Á¦¸¦ ´õ¿í ¾ÇȽÃ۰í ÀÖ½À´Ï´Ù. ³ôÀº ä±¼ ºñ¿ë°ú º¯µ¿ÇÏ´Â °¡°Ýµµ ¹èÅ͸® »ý»êÀÇ °æÁ¦¼º¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. ¶ÇÇÑ, ´ë±â¾÷µéÀÇ ¿ø·á ¸ÅÀå·® È®º¸ °æÀïÀº À¯ÅëÀÇ ºÒ±ÕÇüÀ» ÃÊ·¡ÇÕ´Ï´Ù. °á°úÀûÀ¸·Î, ÀÌ·¯ÇÑ Çʼö Àç·áÀÇ Á¦ÇÑµÈ °¡¿ë¼ºÀº ½ÃÀå ¼ºÀåÀ» ¾ïÁ¦ÇÏ°í ´ëü ÀÚ¿ø ¹× ÀçȰ¿ë ¹æ¹ýÀ» ¸ð»öÇϵµ·Ï À¯µµÇϰí ÀÖ½À´Ï´Ù.
½º¸¶Æ® ±×¸®µå¿¡¼ ¿¡³ÊÁö ÀúÀå¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
ž籤, dz·Â µî Àç»ý °¡´É ¿¡³ÊÁöÀÇ º¸±Þ°ú ÇÔ²² È¿°úÀûÀÎ ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. À°ºÒÈÀλ긮Ƭ ÀüÇØÁúÀ» Àü¿øÀ¸·Î ÇÏ´Â ¸®Æ¬ À̿ ¹èÅ͸®´Â ¿¡³ÊÁö ¹Ðµµ°¡ ³ô°í ½Å·Ú¼ºÀÌ ³ô±â ¶§¹®¿¡ ±×¸®µå ¿ëµµ¿¡ ÀûÇÕÇÕ´Ï´Ù. ½º¸¶Æ® ±×¸®µå¿¡ AI¿Í IoT¸¦ ÅëÇÕÇÏ·Á¸é ¿øÈ°ÇÑ ¿¡³ÊÁö °ü¸®¸¦ À§ÇÑ °í±Þ ½ºÅ丮Áö ¼Ö·ç¼ÇÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¶ÇÇÑ, ±×¸° ¿¡³ÊÁö ÇÁ·ÎÁ§Æ®¸¦ Áö¿øÇÏ´Â Á¤ºÎ ÀÌ´Ï¼ÅÆ¼ºê´Â ½º¸¶Æ® ±×¸®µå¿¡¼ ÷´Ü ¹èÅ͸®¸¦ äÅÃÇÏ´Â µ¥ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ½º¸¶Æ® ±×¸®µå ÀÎÇÁ¶óÀÇ È®´ë´Â ¿¡³ÊÁö ÀúÀå ºÐ¾ß¿¡¼ À°ºÒÈÀλ긮ƬÀÇ ¼ºÀå¿¡ À¯¸®ÇÑ È¯°æÀ» Á¶¼ºÇϰí ÀÖ½À´Ï´Ù.
°ø±Þ¸Á Áß´Ü À§Çè
¹«¿ª Á¦ÇѰú ÁöÁ¤ÇÐÀû ºÐÀïÀº Çʼö »ý»ê ÀÚÀç °ø±Þ¿¡ ºÎÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖÀ¸¸ç, Äڷγª19¿Í °°Àº ÀÚ¿¬ÀçÇØ¿Í Àü¿°º´Àº ¼¼°è °ø±Þ¸ÁÀÇ Ãë¾à¼ºÀ» ºÎ°¢½Ã۰í Á¦Á¶ ¹× ¹°·ù¿¡ È¥¶õÀ» ÃÊ·¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿øÀÚÀ縦 ƯÁ¤ Áö¿ª¿¡ ÀÇÁ¸ÇÏ´Â °æ¿ì, À§±â »óȲ¿¡¼ º´¸ñÇö»óÀÌ ¹ß»ýÇÒ À§ÇèÀÌ ³ô¾ÆÁý´Ï´Ù. ¶ÇÇÑ, ½ÃÀå ¼ö¿äÀÇ º¯µ¿À¸·Î ÀÎÇØ Àç°í¿Í À¯Åë ä³ÎÀÌ ºÒ¾ÈÁ¤ÇØÁú ¼ö ÀÖ½À´Ï´Ù. ¸®½ºÅ©¸¦ ÁÙÀÌ°í ¾ÈÁ¤ÀûÀÎ ½ÃÀå ¼ºÀåÀ» º¸ÀåÇϱâ À§Çؼ´Â °ø±Þ¸Á °°Ç¼º¿¡ ´ëÇÑ ³ë·ÂÀÌ ÇʼöÀûÀÔ´Ï´Ù. °ø±Þó¸¦ ´Ù¾çÈÇÏ°í ¹°·ù ü°è¸¦ °ÈÇÏ´Â ³ë·ÂÀº ÀÌ·¯ÇÑ °úÁ¦¸¦ ±Øº¹Çϱâ À§ÇØ ÇʼöÀûÀÔ´Ï´Ù.
Äڷγª19 »çÅ´ À°ºÒÈÀλ긮Ƭ((LiPF6) ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃÄ °ø±Þ¸Á È¥¶õ°ú »ý»ê Áö¿¬À» ÀÏÀ¸Ä×°í, Àü±âÂ÷¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼ö¿ä °¨¼Ò, ºÀ¼â ¹× °æÁ¦ ¹®Á¦ µîÀ¸·Î ÀÎÇØ Ãʱ⿡´Â ½ÃÀå ¼ºÀåÀÌ µÐȵǾú½À´Ï´Ù. ±×·¯³ª ÆÒµ¥¹Í ÀÌÈÄ È¸º¹ ±¹¸é¿¡¼´Â ȯ°æ ¹®Á¦¿¡ ´ëÇÑ ¿ì·Á·Î ÀÎÇØ Àü±â ¸ðºô¸®Æ¼¿¡ ´ëÇÑ ³ë·ÂÀÌ °¡¼ÓȵǾú½À´Ï´Ù. ¶ÇÇÑ, ¹èÅ͸® Á¦Á¶ ¹æ¹ýÀÇ ¹ßÀüÀº Àü¿°º´°ú °ü·ÃµÈ °úÁ¦¿¡ ´ëÀÀÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ À§±â´Â źźÇÑ °ø±Þ¸Á Àü·«ÀÇ Çʿ伺À» °Á¶Çϰí ÇâÈÄ ½ÃÀå ±Ëµµ¸¦ Çü¼ºÇß½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ÇÇÄ¡ ±â¹Ý ºÎ¹®ÀÌ °¡Àå Å« ºÎ¹®ÀÌ µÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
ÇÇÄ¡ ±â¹Ý ºÎ¹®Àº ¿ì¼öÇÑ ¿ ¾ÈÁ¤¼º°ú Àüµµ¼ºÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ·¯ÇÑ Æ¯¼ºÀ¸·Î ÀÎÇØ ÇÇÄ¡ ±â¹Ý ¼ÒÀç´Â ÷´Ü ¹èÅ͸®¿ëµµ¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. °í¼º´É ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó EV ¹× ½º¸¶Æ® ±×¸®µå¿¡¼ ÇÇÄ¡ ±â¹Ý ¼ÒÀçÀÇ Ã¤ÅÃÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÅºÈ ±â¼úÀÇ ¹ßÀüÀ¸·Î ÇÇÄ¡ ±â¹Ý Á¦Ç°ÀÇ È¿À²°ú °¡°ÝÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ÀÚµ¿Â÷ ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È Àü ¼¼°èÀûÀ¸·Î Àü±âÂ÷ µµÀÔÀÌ ±ÞÁõÇÔ¿¡ µû¶ó ÀÚµ¿Â÷ ºÐ¾ß°¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Á¤ºÎÀÇ Àμ¾Æ¼ºê¿Í ȯ°æ ±ÔÁ¦·Î ÀÎÇØ ¼ÒºñÀÚ¿Í Á¦Á¶¾÷ü°¡ Àü±â À̵¿¼ºÀ¸·ÎÀÇ ÀüȯÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¸®Æ¬ Çí»çÇ÷ç¿À·ÎÀÎ»ê ¸®Æ¬À̿ ¹èÅ͸®´Â Àü±âÂ÷ ¼º´É º¥Ä¡¸¶Å©¸¦ ÃæÁ·ÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖÀ¸¸ç, Àü±âÂ÷ ÀÎÇÁ¶óÀÇ È®´ë¿Í ÀÚµ¿Â÷ ½ÃÀåÀ¸·ÎÀÇ ½Å±Ô ÁøÀÔÀº °æÀï°ú ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀÔ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È Àü±âÂ÷ »ý»ê ¹× ¼Òºñ Áõ°¡·Î ÀÎÇØ ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±Þ¼ÓÇÑ µµ½ÃÈ¿Í Áß»êÃþ Àα¸ Áõ°¡·Î ÀÎÇØ Áß±¹, ÀϺ», Àεµ µîÀÇ ±¹°¡¿¡¼ Àü±âÂ÷¿¡ ´ëÇÑ ¼ö¿ä°¡ °¡¼Óȵǰí ÀÖ½À´Ï´Ù. ´ëÇü ¹èÅ͸® Á¦Á¶¾÷üÀÇ Á¸Àç¿Í Á¤ºÎÀÇ Áö¿ø Á¤Ã¥ÀÌ ÀÌ Áö¿ª ½ÃÀå ÁöÀ§¸¦ ´õ¿í °È½Ã۰í ÀÖ½À´Ï´Ù. Àç»ý ¿¡³ÊÁö ÇÁ·ÎÁ§Æ®¿Í ½º¸¶Æ® ±×¸®µå ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ´Â ¸®Æ¬ À̿ ¹èÅ͸®ÀÇ Ã¤ÅÃÀ» ÃËÁøÇÒ °ÍÀÔ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´Â °·ÂÇÑ ±â¼ú Çõ½Å°ú EV ½ÃÀå ħÅõ¿¡ ±âÀÎÇÕ´Ï´Ù. Áö¼Ó°¡´É¼º°ú ȯ°æÀû ÀÌÁ¡¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ÀνÄÀÌ ³ô¾ÆÁö¸é¼ Àü±âÀÚµ¿Â÷ ¹× ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀº ¿¬±¸ °³¹ß¿¡ ÁÖ·ÂÇϰí ÀÖÀ¸¸ç, ¸®Æ¬ À̿ ¹èÅ͸® ±â¼úÀÇ Áøº¸¸¦ °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù. Á¤ºÎÀÇ Áö¿ø Á¤Ã¥°ú Àü±âÂ÷ ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ°¡ ½ÃÀå ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ºÏ¹ÌÀÇ È°±âÂù ½ºÅ¸Æ®¾÷ »ýŰè´Â ÀÌ ºÐ¾ßÀÇ Çõ½Å°ú °æÀï·ÂÀ» °ÈÇÕ´Ï´Ù.
According to Stratistics MRC, the Global Lithium Hexafluorophosphate Market is accounted for $3.31 billion in 2025 and is expected to reach $9.32 billion by 2032 growing at a CAGR of 15.9% during the forecast period. Lithium Hexafluorophosphate (LiPF6) is a chemical compound commonly used as an electrolyte salt in lithium-ion batteries. It consists of lithium ions and hexafluorophosphate anions, offering high ionic conductivity and stability, which is crucial for battery performance. LiPF6 plays a vital role in facilitating the flow of ions between the cathode and anode in lithium-ion batteries, contributing to efficient energy storage and discharge. This compound is integral to industries such as electric vehicles, consumer electronics, and renewable energy systems.
Growing demand for electric vehicles (EVs)
The global shift towards cleaner energy alternatives has propelled EV adoption, leading to an increased need for high-performance batteries. Governments worldwide are introducing incentives and policies to promote EV usage, boosting lithium-ion battery production. Advancements in battery technology are enhancing energy density, lifecycle, and charging speeds, making EVs more appealing to consumers. Furthermore, growing environmental awareness and pressure to reduce carbon emissions have accelerated the transition to electric mobility. This surge in EV demand highlights the critical role of lithium hexafluorophosphate in battery chemistry for electric vehicles.
Limited raw material availability
Battery manufacturing's reliance on scarce metals like nickel, cobalt, and lithium imposes pressure on supply networks. Increasing global demand for these materials further exacerbates scarcity concerns, especially as mining operations face environmental and geopolitical constraints. High extraction costs and fluctuating prices also impact the affordability of battery production. Furthermore, the race to secure raw material reserves by major players leads to imbalances in distribution. As a result, the limited availability of these essential materials restrains market growth, prompting the exploration of alternative resources and recycling methods.
Rising energy storage needs in smart grids
The need for effective energy storage systems is growing as renewable energy sources like solar and wind become more popular. Lithium-ion batteries, powered by lithium hexafluorophosphate electrolytes, are ideal for grid applications due to their high energy density and reliability. Integration of AI and IoT in smart grids requires advanced storage solutions for seamless energy management. Furthermore, government initiatives supporting green energy projects contribute to the adoption of advanced batteries in smart grids. The expanding smart grid infrastructure creates a lucrative landscape for the growth of lithium hexafluorophosphate applications in energy storage.
Risk of supply chain disruptions
Trade restrictions and geopolitical conflicts can have a negative effect on the supply of essential production materials. Natural disasters and pandemics, like COVID-19, have highlighted vulnerabilities in global supply chains, disrupting manufacturing and logistics. Dependence on specific regions for raw materials increases the risk of bottlenecks during crisis situations. Additionally, fluctuating market demand can cause instability in inventory and distribution channels. Addressing supply chain resilience is essential to mitigate risks and ensure steady market growth. Efforts to diversify supply sources and strengthen logistical frameworks are vital to overcoming these challenges.
The COVID-19 pandemic profoundly affected the Lithium Hexafluorophosphate Market, causing supply chain disruptions and delaying production. Reduced consumer demand for EVs initially slowed down market growth, as lockdowns and economic challenges took hold. However, the post-pandemic recovery phase witnessed an accelerated push towards electric mobility, driven by environmental concerns. Moreover, advancements in battery manufacturing practices adapted to address pandemic-related challenges. The crisis underscored the need for robust supply chain strategies, shaping the market's trajectory moving forward.
The pitch-based segment is expected to be the largest during the forecast period
The pitch-based segment is expected to account for the largest market share during the forecast period, driven by its superior thermal stability and electrical conductivity. These characteristics make pitch-based materials ideal for advanced battery applications. The growing demand for high-performance energy storage solutions further boosts its adoption in EVs and smart grids. Additionally, advancements in carbonization techniques enhance the efficiency and affordability of pitch-based products.
The automotive segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the automotive segment is predicted to witness the highest growth rate, due to surging EV adoption globally. Government incentives and environmental regulations encourage consumers and manufacturers to transition to electric mobility. Lithium-ion batteries powered by lithium hexafluorophosphate play a crucial role in meeting performance benchmarks for EVs. Expanding EV infrastructure and the entry of new players into the automotive market fuel competition and growth.
During the forecast period, the Asia Pacific region is expected to hold the largest market share, driven by increased EV production and consumption. Rapid urbanization and growing middle-class populations accelerate demand for electric vehicles in countries like China, Japan, and India. The presence of major battery manufacturers and supportive government policies further strengthen the region's market position. Investments in renewable energy projects and smart grid infrastructure bolster adoption of lithium-ion batteries.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, driven by strong technological innovation and EV market penetration. Increased consumer awareness of sustainability and environmental benefits fuels demand for electric vehicles and energy storage systems. The region's focus on research and development accelerates advancements in lithium-ion battery technology. Supportive government policies and investments in EV infrastructure contribute to market growth. North America's vibrant startup ecosystem enhances innovation and competitiveness in the sector.
Key players in the market
Some of the key players in Lithium Hexafluorophosphate Market include Morita Chemical Industries Co., Ltd., Hongda New Material Co., Ltd., Soulbrain Co., Ltd., Zhejiang Jianghua Microelectronics Materials Co., Ltd., LITASCO, Yunnan Tin Company Limited, Mitsubishi Chemical Corporation, Fujian Shaowu Yongfei Chemical Co., Ltd., Ube Industries, Ltd., Great Wall Motor Company Limited, Guangzhou Tinci Materials Technology Co., Ltd., BASF SE, Shenzhen Capchem Technology Co., Ltd., Tianjin Jinneng Science & Technology Co., Ltd., and Changzhou Tianma Specialty Chemicals Co., Ltd.
In March 2025, BASF Coatings and Li Auto Inc., a leader in China's new energy vehicle market, have announced the signing of a Memorandum of Strategic Cooperation, with the primary goal of promoting and implementing painting innovations powered by sustainability and digital innovations.
In March 2021, Hangzhou Keli Enterprise Management Partnership Enterprise signed a framework agreement to acquire a 28.2% stake in Shanghai Hongda New Material Co., Ltd. from Shanghai Hongzi Enterprise Development Co., Ltd. for CNY 650 million. Shanghai Hongzi Enterprise Development Co., Ltd. will sell 122.1 million shares.