Stratistics MRC¿¡ µû¸£¸é, ¼¼°è ¸¶ÀÌÅ©·Î¸ðÅÍ ½ÃÀåÀº 2025³â 507¾ï ´Þ·¯¿¡ À̸£°í, ¿¹Ãø ±â°£ µ¿¾È 8.2%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÏ¿© 2032³â¿¡´Â 881¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¸¶ÀÌÅ©·Î¸ðÅÍ´Â ÀϹÝÀûÀ¸·Î ¼ö ¹Ð¸®¹ÌÅÍ¿¡¼ ¼ö ¼¾Æ¼¹ÌÅÍ Å©±âÀÇ ¼ÒÇü °íÁ¤¹Ð Àü±â ¸ðÅÍÀÔ´Ï´Ù. ÀÌ ¸ðÅÍ´Â Àü±â ¿¡³ÊÁö¸¦ ±â°èÀû ¿îµ¿À¸·Î º¯È¯Çϱ⠶§¹®¿¡ ½Å·ÚÇÒ ¼ö ÀÖ°í È¿À²ÀûÀÎ ¼º´ÉÀ» ÇÊ¿ä·Î ÇÏ´Â ¼ÒÇü ¿ëµµ¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ÀÇ·á±â±â, ÀÚµ¿Â÷ ºÎǰ, ·Îº¿ °øÇÐ, °³Àοë ÀüÀÚ±â±â µîÀÇ ºÐ¾ß¿¡¼ ³Î¸® »ç¿ëµÇ´Â ¸¶ÀÌÅ©·Î¸ðÅÍ´Â ³·Àº ¿¡³ÊÁö »ç¿ë, Á¤¹ÐÇÑ Á¦¾î ¹× ³ôÀº ÀÛµ¿ È¿À²·Î ÀÎÇØ ³ôÀº Æò°¡¸¦ ¹Þ°í ÀÖ½À´Ï´Ù. ÄÄÆÑÆ®Çϰí ÀûÀÀ¼ºÀÌ ³ôÀº ±¸Á¶·Î ¼¶¼¼ÇÏ°í ¼¼¹ÐÇÑ ÀÛ¾÷µµ ½±°Ô ¼öÇàÇÒ ¼ö ÀÖ½À´Ï´Ù.
ÀÚµ¿È ¼ö¿ä Áõ°¡
¼¼°è ÀÚµ¿È ¹ßÀüÀº ¸¶ÀÌÅ©·Î¸ðÅÍ¿¡ ´ëÇÑ ¼ö¿ä¸¦ Å©°Ô ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼ÒÇü ¸ðÅÍ´Â ·Îº¿ ÆÈ, »ê¾÷ Àåºñ, ÀÚµ¿ °ø±¸ÀÇ Á¤¹Ð Á¦¾î¿¡ ÇʼöÀûÀÔ´Ï´Ù. ÀÇ·á ÀÚµ¿È, ƯÈ÷ ¼ö¼ú ·Îº¿°ú Áø´Ü Àåºñµµ ÁÖ¿ä ¼ºÀå ºÐ¾ßÀÔ´Ï´Ù. ÄÄÆÑÆ®ÇÑ µðÀÚÀΰú Çâ»óµÈ ÅäÅ© ¼º´ÉÀ¸·Î Á¼°í º¹ÀâÇÑ °ø°£¿¡¼ÀÇ Àû¿ë¿¡ ÀûÇÕÇÕ´Ï´Ù. ¶ÇÇÑ, °¡Àü ºÐ¾ß, ƯÈ÷ µå·Ð°ú ¿þ¾î·¯ºí ±â±â ¼ö¿ä°¡ ½ÃÀå ¼ºÀå¿¡ ź·ÂÀ» ÁÖ°í ÀÖ½À´Ï´Ù.
Á¦ÇÑµÈ ÅäÅ© Ãâ·Â
¸¶ÀÌÅ©·Î¸ðÅÍ´Â ´ÙÀç´Ù´ÉÇÔ¿¡µµ ºÒ±¸ÇÏ°í °íºÎÇÏ ¿ëµµ¿¡ ÇÊ¿äÇÑ ÅäÅ©¸¦ Á¦°øÇÏ´Â µ¥ ¾î·Á¿òÀ» °Þ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ÀÌ·¯ÇÑ ÇѰè·Î ÀÎÇØ Àå½Ã°£ µ¿¾È ³ôÀº Ãâ·ÂÀÌ ÇÊ¿äÇÑ »ê¾÷ ºÐ¾ß¿¡¼ »ç¿ëÀÌ Á¦Çѵ˴ϴÙ. ÄÄÆÑÆ®ÇÑ ÇüÅÂ¿Í ³ôÀº ÅäÅ©°¡ ¸ðµÎ ÇÊ¿äÇÑ ¿ëµµ¿¡¼´Â Ãß°¡ ±â¾î¸µ¿¡ ÀÇÁ¸ÇÒ ¼ö¹Û¿¡ ¾ø¾î ½Ã½ºÅÛÀÇ º¹À⼺ÀÌ Áõ°¡ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ´ÜÁ¡Àº ¼º´ÉÀÇ ½Å·Ú¼ºÀÌ Áß¿äÇÑ ÀÚµ¿Â÷ ¹× Ç×°ø¿ìÁÖ ÀÀ¿ë ºÐ¾ß¿¡¼ÀÇ Ã¤ÅÃÀ» ¹æÇØÇÏ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. Å©±â È¿À²À» Èñ»ýÇÏÁö ¾Ê°í ÅäÅ©¸¦ Çâ»ó½Ã۱â À§Çؼ´Â Áö¼ÓÀûÀÎ ¿¬±¸ °³¹ßÀÌ ÇÊ¿äÇÕ´Ï´Ù.
ÇコÄÉ¾î ·Îº¿ ºÐ¾ß·ÎÀÇ È®Àå
Àúħ½À ¼ö¼úÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ÀÇ·á¿ë ·Îº¿Àº ¸¶ÀÌÅ©·Î¸ðÅÍÀÇ ¹Ì°³Ã´ °Å´ë ½ÃÀåÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ¸¶ÀÌÅ©·Î¸ðÅÍ´Â ¼ö¼ú ±â±¸, ÀçȰ Àåºñ, ÁÖÀÔ ÆßÇÁ¿¡¼ Áß¿äÇÑ ºÎǰÀÔ´Ï´Ù. ½ÂÀΰú ±â¼úÀÇ ¹ßÀüÀ¸·Î ¸ðÅÍ ±¸µ¿ ½Ã½ºÅÛÀ» ÀÓ»ó ÇöÀå¿¡ ºü¸£°Ô ÅëÇÕÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ·Îº¿ ¾à±¹ ¹× ÀÚµ¿ Áø´Ü µµ±¸ÀÇ µ¿Çâµµ Áõ°¡Çϰí ÀÖÀ¸¸ç, ±× ¹üÀ§´Â ´õ¿í ³Ð¾îÁö°í ÀÖ½À´Ï´Ù. »ý¸í°øÇÐ ¹× ÀÇ·á ±â¼ú ½ºÅ¸Æ®¾÷¿¡ ´ëÇÑ ÅõÀÚ´Â ¾ÕÀ¸·Îµµ ÀÌ ºÐ¾ßÀÇ ±â¼ú Çõ½Å¿¡ ¹ÚÂ÷¸¦ °¡ÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
ºü¸¥ ±â¼ú Çõ½Å
¸ðÅÍ ±â¼úÀÇ ±â¼ú Çõ½Å ¼Óµµ°¡ ºü¸£±â ¶§¹®¿¡ Á¦Á¶¾÷ü´Â ÁøÈÇϴ ǥÁØ¿¡ ´ëÀÀÇØ¾ß ÇÏ´Â °úÁ¦¸¦ ¾È°í ÀÖ½À´Ï´Ù. ¼³°è ¿ä±¸»çÇ×ÀÌ ÀÚÁÖ º¯°æµÇ¸é ±âÁ¸ Á¦Ç°ÀÌ ±¸½ÄÀÌ µÇ¾î R&D ºñ¿ë°ú Àç°í ºñ¿ëÀ» Áõ°¡½Ãų ¼ö ÀÖ½À´Ï´Ù. ÃÖÁ¾ »ç¿ëÀÚ´Â ÇöÀç ´õ ¿¡³ÊÁö È¿À²ÀûÀ̰í, ´õ Á¶¿ëÇϰí, ´õ ½º¸¶Æ®ÇÑ ¸ðÅ͸¦ ¿ä±¸Çϰí ÀÖÀ¸¸ç, ²÷ÀÓ¾øÀÌ Çõ½ÅÇØ¾ß ÇÑ´Ù´Â ¾Ð¹ÚÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ½Å¼ÓÇÑ ¾÷±×·¹À̵尡 ºÒ°¡´ÉÇÑ ±â¾÷Àº ¹ÎøÇÏ°í ±â¼úÀûÀ¸·Î ¾Õ¼± ±â¾÷¿¡°Ô ½ÃÀå Á¡À¯À²À» »©¾Ñ±æ À§ÇèÀÌ ÀÖ½À´Ï´Ù. ¶ÇÇÑ, »õ·Î¿î ±â¼ú¿¡´Â Ư¼öÇÑ ¿øÀç·á°¡ ÇÊ¿äÇÒ ¼ö Àֱ⠶§¹®¿¡ ÀÌ·¯ÇÑ º¯µ¿Àº °ø±Þ¸ÁÀÇ ¾ÈÁ¤¼º¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. Á¦Á¶¾÷ü´Â ÀÌ·¯ÇÑ À§ÇèÀ» ÁÙÀ̱â À§ÇØ ¸ðµâ½Ä ¹× À¯¿¬ÇÑ ¼³°è¸¦ äÅÃÇØ¾ß ÇÕ´Ï´Ù.
Äڷγª19 »çÅ´ ¸¶ÀÌÅ©·Î¸ðÅÍ ½ÃÀå¿¡ ´Ù¾çÇÑ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. Ãʱ⿡´Â ¼¼°è °ø±Þ¸ÁÀÇ È¥¶õ°ú Á¦Á¶ ÀåºñÀÇ ÀϽÃÀûÀÎ °¡µ¿ Áß´ÜÀ¸·Î ÀÎÇØ »ý»êÀÌ Áß´ÜµÇ°í ³³Ç°ÀÌ Áö¿¬µÇ¾ú½À´Ï´Ù. »ê¾÷°è°¡ ¿ø°Ý Á¶ÀÛ¿¡ ÀûÀÀÇÏ°í ¾ÈÀü ÇÁ·ÎÅäÄÝ¿¡ µû¶ó »ý»êÀ» Àç°³ÇÏ¸é¼ ½ÃÀåÀº Á¡Â÷ ȸº¹µÇ¾ú½À´Ï´Ù. ÆÒµ¥¹ÍÀº ÀÚµ¿È ¹× ¼ÒÇüÈ ºÎǰÀÇ Çʿ伺À» °Á¶ÇÏ°í ´Ù¾çÇÑ ÃÖÁ¾ »ç¿ë »ê¾÷¿¡¼ ¸¶ÀÌÅ©·Î¸ðÅÍÀÇ Àå±âÀûÀÎ ¼ºÀå ÀáÀç·ÂÀ» °ÈÇß½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È AC ¸ðÅÍ ºÐ¾ß°¡ °¡Àå Ŭ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
ÇコÄÉ¾î ±â±â ¹× °¡ÀüÁ¦Ç°¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇÏ°í »õ·Î¿î ½ÃÀå ±âȸ°¡ âÃâµÊ¿¡ µû¶ó AC ¸ðÅÍ ºÐ¾ß°¡ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ³ëµ¿·Â Á¦ÇÑÀ¸·Î ÀÎÇØ »ê¾÷°è´Â ·Îº¿ ¼Ö·ç¼Ç¿¡ ÅõÀÚÇÏ¿© °£Á¢ÀûÀ¸·Î ¸¶ÀÌÅ©·Î¸ðÅÍ ¼ö¿ä¸¦ Áõ°¡½ÃÄ×½À´Ï´Ù. ¿ø°Ý ±Ù¹«·ÎÀÇ ÀüȯÀº ³ëÆ®ºÏ, À¥Ä· ¹× ÁÖº¯±â±â¿¡¼ ¼ÒÇü ¸ðÅÍ¿¡ ´ëÇÑ ¼ö¿ä¸¦ °¡¼ÓÈÇß½À´Ï´Ù. Àü¹ÝÀûÀ¸·Î, ÆÒµ¥¹ÍÀº ¹ÎøÇÑ Á¦Á¶¿Í ºÎǰÀÇ ´ÙÀç´Ù´ÉÇÔÀÇ Á߿伺À» ºÎ°¢½ÃÄ×½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ³¯·Î±× Á¦¾î ºÎ¹®Àº °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È °íÈ¿À² ¹× ¿¬¼Ó ÀÛµ¿¿¡ ÀûÇÕÇÑ ¾Æ³¯·Î±× Á¦¾î ºÎ¹®ÀÌ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ·¯ÇÑ ¸ðÅÍ´Â HVAC ½Ã½ºÅÛ, °¡ÀüÁ¦Ç°, »ê¾÷ ÀÚµ¿È µî¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Àç»ý ¿¡³ÊÁö ½Ã½ºÅÛ°úÀÇ È£È¯¼º ¶ÇÇÑ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. °¡º¯ Á֯ļö µå¶óÀ̺êÀÇ ¹ßÀüÀ¸·Î µ¿Àû ȯ°æ¿¡¼ÀÇ ¼º´ÉÀÌ Çâ»óµÇ¾ú½À´Ï´Ù. Àü¹ÝÀûÀ¸·Î, AC ¸ðÅÍ ºÎ¹®Àº ´ë·® »ý»ê ºÐ¾ß¿Í ½ÅÈï ºÐ¾ß¿¡¼ ±¤¹üÀ§ÇÑ Àû¿ë °¡´É¼ºÀ¸·Î ÀÎÇØ ÇýÅÃÀ» ´©¸®°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº ¹æ´ëÇÑ Á¦Á¶°ÅÁ¡°ú ³ôÀº ÀüÀÚÁ¦Ç° »ý»ê·®À¸·Î ÀÎÇØ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áß±¹, ÀϺ», Çѱ¹ µîÀÇ ±¹°¡´Â °¡Àü ¹× ÀÚµ¿Â÷ Á¦Á¶ÀÇ Áß½ÉÁöÀÔ´Ï´Ù. µµ½Ã Àα¸ÀÇ È®´ë¿Í °¡Ã³ºÐ ¼Òµæ Áõ°¡·Î ÀÎÇØ ¸ðÅÍ ±¸µ¿ °¡ÀüÁ¦Ç°ÀÇ ¼Òºñ°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ½º¸¶Æ® ½ÃƼ¿Í »ê¾÷ ÀÚµ¿È ±¸»ó¿¡ ´ëÇÑ Á¤ºÎ ÅõÀÚ´Â ¼ö¿ä Áö¼Ó¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ª¿¡´Â ÁÖ¿ä ºÎǰ Á¦Á¶¾÷ü°¡ Á¸ÀçÇϱ⠶§¹®¿¡ °æÀï·ÂÀÌ ³ô½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì´Â ÀÇ·á Çõ½Å°ú »ê¾÷¿ë ·Îº¿¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¹Ì±¹°ú ij³ª´Ù´Â »ý»ê¼º Çâ»ó°ú ³ëµ¿·Â ºÎÁ·À» ÇØ°áÇϱâ À§ÇØ ÀÚµ¿È ±â¼ú¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ÇコÄÉ¾î °³Çõ°ú °í·ÉÈ·Î ÀÎÇØ ·Îº¿ ÀÇ·á±â±â¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¹æÀ§»ê¾÷°ú Ç×°ø¿ìÁÖ»ê¾÷µµ Ư¼ö ¸¶ÀÌÅ©·Î¸ðÅÍ¿¡ ÀÖ¾î °·ÂÇÑ ¼ºÀåÀÇ ±æÀ» º¸¿©ÁÖ°í ÀÖ½À´Ï´Ù. ÷´Ü Á¦Á¶¾÷¿¡ ´ëÇÑ Á¤ºÎÀÇ Áö¿ø Á¤Ã¥°ú ÀÚ±Ý Áö¿øÀº ÀÌ Áö¿ªÀÇ È®ÀåÀ» ´õ¿í °¡¼ÓÈÇÒ °ÍÀÔ´Ï´Ù.
According to Stratistics MRC, the Global Micro Motors Market is accounted for $50.7 billion in 2025 and is expected to reach $88.1 billion by 2032 growing at a CAGR of 8.2% during the forecast period. Micro motors are small-sized, high-precision electric motors usually measuring just a few millimeters to a couple of centimeters. These motors transform electrical energy into mechanical motion, making them perfect for compact applications that require reliable and efficient performance. Widely utilized in sectors like healthcare equipment, automotive components, robotics, and personal electronics, micro motors are valued for their low energy usage, precision control, and operational efficiency. Their compact and adaptable build allows them to perform delicate and detailed tasks with ease.
Growing demand for automation
The global surge in automation across industries is significantly driving demand for micro motors. These compact motors are essential for precision control in robotic arms, industrial equipment, and automated tools. Healthcare automation, particularly in surgical robots and diagnostic equipment, is also a key growth area. Compact designs and increased torque capabilities make them suitable for applications in tight and complex spaces. Additionally, demand from the consumer electronics sector, especially in drones and wearable devices, adds momentum to market growth.
Limited torque output
Despite their versatility, micro motors often struggle to deliver the torque required for high-load applications. This limitation restricts their use in industries that demand high power output over extended periods. Applications requiring both compact form and high torque must resort to additional gearing, increasing system complexity. This shortcoming often deters adoption in automotive and aerospace applications where performance reliability is critical. Continuous R&D is required to enhance torque without sacrificing size efficiency.
Expansion in healthcare robotics
Healthcare robotics presents a vast untapped market for micro motors due to the rising adoption of minimally invasive surgeries. Micro motors are critical components in surgical instruments, rehabilitation devices, and infusion pumps. approvals and technological advancements are enabling faster integration of motorized systems into clinical settings. There's also a growing trend of robotic pharmacies and automated diagnostic tools, further increasing the scope. Investment in biotech and medtech startups will continue to fuel innovation in this segment.
Rapid technological changes
The fast pace of innovation in motor technologies poses a challenge for manufacturers to keep up with evolving standards. Frequent shifts in design requirements can render existing products obsolete, increasing R&D and inventory costs. End-users now demand more energy-efficient, quieter, and smarter motors, raising the pressure to innovate constantly. Companies unable to upgrade swiftly risk losing market share to agile, tech-forward firms. This volatility also affects supply chain stability, as new technologies may require specialized raw materials. Manufacturers need to adopt modular and flexible designs to mitigate these risks.
The COVID-19 pandemic had a mixed impact on the micro motors market. Initially, global supply chain disruptions and temporary shutdowns of manufacturing units hampered production and delayed deliveries. As industries adapted to remote operations and resumed production with safety protocols, the market gradually recovered. The pandemic highlighted the need for automation and miniaturized components, reinforcing long-term growth potential for micro motors across various end-use industries.
The AC motor segment is expected to be the largest during the forecast period
The AC motor segment is expected to account for the largest market share during the forecast period due to demand for healthcare equipment and consumer electronics surged, creating new market opportunities. With workforce restrictions, industries invested in robotic solutions, which indirectly boosted micro motor demand. The shift to remote work accelerated demand for compact motors in laptops, webcams, and peripheral devices. Overall, the pandemic highlighted the importance of agile manufacturing and component versatility.
The analog controlled segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the analog controlled segment is predicted to witness the highest growth rate due to their high efficiency and suitability for continuous operation. These motors are widely used in HVAC systems, home appliances, and industrial automation. Their compatibility with renewable energy systems also supports their adoption. Advancements in variable frequency drives are enhancing their performance in dynamic settings. Overall, the AC motor segment is benefiting from broad applicability across high-volume and emerging sectors.
During the forecast period, the Asia Pacific region is expected to hold the largest market sharedriven by its vast manufacturing base and high electronics production. Countries like China, Japan, and South Korea are hubs for consumer electronics and automotive manufacturing. Expanding urban populations and rising disposable incomes increase consumption of motor-driven appliances. Government investments in smart city and industrial automation initiatives contribute to sustained demand. The presence of major component suppliers gives the region a strong competitive edge.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR due to increased focus on medical innovation and industrial robotics. The U.S. and Canada are heavily investing in automation technologies to enhance productivity and address labor shortages. Healthcare reforms and aging populations are increasing the demand for robotic medical equipment. The defense and aerospace industries also present a strong growth avenue for specialized micro motors. Supportive government policies and funding for advanced manufacturing further accelerate regional expansion.
Key players in the market
Some of the key players in Micro Motors Market include Shinano Kenshi Co. Ltd., Mitsuba Corporation, AMETEK Inc., Asmo Co. Ltd., Maxon Motors AG, Nidec Corporation, Johnson Electric Holdings Limited, Mabuchi Motor Co. Ltd., Minebea Mitsumi Inc., Buhler Motor GmbH, Portescap, Allied Motion Technologies Inc., Faulhaber Group, Mclennan Servo Supplies Ltd., and COMSOL Inc.
In March 2025, AMETEK Inc. unveiled the Pittman GMX Series, a high-precision DC micro motor for medical robotics. It delivers improved torque density and is tailored for surgical tools requiring compact size and reliability.
In February 2025, Shinano Kenshi Co. Ltd. introduced the Pleasanter DC Micro Motor Series, a compact brushless motor for automotive HVAC systems. It offers enhanced energy efficiency and quiet operation for electric vehicle applications.
In January 2025, Mitsuba Corporation launched the EVS-300 Micro Motor, designed for compact electric vehicle drive systems. Showcased at Auto EV India 2024, it supports two-wheeled EVs with high torque in a lightweight package.